source: src/libcfa/rational @ e82ef13

ADTaaron-thesisarm-ehast-experimentalcleanup-dtorsdeferred_resndemanglerenumforall-pointer-decayjacob/cs343-translationjenkins-sandboxnew-astnew-ast-unique-exprno_listpersistent-indexerpthread-emulationqualifiedEnum
Last change on this file since e82ef13 was 3ce0d440, checked in by Peter A. Buhr <pabuhr@…>, 7 years ago

more push/pop updates

  • Property mode set to 100644
File size: 3.6 KB
RevLine 
[bb82c03]1//
[53ba273]2// Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
[bb82c03]6//
[630a82a]7// rational -- Rational numbers are numbers written as a ratio, i.e., as a fraction, where the numerator (top number)
8//     and the denominator (bottom number) are whole numbers. When creating and computing with rational numbers, results
9//     are constantly reduced to keep the numerator and denominator as small as possible.
[bb82c03]10//
[53ba273]11// Author           : Peter A. Buhr
12// Created On       : Wed Apr  6 17:56:25 2016
13// Last Modified By : Peter A. Buhr
[3ce0d440]14// Last Modified On : Sat Jun  2 09:10:01 2018
15// Update Count     : 105
[bb82c03]16//
[f621a148]17
[53a6c2a]18#pragma once
[53ba273]19
[3d9b5da]20#include "iostream"
[53ba273]21
[561f730]22trait scalar( otype T ) {
23};
24
25trait arithmetic( otype T | scalar( T ) ) {
26        int !?( T );
27        int ?==?( T, T );
28        int ?!=?( T, T );
29        int ?<?( T, T );
30        int ?<=?( T, T );
31        int ?>?( T, T );
32        int ?>=?( T, T );
[a493682]33        void ?{}( T &, zero_t );
34        void ?{}( T &, one_t );
[561f730]35        T +?( T );
36        T -?( T );
37        T ?+?( T, T );
38        T ?-?( T, T );
39        T ?*?( T, T );
40        T ?/?( T, T );
41        T ?%?( T, T );
[53a8e68]42        T ?/=?( T &, T );
[561f730]43        T abs( T );
44};
45
[630a82a]46// implementation
[561f730]47
[3ce0d440]48forall( otype RationalImpl | arithmetic( RationalImpl ) ) {
49        struct Rational {
50                RationalImpl numerator, denominator;                    // invariant: denominator > 0
51        }; // Rational
[53ba273]52
[3ce0d440]53        // constructors
[561f730]54
[3ce0d440]55        void ?{}( Rational(RationalImpl) & r );
56        void ?{}( Rational(RationalImpl) & r, RationalImpl n );
57        void ?{}( Rational(RationalImpl) & r, RationalImpl n, RationalImpl d );
58        void ?{}( Rational(RationalImpl) & r, zero_t );
59        void ?{}( Rational(RationalImpl) & r, one_t );
[561f730]60
[3ce0d440]61        // numerator/denominator getter
[561f730]62
[3ce0d440]63        RationalImpl numerator( Rational(RationalImpl) r );
64        RationalImpl denominator( Rational(RationalImpl) r );
65        [ RationalImpl, RationalImpl ] ?=?( & [ RationalImpl, RationalImpl ] dest, Rational(RationalImpl) src );
[561f730]66
[3ce0d440]67        // numerator/denominator setter
[561f730]68
[3ce0d440]69        RationalImpl numerator( Rational(RationalImpl) r, RationalImpl n );
70        RationalImpl denominator( Rational(RationalImpl) r, RationalImpl d );
[630a82a]71
[3ce0d440]72        // comparison
[561f730]73
[3ce0d440]74        int ?==?( Rational(RationalImpl) l, Rational(RationalImpl) r );
75        int ?!=?( Rational(RationalImpl) l, Rational(RationalImpl) r );
76        int ?<?( Rational(RationalImpl) l, Rational(RationalImpl) r );
77        int ?<=?( Rational(RationalImpl) l, Rational(RationalImpl) r );
78        int ?>?( Rational(RationalImpl) l, Rational(RationalImpl) r );
79        int ?>=?( Rational(RationalImpl) l, Rational(RationalImpl) r );
[561f730]80
[3ce0d440]81        // arithmetic
[53a6c2a]82
[3ce0d440]83        Rational(RationalImpl) +?( Rational(RationalImpl) r );
84        Rational(RationalImpl) -?( Rational(RationalImpl) r );
85        Rational(RationalImpl) ?+?( Rational(RationalImpl) l, Rational(RationalImpl) r );
86        Rational(RationalImpl) ?-?( Rational(RationalImpl) l, Rational(RationalImpl) r );
87        Rational(RationalImpl) ?*?( Rational(RationalImpl) l, Rational(RationalImpl) r );
88        Rational(RationalImpl) ?/?( Rational(RationalImpl) l, Rational(RationalImpl) r );
[561f730]89
[3ce0d440]90        // I/O
91        forall( dtype istype | istream( istype ) | { istype & ?|?( istype &, RationalImpl & ); } )
92        istype & ?|?( istype &, Rational(RationalImpl) & );
[561f730]93
[3ce0d440]94        forall( dtype ostype | ostream( ostype ) | { ostype & ?|?( ostype &, RationalImpl ); } )
95        ostype & ?|?( ostype &, Rational(RationalImpl ) );
96} // distribution
[630a82a]97
98// conversion
[53a6c2a]99forall( otype RationalImpl | arithmetic( RationalImpl ) | { double convert( RationalImpl ); } )
[6c6455f]100double widen( Rational(RationalImpl) r );
[53a6c2a]101forall( otype RationalImpl | arithmetic( RationalImpl ) | { double convert( RationalImpl );  RationalImpl convert( double );} )
[6c6455f]102Rational(RationalImpl) narrow( double f, RationalImpl md );
[630a82a]103
[53ba273]104// Local Variables: //
105// mode: c //
106// tab-width: 4 //
107// End: //
Note: See TracBrowser for help on using the repository browser.