source: src/libcfa/rational @ 753f13c9

ADTaaron-thesisarm-ehast-experimentalcleanup-dtorsdeferred_resndemanglerenumforall-pointer-decayjacob/cs343-translationjenkins-sandboxnew-astnew-ast-unique-exprnew-envno_listpersistent-indexerpthread-emulationqualifiedEnumwith_gc
Last change on this file since 753f13c9 was 09687aa, checked in by Peter A. Buhr <pabuhr@…>, 7 years ago

complete conversion of iostream/fstream to use references

  • Property mode set to 100644
File size: 4.9 KB
RevLine 
[bb82c03]1//
[53ba273]2// Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
[bb82c03]6//
[630a82a]7// rational -- Rational numbers are numbers written as a ratio, i.e., as a fraction, where the numerator (top number)
8//     and the denominator (bottom number) are whole numbers. When creating and computing with rational numbers, results
9//     are constantly reduced to keep the numerator and denominator as small as possible.
[bb82c03]10//
[53ba273]11// Author           : Peter A. Buhr
12// Created On       : Wed Apr  6 17:56:25 2016
13// Last Modified By : Peter A. Buhr
[09687aa]14// Last Modified On : Wed Dec  6 23:12:53 2017
15// Update Count     : 97
[bb82c03]16//
[f621a148]17
[53a6c2a]18#pragma once
[53ba273]19
[3d9b5da]20#include "iostream"
[53ba273]21
[561f730]22trait scalar( otype T ) {
23};
24
25trait arithmetic( otype T | scalar( T ) ) {
26        int !?( T );
27        int ?==?( T, T );
28        int ?!=?( T, T );
29        int ?<?( T, T );
30        int ?<=?( T, T );
31        int ?>?( T, T );
32        int ?>=?( T, T );
[a493682]33        void ?{}( T &, zero_t );
34        void ?{}( T &, one_t );
[561f730]35        T +?( T );
36        T -?( T );
37        T ?+?( T, T );
38        T ?-?( T, T );
39        T ?*?( T, T );
40        T ?/?( T, T );
41        T ?%?( T, T );
[53a8e68]42        T ?/=?( T &, T );
[561f730]43        T abs( T );
44};
45
[630a82a]46// implementation
[561f730]47
[53a6c2a]48forall( otype RationalImpl | arithmetic( RationalImpl ) )
[53ba273]49struct Rational {
[561f730]50        RationalImpl numerator, denominator;                            // invariant: denominator > 0
[53ba273]51}; // Rational
52
[630a82a]53// constructors
[561f730]54
[53a6c2a]55forall( otype RationalImpl | arithmetic( RationalImpl ) )
[a493682]56void ?{}( Rational(RationalImpl) & r );
[561f730]57
[53a6c2a]58forall( otype RationalImpl | arithmetic( RationalImpl ) )
[a493682]59void ?{}( Rational(RationalImpl) & r, RationalImpl n );
[561f730]60
[53a6c2a]61forall( otype RationalImpl | arithmetic( RationalImpl ) )
[a493682]62void ?{}( Rational(RationalImpl) & r, RationalImpl n, RationalImpl d );
[561f730]63
[53a6c2a]64forall( otype RationalImpl | arithmetic( RationalImpl ) )
[a493682]65void ?{}( Rational(RationalImpl) & r, zero_t );
[561f730]66
[53a6c2a]67forall( otype RationalImpl | arithmetic( RationalImpl ) )
[a493682]68void ?{}( Rational(RationalImpl) & r, one_t );
[630a82a]69
[53a6c2a]70// numerator/denominator getter
[561f730]71
[53a6c2a]72forall( otype RationalImpl | arithmetic( RationalImpl ) )
[561f730]73RationalImpl numerator( Rational(RationalImpl) r );
74
[53a6c2a]75forall( otype RationalImpl | arithmetic( RationalImpl ) )
[561f730]76RationalImpl denominator( Rational(RationalImpl) r );
[53a6c2a]77
78forall( otype RationalImpl | arithmetic( RationalImpl ) )
[a493682]79[ RationalImpl, RationalImpl ] ?=?( & [ RationalImpl, RationalImpl ] dest, Rational(RationalImpl) src );
[561f730]80
[53a6c2a]81// numerator/denominator setter
[561f730]82
[53a6c2a]83forall( otype RationalImpl | arithmetic( RationalImpl ) )
[561f730]84RationalImpl numerator( Rational(RationalImpl) r, RationalImpl n );
85
[53a6c2a]86forall( otype RationalImpl | arithmetic( RationalImpl ) )
[561f730]87RationalImpl denominator( Rational(RationalImpl) r, RationalImpl d );
[630a82a]88
89// comparison
[561f730]90
[53a6c2a]91forall( otype RationalImpl | arithmetic( RationalImpl ) )
[561f730]92int ?==?( Rational(RationalImpl) l, Rational(RationalImpl) r );
93
[53a6c2a]94forall( otype RationalImpl | arithmetic( RationalImpl ) )
[561f730]95int ?!=?( Rational(RationalImpl) l, Rational(RationalImpl) r );
96
[53a6c2a]97forall( otype RationalImpl | arithmetic( RationalImpl ) )
[561f730]98int ?<?( Rational(RationalImpl) l, Rational(RationalImpl) r );
99
[53a6c2a]100forall( otype RationalImpl | arithmetic( RationalImpl ) )
[561f730]101int ?<=?( Rational(RationalImpl) l, Rational(RationalImpl) r );
102
[53a6c2a]103forall( otype RationalImpl | arithmetic( RationalImpl ) )
[561f730]104int ?>?( Rational(RationalImpl) l, Rational(RationalImpl) r );
105
[53a6c2a]106forall( otype RationalImpl | arithmetic( RationalImpl ) )
[561f730]107int ?>=?( Rational(RationalImpl) l, Rational(RationalImpl) r );
[630a82a]108
109// arithmetic
[561f730]110
[53a6c2a]111forall( otype RationalImpl | arithmetic( RationalImpl ) )
[561f730]112Rational(RationalImpl) +?( Rational(RationalImpl) r );
113
[53a6c2a]114forall( otype RationalImpl | arithmetic( RationalImpl ) )
[561f730]115Rational(RationalImpl) -?( Rational(RationalImpl) r );
116
[53a6c2a]117forall( otype RationalImpl | arithmetic( RationalImpl ) )
[561f730]118Rational(RationalImpl) ?+?( Rational(RationalImpl) l, Rational(RationalImpl) r );
119
[53a6c2a]120forall( otype RationalImpl | arithmetic( RationalImpl ) )
[561f730]121Rational(RationalImpl) ?-?( Rational(RationalImpl) l, Rational(RationalImpl) r );
122
[53a6c2a]123forall( otype RationalImpl | arithmetic( RationalImpl ) )
[561f730]124Rational(RationalImpl) ?*?( Rational(RationalImpl) l, Rational(RationalImpl) r );
125
[53a6c2a]126forall( otype RationalImpl | arithmetic( RationalImpl ) )
[561f730]127Rational(RationalImpl) ?/?( Rational(RationalImpl) l, Rational(RationalImpl) r );
[630a82a]128
129// conversion
[53a6c2a]130forall( otype RationalImpl | arithmetic( RationalImpl ) | { double convert( RationalImpl ); } )
[6c6455f]131double widen( Rational(RationalImpl) r );
[53a6c2a]132forall( otype RationalImpl | arithmetic( RationalImpl ) | { double convert( RationalImpl );  RationalImpl convert( double );} )
[6c6455f]133Rational(RationalImpl) narrow( double f, RationalImpl md );
[630a82a]134
135// I/O
[53a6c2a]136forall( otype RationalImpl | arithmetic( RationalImpl ) )
[09687aa]137forall( dtype istype | istream( istype ) | { istype & ?|?( istype &, RationalImpl & ); } )
138istype & ?|?( istype &, Rational(RationalImpl) & );
[561f730]139
[53a6c2a]140forall( otype RationalImpl | arithmetic( RationalImpl ) )
[09687aa]141forall( dtype ostype | ostream( ostype ) | { ostype & ?|?( ostype &, RationalImpl ); } )
142ostype & ?|?( ostype &, Rational(RationalImpl ) );
[53ba273]143
144// Local Variables: //
145// mode: c //
146// tab-width: 4 //
147// End: //
Note: See TracBrowser for help on using the repository browser.