1 | //
|
---|
2 | // Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
|
---|
3 | //
|
---|
4 | // The contents of this file are covered under the licence agreement in the
|
---|
5 | // file "LICENCE" distributed with Cforall.
|
---|
6 | //
|
---|
7 | // rational.c --
|
---|
8 | //
|
---|
9 | // Author : Peter A. Buhr
|
---|
10 | // Created On : Wed Apr 6 17:54:28 2016
|
---|
11 | // Last Modified By : Peter A. Buhr
|
---|
12 | // Last Modified On : Wed Aug 23 22:38:48 2017
|
---|
13 | // Update Count : 154
|
---|
14 | //
|
---|
15 |
|
---|
16 | #include "rational"
|
---|
17 | #include "fstream"
|
---|
18 | #include "stdlib"
|
---|
19 |
|
---|
20 | // helper routines
|
---|
21 |
|
---|
22 | // Calculate greatest common denominator of two numbers, the first of which may be negative. Used to reduce rationals.
|
---|
23 | // alternative: https://en.wikipedia.org/wiki/Binary_GCD_algorithm
|
---|
24 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
|
---|
25 | static RationalImpl gcd( RationalImpl a, RationalImpl b ) {
|
---|
26 | for ( ;; ) { // Euclid's algorithm
|
---|
27 | RationalImpl r = a % b;
|
---|
28 | if ( r == (RationalImpl){0} ) break;
|
---|
29 | a = b;
|
---|
30 | b = r;
|
---|
31 | } // for
|
---|
32 | return b;
|
---|
33 | } // gcd
|
---|
34 |
|
---|
35 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
|
---|
36 | static RationalImpl simplify( RationalImpl & n, RationalImpl & d ) {
|
---|
37 | if ( d == (RationalImpl){0} ) {
|
---|
38 | serr | "Invalid rational number construction: denominator cannot be equal to 0." | endl;
|
---|
39 | exit( EXIT_FAILURE );
|
---|
40 | } // exit
|
---|
41 | if ( d < (RationalImpl){0} ) { d = -d; n = -n; } // move sign to numerator
|
---|
42 | return gcd( abs( n ), d ); // simplify
|
---|
43 | } // Rationalnumber::simplify
|
---|
44 |
|
---|
45 |
|
---|
46 | // constructors
|
---|
47 |
|
---|
48 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
|
---|
49 | void ?{}( Rational(RationalImpl) & r ) {
|
---|
50 | r{ (RationalImpl){0}, (RationalImpl){1} };
|
---|
51 | } // rational
|
---|
52 |
|
---|
53 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
|
---|
54 | void ?{}( Rational(RationalImpl) & r, RationalImpl n ) {
|
---|
55 | r{ n, (RationalImpl){1} };
|
---|
56 | } // rational
|
---|
57 |
|
---|
58 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
|
---|
59 | void ?{}( Rational(RationalImpl) & r, RationalImpl n, RationalImpl d ) {
|
---|
60 | RationalImpl t = simplify( n, d ); // simplify
|
---|
61 | r.numerator = n / t;
|
---|
62 | r.denominator = d / t;
|
---|
63 | } // rational
|
---|
64 |
|
---|
65 |
|
---|
66 | // getter for numerator/denominator
|
---|
67 |
|
---|
68 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
|
---|
69 | RationalImpl numerator( Rational(RationalImpl) r ) {
|
---|
70 | return r.numerator;
|
---|
71 | } // numerator
|
---|
72 |
|
---|
73 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
|
---|
74 | RationalImpl denominator( Rational(RationalImpl) r ) {
|
---|
75 | return r.denominator;
|
---|
76 | } // denominator
|
---|
77 |
|
---|
78 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
|
---|
79 | [ RationalImpl, RationalImpl ] ?=?( & [ RationalImpl, RationalImpl ] dest, Rational(RationalImpl) src ) {
|
---|
80 | return dest = src.[ numerator, denominator ];
|
---|
81 | }
|
---|
82 |
|
---|
83 | // setter for numerator/denominator
|
---|
84 |
|
---|
85 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
|
---|
86 | RationalImpl numerator( Rational(RationalImpl) r, RationalImpl n ) {
|
---|
87 | RationalImpl prev = r.numerator;
|
---|
88 | RationalImpl t = gcd( abs( n ), r.denominator ); // simplify
|
---|
89 | r.numerator = n / t;
|
---|
90 | r.denominator = r.denominator / t;
|
---|
91 | return prev;
|
---|
92 | } // numerator
|
---|
93 |
|
---|
94 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
|
---|
95 | RationalImpl denominator( Rational(RationalImpl) r, RationalImpl d ) {
|
---|
96 | RationalImpl prev = r.denominator;
|
---|
97 | RationalImpl t = simplify( r.numerator, d ); // simplify
|
---|
98 | r.numerator = r.numerator / t;
|
---|
99 | r.denominator = d / t;
|
---|
100 | return prev;
|
---|
101 | } // denominator
|
---|
102 |
|
---|
103 |
|
---|
104 | // comparison
|
---|
105 |
|
---|
106 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
|
---|
107 | int ?==?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
|
---|
108 | return l.numerator * r.denominator == l.denominator * r.numerator;
|
---|
109 | } // ?==?
|
---|
110 |
|
---|
111 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
|
---|
112 | int ?!=?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
|
---|
113 | return ! ( l == r );
|
---|
114 | } // ?!=?
|
---|
115 |
|
---|
116 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
|
---|
117 | int ?<?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
|
---|
118 | return l.numerator * r.denominator < l.denominator * r.numerator;
|
---|
119 | } // ?<?
|
---|
120 |
|
---|
121 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
|
---|
122 | int ?<=?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
|
---|
123 | return l.numerator * r.denominator <= l.denominator * r.numerator;
|
---|
124 | } // ?<=?
|
---|
125 |
|
---|
126 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
|
---|
127 | int ?>?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
|
---|
128 | return ! ( l <= r );
|
---|
129 | } // ?>?
|
---|
130 |
|
---|
131 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
|
---|
132 | int ?>=?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
|
---|
133 | return ! ( l < r );
|
---|
134 | } // ?>=?
|
---|
135 |
|
---|
136 |
|
---|
137 | // arithmetic
|
---|
138 |
|
---|
139 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
|
---|
140 | Rational(RationalImpl) +?( Rational(RationalImpl) r ) {
|
---|
141 | Rational(RationalImpl) t = { r.numerator, r.denominator };
|
---|
142 | return t;
|
---|
143 | } // +?
|
---|
144 |
|
---|
145 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
|
---|
146 | Rational(RationalImpl) -?( Rational(RationalImpl) r ) {
|
---|
147 | Rational(RationalImpl) t = { -r.numerator, r.denominator };
|
---|
148 | return t;
|
---|
149 | } // -?
|
---|
150 |
|
---|
151 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
|
---|
152 | Rational(RationalImpl) ?+?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
|
---|
153 | if ( l.denominator == r.denominator ) { // special case
|
---|
154 | Rational(RationalImpl) t = { l.numerator + r.numerator, l.denominator };
|
---|
155 | return t;
|
---|
156 | } else {
|
---|
157 | Rational(RationalImpl) t = { l.numerator * r.denominator + l.denominator * r.numerator, l.denominator * r.denominator };
|
---|
158 | return t;
|
---|
159 | } // if
|
---|
160 | } // ?+?
|
---|
161 |
|
---|
162 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
|
---|
163 | Rational(RationalImpl) ?-?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
|
---|
164 | if ( l.denominator == r.denominator ) { // special case
|
---|
165 | Rational(RationalImpl) t = { l.numerator - r.numerator, l.denominator };
|
---|
166 | return t;
|
---|
167 | } else {
|
---|
168 | Rational(RationalImpl) t = { l.numerator * r.denominator - l.denominator * r.numerator, l.denominator * r.denominator };
|
---|
169 | return t;
|
---|
170 | } // if
|
---|
171 | } // ?-?
|
---|
172 |
|
---|
173 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
|
---|
174 | Rational(RationalImpl) ?*?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
|
---|
175 | Rational(RationalImpl) t = { l.numerator * r.numerator, l.denominator * r.denominator };
|
---|
176 | return t;
|
---|
177 | } // ?*?
|
---|
178 |
|
---|
179 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
|
---|
180 | Rational(RationalImpl) ?/?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
|
---|
181 | if ( r.numerator < (RationalImpl){0} ) {
|
---|
182 | r.numerator = -r.numerator;
|
---|
183 | r.denominator = -r.denominator;
|
---|
184 | } // if
|
---|
185 | Rational(RationalImpl) t = { l.numerator * r.denominator, l.denominator * r.numerator };
|
---|
186 | return t;
|
---|
187 | } // ?/?
|
---|
188 |
|
---|
189 |
|
---|
190 | // conversion
|
---|
191 |
|
---|
192 | forall( otype RationalImpl | arithmetic( RationalImpl ) | { double convert( RationalImpl ); } )
|
---|
193 | double widen( Rational(RationalImpl) r ) {
|
---|
194 | return convert( r.numerator ) / convert( r.denominator );
|
---|
195 | } // widen
|
---|
196 |
|
---|
197 | // http://www.ics.uci.edu/~eppstein/numth/frap.c
|
---|
198 | forall( otype RationalImpl | arithmetic( RationalImpl ) | { double convert( RationalImpl ); RationalImpl convert( double ); } )
|
---|
199 | Rational(RationalImpl) narrow( double f, RationalImpl md ) {
|
---|
200 | if ( md <= (RationalImpl){1} ) { // maximum fractional digits too small?
|
---|
201 | return (Rational(RationalImpl)){ convert( f ), (RationalImpl){1}}; // truncate fraction
|
---|
202 | } // if
|
---|
203 |
|
---|
204 | // continued fraction coefficients
|
---|
205 | RationalImpl m00 = {1}, m11 = { 1 }, m01 = { 0 }, m10 = { 0 };
|
---|
206 | RationalImpl ai, t;
|
---|
207 |
|
---|
208 | // find terms until denom gets too big
|
---|
209 | for ( ;; ) {
|
---|
210 | ai = convert( f );
|
---|
211 | if ( ! (m10 * ai + m11 <= md) ) break;
|
---|
212 | t = m00 * ai + m01;
|
---|
213 | m01 = m00;
|
---|
214 | m00 = t;
|
---|
215 | t = m10 * ai + m11;
|
---|
216 | m11 = m10;
|
---|
217 | m10 = t;
|
---|
218 | double temp = convert( ai );
|
---|
219 | if ( f == temp ) break; // prevent division by zero
|
---|
220 | f = 1 / (f - temp);
|
---|
221 | if ( f > (double)0x7FFFFFFF ) break; // representation failure
|
---|
222 | } // for
|
---|
223 | return (Rational(RationalImpl)){ m00, m10 };
|
---|
224 | } // narrow
|
---|
225 |
|
---|
226 |
|
---|
227 | // I/O
|
---|
228 |
|
---|
229 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
|
---|
230 | forall( dtype istype | istream( istype ) | { istype * ?|?( istype *, RationalImpl & ); } )
|
---|
231 | istype * ?|?( istype * is, Rational(RationalImpl) & r ) {
|
---|
232 | RationalImpl t;
|
---|
233 | is | r.numerator | r.denominator;
|
---|
234 | t = simplify( r.numerator, r.denominator );
|
---|
235 | r.numerator /= t;
|
---|
236 | r.denominator /= t;
|
---|
237 | return is;
|
---|
238 | } // ?|?
|
---|
239 |
|
---|
240 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
|
---|
241 | forall( dtype ostype | ostream( ostype ) | { ostype * ?|?( ostype *, RationalImpl ); } )
|
---|
242 | ostype * ?|?( ostype * os, Rational(RationalImpl ) r ) {
|
---|
243 | return os | r.numerator | '/' | r.denominator;
|
---|
244 | } // ?|?
|
---|
245 |
|
---|
246 | // Local Variables: //
|
---|
247 | // tab-width: 4 //
|
---|
248 | // End: //
|
---|