1 | // -*- Mode: C -*-
|
---|
2 | //
|
---|
3 | // Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
|
---|
4 | //
|
---|
5 | // The contents of this file are covered under the licence agreement in the
|
---|
6 | // file "LICENCE" distributed with Cforall.
|
---|
7 | //
|
---|
8 | // rational.c --
|
---|
9 | //
|
---|
10 | // Author : Peter A. Buhr
|
---|
11 | // Created On : Wed Apr 6 17:54:28 2016
|
---|
12 | // Last Modified By : Peter A. Buhr
|
---|
13 | // Last Modified On : Wed May 4 14:16:14 2016
|
---|
14 | // Update Count : 25
|
---|
15 | //
|
---|
16 |
|
---|
17 | #include "rational"
|
---|
18 | #include "fstream"
|
---|
19 | #include "stdlib"
|
---|
20 | #include "math" // floor
|
---|
21 |
|
---|
22 |
|
---|
23 | // constants
|
---|
24 |
|
---|
25 | struct Rational 0 = {0, 1};
|
---|
26 | struct Rational 1 = {1, 1};
|
---|
27 |
|
---|
28 |
|
---|
29 | // helper routines
|
---|
30 |
|
---|
31 | // Calculate greatest common denominator of two numbers, the first of which may be negative. Used to reduce rationals.
|
---|
32 | // alternative: https://en.wikipedia.org/wiki/Binary_GCD_algorithm
|
---|
33 | static long int gcd( long int a, long int b ) {
|
---|
34 | for ( ;; ) { // Euclid's algorithm
|
---|
35 | long int r = a % b;
|
---|
36 | if ( r == 0 ) break;
|
---|
37 | a = b;
|
---|
38 | b = r;
|
---|
39 | } // for
|
---|
40 | return b;
|
---|
41 | } // gcd
|
---|
42 |
|
---|
43 | static long int simplify( long int *n, long int *d ) {
|
---|
44 | if ( *d == 0 ) {
|
---|
45 | serr | "Invalid rational number construction: denominator cannot be equal to 0." | endl;
|
---|
46 | exit( EXIT_FAILURE );
|
---|
47 | } // exit
|
---|
48 | if ( *d < 0 ) { *d = -*d; *n = -*n; } // move sign to numerator
|
---|
49 | return gcd( abs( *n ), *d ); // simplify
|
---|
50 | } // Rationalnumber::simplify
|
---|
51 |
|
---|
52 |
|
---|
53 | // constructors
|
---|
54 |
|
---|
55 | void ?{}( Rational * r ) {
|
---|
56 | r{ 0, 1 };
|
---|
57 | } // rational
|
---|
58 |
|
---|
59 | void ?{}( Rational * r, long int n ) {
|
---|
60 | r{ n, 1 };
|
---|
61 | } // rational
|
---|
62 |
|
---|
63 | void ?{}( Rational * r, long int n, long int d ) {
|
---|
64 | long int t = simplify( &n, &d ); // simplify
|
---|
65 | r->numerator = n / t;
|
---|
66 | r->denominator = d / t;
|
---|
67 | } // rational
|
---|
68 |
|
---|
69 |
|
---|
70 | // getter/setter for numerator/denominator
|
---|
71 |
|
---|
72 | long int numerator( Rational r ) {
|
---|
73 | return r.numerator;
|
---|
74 | } // numerator
|
---|
75 |
|
---|
76 | long int numerator( Rational r, long int n ) {
|
---|
77 | long int prev = r.numerator;
|
---|
78 | long int t = gcd( abs( n ), r.denominator ); // simplify
|
---|
79 | r.numerator = n / t;
|
---|
80 | r.denominator = r.denominator / t;
|
---|
81 | return prev;
|
---|
82 | } // numerator
|
---|
83 |
|
---|
84 | long int denominator( Rational r ) {
|
---|
85 | return r.denominator;
|
---|
86 | } // denominator
|
---|
87 |
|
---|
88 | long int denominator( Rational r, long int d ) {
|
---|
89 | long int prev = r.denominator;
|
---|
90 | long int t = simplify( &r.numerator, &d ); // simplify
|
---|
91 | r.numerator = r.numerator / t;
|
---|
92 | r.denominator = d / t;
|
---|
93 | return prev;
|
---|
94 | } // denominator
|
---|
95 |
|
---|
96 |
|
---|
97 | // comparison
|
---|
98 |
|
---|
99 | int ?==?( Rational l, Rational r ) {
|
---|
100 | return l.numerator * r.denominator == l.denominator * r.numerator;
|
---|
101 | } // ?==?
|
---|
102 |
|
---|
103 | int ?!=?( Rational l, Rational r ) {
|
---|
104 | return ! ( l == r );
|
---|
105 | } // ?!=?
|
---|
106 |
|
---|
107 | int ?<?( Rational l, Rational r ) {
|
---|
108 | return l.numerator * r.denominator < l.denominator * r.numerator;
|
---|
109 | } // ?<?
|
---|
110 |
|
---|
111 | int ?<=?( Rational l, Rational r ) {
|
---|
112 | return l < r || l == r;
|
---|
113 | } // ?<=?
|
---|
114 |
|
---|
115 | int ?>?( Rational l, Rational r ) {
|
---|
116 | return ! ( l <= r );
|
---|
117 | } // ?>?
|
---|
118 |
|
---|
119 | int ?>=?( Rational l, Rational r ) {
|
---|
120 | return ! ( l < r );
|
---|
121 | } // ?>=?
|
---|
122 |
|
---|
123 |
|
---|
124 | // arithmetic
|
---|
125 |
|
---|
126 | Rational -?( Rational r ) {
|
---|
127 | Rational t = { -r.numerator, r.denominator };
|
---|
128 | return t;
|
---|
129 | } // -?
|
---|
130 |
|
---|
131 | Rational ?+?( Rational l, Rational r ) {
|
---|
132 | if ( l.denominator == r.denominator ) { // special case
|
---|
133 | Rational t = { l.numerator + r.numerator, l.denominator };
|
---|
134 | return t;
|
---|
135 | } else {
|
---|
136 | Rational t = { l.numerator * r.denominator + l.denominator * r.numerator, l.denominator * r.denominator };
|
---|
137 | return t;
|
---|
138 | } // if
|
---|
139 | } // ?+?
|
---|
140 |
|
---|
141 | Rational ?-?( Rational l, Rational r ) {
|
---|
142 | if ( l.denominator == r.denominator ) { // special case
|
---|
143 | Rational t = { l.numerator - r.numerator, l.denominator };
|
---|
144 | return t;
|
---|
145 | } else {
|
---|
146 | Rational t = { l.numerator * r.denominator - l.denominator * r.numerator, l.denominator * r.denominator };
|
---|
147 | return t;
|
---|
148 | } // if
|
---|
149 | } // ?-?
|
---|
150 |
|
---|
151 | Rational ?*?( Rational l, Rational r ) {
|
---|
152 | Rational t = { l.numerator * r.numerator, l.denominator * r.denominator };
|
---|
153 | return t;
|
---|
154 | } // ?*?
|
---|
155 |
|
---|
156 | Rational ?/?( Rational l, Rational r ) {
|
---|
157 | if ( r.numerator < 0 ) {
|
---|
158 | r.numerator = -r.numerator;
|
---|
159 | r.denominator = -r.denominator;
|
---|
160 | } // if
|
---|
161 | Rational t = { l.numerator * r.denominator, l.denominator * r.numerator };
|
---|
162 | return t;
|
---|
163 | } // ?/?
|
---|
164 |
|
---|
165 |
|
---|
166 | // conversion
|
---|
167 |
|
---|
168 | double widen( Rational r ) {
|
---|
169 | return (double)r.numerator / (double)r.denominator;
|
---|
170 | } // widen
|
---|
171 |
|
---|
172 | // https://rosettacode.org/wiki/Convert_decimal_number_to_rational#C
|
---|
173 | Rational narrow( double f, long int md ) {
|
---|
174 | if ( md <= 1 ) { // maximum fractional digits too small?
|
---|
175 | return (Rational){ f, 1}; // truncate fraction
|
---|
176 | } // if
|
---|
177 |
|
---|
178 | // continued fraction coefficients
|
---|
179 | long int a, h[3] = { 0, 1, 0 }, k[3] = { 1, 0, 0 };
|
---|
180 | long int x, d, n = 1;
|
---|
181 | int i, neg = 0;
|
---|
182 |
|
---|
183 | if ( f < 0 ) { neg = 1; f = -f; }
|
---|
184 | while ( f != floor( f ) ) { n <<= 1; f *= 2; }
|
---|
185 | d = f;
|
---|
186 |
|
---|
187 | // continued fraction and check denominator each step
|
---|
188 | for (i = 0; i < 64; i++) {
|
---|
189 | a = n ? d / n : 0;
|
---|
190 | if (i && !a) break;
|
---|
191 | x = d; d = n; n = x % n;
|
---|
192 | x = a;
|
---|
193 | if (k[1] * a + k[0] >= md) {
|
---|
194 | x = (md - k[0]) / k[1];
|
---|
195 | if ( ! (x * 2 >= a || k[1] >= md) ) break;
|
---|
196 | i = 65;
|
---|
197 | } // if
|
---|
198 | h[2] = x * h[1] + h[0]; h[0] = h[1]; h[1] = h[2];
|
---|
199 | k[2] = x * k[1] + k[0]; k[0] = k[1]; k[1] = k[2];
|
---|
200 | } // for
|
---|
201 | return (Rational){ neg ? -h[1] : h[1], k[1] };
|
---|
202 | } // narrow
|
---|
203 |
|
---|
204 |
|
---|
205 | // I/O
|
---|
206 |
|
---|
207 | forall( dtype istype | istream( istype ) )
|
---|
208 | istype * ?|?( istype *is, Rational *r ) {
|
---|
209 | long int t;
|
---|
210 | is | &(r->numerator) | &(r->denominator);
|
---|
211 | t = simplify( &(r->numerator), &(r->denominator) );
|
---|
212 | r->numerator /= t;
|
---|
213 | r->denominator /= t;
|
---|
214 | return is;
|
---|
215 | } // ?|?
|
---|
216 |
|
---|
217 | forall( dtype ostype | ostream( ostype ) )
|
---|
218 | ostype * ?|?( ostype *os, Rational r ) {
|
---|
219 | return os | r.numerator | '/' | r.denominator;
|
---|
220 | } // ?|?
|
---|
221 |
|
---|
222 | // Local Variables: //
|
---|
223 | // tab-width: 4 //
|
---|
224 | // End: //
|
---|