| 1 | // 
 | 
|---|
| 2 | // Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
 | 
|---|
| 3 | //
 | 
|---|
| 4 | // The contents of this file are covered under the licence agreement in the
 | 
|---|
| 5 | // file "LICENCE" distributed with Cforall.
 | 
|---|
| 6 | // 
 | 
|---|
| 7 | // rational.c -- 
 | 
|---|
| 8 | // 
 | 
|---|
| 9 | // Author           : Peter A. Buhr
 | 
|---|
| 10 | // Created On       : Wed Apr  6 17:54:28 2016
 | 
|---|
| 11 | // Last Modified By : Peter A. Buhr
 | 
|---|
| 12 | // Last Modified On : Sat Jul  9 11:18:04 2016
 | 
|---|
| 13 | // Update Count     : 40
 | 
|---|
| 14 | // 
 | 
|---|
| 15 | 
 | 
|---|
| 16 | #include "rational"
 | 
|---|
| 17 | #include "fstream"
 | 
|---|
| 18 | #include "stdlib"
 | 
|---|
| 19 | #include "math"                                                                                 // floor
 | 
|---|
| 20 | 
 | 
|---|
| 21 | 
 | 
|---|
| 22 | // constants
 | 
|---|
| 23 | 
 | 
|---|
| 24 | struct Rational 0 = {0, 1};
 | 
|---|
| 25 | struct Rational 1 = {1, 1};
 | 
|---|
| 26 | 
 | 
|---|
| 27 | 
 | 
|---|
| 28 | // helper routines
 | 
|---|
| 29 | 
 | 
|---|
| 30 | // Calculate greatest common denominator of two numbers, the first of which may be negative. Used to reduce rationals.
 | 
|---|
| 31 | // alternative: https://en.wikipedia.org/wiki/Binary_GCD_algorithm
 | 
|---|
| 32 | static long int gcd( long int a, long int b ) {
 | 
|---|
| 33 |         for ( ;; ) {                                                                            // Euclid's algorithm
 | 
|---|
| 34 |                 long int r = a % b;
 | 
|---|
| 35 |           if ( r == 0 ) break;
 | 
|---|
| 36 |                 a = b;
 | 
|---|
| 37 |                 b = r;
 | 
|---|
| 38 |         } // for
 | 
|---|
| 39 |         return b;
 | 
|---|
| 40 | } // gcd
 | 
|---|
| 41 | 
 | 
|---|
| 42 | static long int simplify( long int *n, long int *d ) {
 | 
|---|
| 43 |         if ( *d == 0 ) {
 | 
|---|
| 44 |                 serr | "Invalid rational number construction: denominator cannot be equal to 0." | endl;
 | 
|---|
| 45 |                 exit( EXIT_FAILURE );
 | 
|---|
| 46 |         } // exit
 | 
|---|
| 47 |         if ( *d < 0 ) { *d = -*d; *n = -*n; }                           // move sign to numerator
 | 
|---|
| 48 |         return gcd( abs( *n ), *d );                                            // simplify
 | 
|---|
| 49 | } // Rationalnumber::simplify
 | 
|---|
| 50 | 
 | 
|---|
| 51 | 
 | 
|---|
| 52 | // constructors
 | 
|---|
| 53 | 
 | 
|---|
| 54 | void ?{}( Rational * r ) {
 | 
|---|
| 55 |         r{ 0, 1 };
 | 
|---|
| 56 | } // rational
 | 
|---|
| 57 | 
 | 
|---|
| 58 | void ?{}( Rational * r, long int n ) {
 | 
|---|
| 59 |         r{ n, 1 };
 | 
|---|
| 60 | } // rational
 | 
|---|
| 61 | 
 | 
|---|
| 62 | void ?{}( Rational * r, long int n, long int d ) {
 | 
|---|
| 63 |         long int t = simplify( &n, &d );                                        // simplify
 | 
|---|
| 64 |         r->numerator = n / t;
 | 
|---|
| 65 |         r->denominator = d / t;
 | 
|---|
| 66 | } // rational
 | 
|---|
| 67 | 
 | 
|---|
| 68 | 
 | 
|---|
| 69 | // getter/setter for numerator/denominator
 | 
|---|
| 70 | 
 | 
|---|
| 71 | long int numerator( Rational r ) {
 | 
|---|
| 72 |         return r.numerator;
 | 
|---|
| 73 | } // numerator
 | 
|---|
| 74 | 
 | 
|---|
| 75 | long int numerator( Rational r, long int n ) {
 | 
|---|
| 76 |         long int prev = r.numerator;
 | 
|---|
| 77 |         long int t = gcd( abs( n ), r.denominator );            // simplify
 | 
|---|
| 78 |         r.numerator = n / t;
 | 
|---|
| 79 |         r.denominator = r.denominator / t;
 | 
|---|
| 80 |         return prev;
 | 
|---|
| 81 | } // numerator
 | 
|---|
| 82 | 
 | 
|---|
| 83 | long int denominator( Rational r ) {
 | 
|---|
| 84 |         return r.denominator;
 | 
|---|
| 85 | } // denominator
 | 
|---|
| 86 | 
 | 
|---|
| 87 | long int denominator( Rational r, long int d ) {
 | 
|---|
| 88 |         long int prev = r.denominator;
 | 
|---|
| 89 |         long int t = simplify( &r.numerator, &d );                      // simplify
 | 
|---|
| 90 |         r.numerator = r.numerator / t;
 | 
|---|
| 91 |         r.denominator = d / t;
 | 
|---|
| 92 |         return prev;
 | 
|---|
| 93 | } // denominator
 | 
|---|
| 94 | 
 | 
|---|
| 95 | 
 | 
|---|
| 96 | // comparison
 | 
|---|
| 97 | 
 | 
|---|
| 98 | int ?==?( Rational l, Rational r ) {
 | 
|---|
| 99 |         return l.numerator * r.denominator == l.denominator * r.numerator;
 | 
|---|
| 100 | } // ?==?
 | 
|---|
| 101 | 
 | 
|---|
| 102 | int ?!=?( Rational l, Rational r ) {
 | 
|---|
| 103 |         return ! ( l == r );
 | 
|---|
| 104 | } // ?!=?
 | 
|---|
| 105 | 
 | 
|---|
| 106 | int ?<?( Rational l, Rational r ) {
 | 
|---|
| 107 |         return l.numerator * r.denominator < l.denominator * r.numerator;
 | 
|---|
| 108 | } // ?<?
 | 
|---|
| 109 | 
 | 
|---|
| 110 | int ?<=?( Rational l, Rational r ) {
 | 
|---|
| 111 |         return l < r || l == r;
 | 
|---|
| 112 | } // ?<=?
 | 
|---|
| 113 | 
 | 
|---|
| 114 | int ?>?( Rational l, Rational r ) {
 | 
|---|
| 115 |         return ! ( l <= r );
 | 
|---|
| 116 | } // ?>?
 | 
|---|
| 117 | 
 | 
|---|
| 118 | int ?>=?( Rational l, Rational r ) {
 | 
|---|
| 119 |         return ! ( l < r );
 | 
|---|
| 120 | } // ?>=?
 | 
|---|
| 121 | 
 | 
|---|
| 122 | 
 | 
|---|
| 123 | // arithmetic
 | 
|---|
| 124 | 
 | 
|---|
| 125 | Rational -?( Rational r ) {
 | 
|---|
| 126 |         Rational t = { -r.numerator, r.denominator };
 | 
|---|
| 127 |         return t;
 | 
|---|
| 128 | } // -?
 | 
|---|
| 129 | 
 | 
|---|
| 130 | Rational ?+?( Rational l, Rational r ) {
 | 
|---|
| 131 |         if ( l.denominator == r.denominator ) {                         // special case
 | 
|---|
| 132 |                 Rational t = { l.numerator + r.numerator, l.denominator };
 | 
|---|
| 133 |                 return t;
 | 
|---|
| 134 |         } else {
 | 
|---|
| 135 |                 Rational t = { l.numerator * r.denominator + l.denominator * r.numerator, l.denominator * r.denominator };
 | 
|---|
| 136 |                 return t;
 | 
|---|
| 137 |         } // if
 | 
|---|
| 138 | } // ?+?
 | 
|---|
| 139 | 
 | 
|---|
| 140 | Rational ?-?( Rational l, Rational r ) {
 | 
|---|
| 141 |         if ( l.denominator == r.denominator ) {                         // special case
 | 
|---|
| 142 |                 Rational t = { l.numerator - r.numerator, l.denominator };
 | 
|---|
| 143 |                 return t;
 | 
|---|
| 144 |         } else {
 | 
|---|
| 145 |                 Rational t = { l.numerator * r.denominator - l.denominator * r.numerator, l.denominator * r.denominator };
 | 
|---|
| 146 |                 return t;
 | 
|---|
| 147 |         } // if
 | 
|---|
| 148 | } // ?-?
 | 
|---|
| 149 | 
 | 
|---|
| 150 | Rational ?*?( Rational l, Rational r ) {
 | 
|---|
| 151 |         Rational t = { l.numerator * r.numerator, l.denominator * r.denominator };
 | 
|---|
| 152 |         return t;
 | 
|---|
| 153 | } // ?*?
 | 
|---|
| 154 | 
 | 
|---|
| 155 | Rational ?/?( Rational l, Rational r ) {
 | 
|---|
| 156 |         if ( r.numerator < 0 ) {
 | 
|---|
| 157 |                 r.numerator = -r.numerator;
 | 
|---|
| 158 |                 r.denominator = -r.denominator;
 | 
|---|
| 159 |         } // if
 | 
|---|
| 160 |         Rational t = { l.numerator * r.denominator, l.denominator * r.numerator };
 | 
|---|
| 161 |         return t;
 | 
|---|
| 162 | } // ?/?
 | 
|---|
| 163 | 
 | 
|---|
| 164 | 
 | 
|---|
| 165 | // conversion
 | 
|---|
| 166 | 
 | 
|---|
| 167 | double widen( Rational r ) {
 | 
|---|
| 168 |         return (double)r.numerator / (double)r.denominator;
 | 
|---|
| 169 | } // widen
 | 
|---|
| 170 | 
 | 
|---|
| 171 | // http://www.ics.uci.edu/~eppstein/numth/frap.c
 | 
|---|
| 172 | Rational narrow( double f, long int md ) {
 | 
|---|
| 173 |         if ( md <= 1 ) {                                                                        // maximum fractional digits too small?
 | 
|---|
| 174 |                 return (Rational){ f, 1};                                               // truncate fraction
 | 
|---|
| 175 |         } // if
 | 
|---|
| 176 | 
 | 
|---|
| 177 |         // continued fraction coefficients
 | 
|---|
| 178 |         long int m00 = 1, m11 = 1, m01 = 0, m10 = 0;
 | 
|---|
| 179 |         long int ai, t;
 | 
|---|
| 180 | 
 | 
|---|
| 181 |         // find terms until denom gets too big
 | 
|---|
| 182 |         for ( ;; ) {
 | 
|---|
| 183 |                 ai = (long int)f;
 | 
|---|
| 184 |           if ( ! (m10 * ai + m11 <= md) ) break;
 | 
|---|
| 185 |                 t = m00 * ai + m01;
 | 
|---|
| 186 |                 m01 = m00;
 | 
|---|
| 187 |                 m00 = t;
 | 
|---|
| 188 |                 t = m10 * ai + m11;
 | 
|---|
| 189 |                 m11 = m10;
 | 
|---|
| 190 |                 m10 = t;
 | 
|---|
| 191 |                 t = (double)ai;
 | 
|---|
| 192 |           if ( f == t ) break;                                                          // prevent division by zero
 | 
|---|
| 193 |                 f = 1 / (f - t);
 | 
|---|
| 194 |           if ( f > (double)0x7FFFFFFF ) break;                          // representation failure
 | 
|---|
| 195 |         } 
 | 
|---|
| 196 |         return (Rational){ m00, m10 };
 | 
|---|
| 197 | } // narrow
 | 
|---|
| 198 | 
 | 
|---|
| 199 | 
 | 
|---|
| 200 | // I/O
 | 
|---|
| 201 | 
 | 
|---|
| 202 | forall( dtype istype | istream( istype ) )
 | 
|---|
| 203 | istype * ?|?( istype *is, Rational *r ) {
 | 
|---|
| 204 |         long int t;
 | 
|---|
| 205 |         is | &(r->numerator) | &(r->denominator);
 | 
|---|
| 206 |         t = simplify( &(r->numerator), &(r->denominator) );
 | 
|---|
| 207 |         r->numerator /= t;
 | 
|---|
| 208 |         r->denominator /= t;
 | 
|---|
| 209 |         return is;
 | 
|---|
| 210 | } // ?|?
 | 
|---|
| 211 | 
 | 
|---|
| 212 | forall( dtype ostype | ostream( ostype ) )
 | 
|---|
| 213 | ostype * ?|?( ostype *os, Rational r ) {
 | 
|---|
| 214 |         return os | r.numerator | '/' | r.denominator;
 | 
|---|
| 215 | } // ?|?
 | 
|---|
| 216 | 
 | 
|---|
| 217 | // Local Variables: //
 | 
|---|
| 218 | // tab-width: 4 //
 | 
|---|
| 219 | // End: //
 | 
|---|