1 | // -*- Mode: C -*-
|
---|
2 | //
|
---|
3 | // Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
|
---|
4 | //
|
---|
5 | // The contents of this file are covered under the licence agreement in the
|
---|
6 | // file "LICENCE" distributed with Cforall.
|
---|
7 | //
|
---|
8 | // rational.c --
|
---|
9 | //
|
---|
10 | // Author : Peter A. Buhr
|
---|
11 | // Created On : Wed Apr 6 17:54:28 2016
|
---|
12 | // Last Modified By : Peter A. Buhr
|
---|
13 | // Last Modified On : Thu Apr 7 17:28:03 2016
|
---|
14 | // Update Count : 12
|
---|
15 | //
|
---|
16 |
|
---|
17 | #include "rational"
|
---|
18 | #include "fstream"
|
---|
19 | #include "stdlib"
|
---|
20 |
|
---|
21 | extern "C" {
|
---|
22 | #include <stdlib.h> // exit
|
---|
23 | } // extern
|
---|
24 |
|
---|
25 | struct Rational 0 = {0, 1};
|
---|
26 | struct Rational 1 = {1, 1};
|
---|
27 |
|
---|
28 | // Calculate the greatest common denominator of two numbers, the first of which may be negative. It is used to reduce
|
---|
29 | // rationals.
|
---|
30 |
|
---|
31 | long int gcd( long int a, long int b ) {
|
---|
32 | for ( ;; ) { // Euclid's algorithm
|
---|
33 | long int r = a % b;
|
---|
34 | if ( r == 0 ) break;
|
---|
35 | a = b;
|
---|
36 | b = r;
|
---|
37 | } // for
|
---|
38 | return b;
|
---|
39 | } // gcd
|
---|
40 |
|
---|
41 | long int simplify( long int *n, long int *d ) {
|
---|
42 | if ( *d == 0 ) {
|
---|
43 | serr | "Invalid rational number construction: denominator cannot be equal to 0." | endl;
|
---|
44 | exit( EXIT_FAILURE );
|
---|
45 | } // exit
|
---|
46 | if ( *d < 0 ) { *d = -*d; *n = -*n; } // move sign to numerator
|
---|
47 | return gcd( abs( *n ), *d ); // simplify
|
---|
48 | } // Rationalnumber::simplify
|
---|
49 |
|
---|
50 | Rational rational() { // constructor
|
---|
51 | // r = (Rational){ 0, 1 };
|
---|
52 | Rational t = { 0, 1 };
|
---|
53 | return t;
|
---|
54 | } // rational
|
---|
55 |
|
---|
56 | Rational rational( long int n ) { // constructor
|
---|
57 | // r = (Rational){ n, 1 };
|
---|
58 | Rational t = { n, 1 };
|
---|
59 | return t;
|
---|
60 | } // rational
|
---|
61 |
|
---|
62 | Rational rational( long int n, long int d ) { // constructor
|
---|
63 | long int t = simplify( &n, &d ); // simplify
|
---|
64 | // r = (Rational){ n / t, d / t };
|
---|
65 | Rational t = { n / t, d / t };
|
---|
66 | return t;
|
---|
67 | } // rational
|
---|
68 |
|
---|
69 | long int numerator( Rational r ) {
|
---|
70 | return r.numerator;
|
---|
71 | } // numerator
|
---|
72 |
|
---|
73 | long int numerator( Rational r, long int n ) {
|
---|
74 | long int prev = r.numerator;
|
---|
75 | long int t = gcd( abs( n ), r.denominator ); // simplify
|
---|
76 | r.numerator = n / t;
|
---|
77 | r.denominator = r.denominator / t;
|
---|
78 | return prev;
|
---|
79 | } // numerator
|
---|
80 |
|
---|
81 | long int denominator( Rational r, long int d ) {
|
---|
82 | long int prev = r.denominator;
|
---|
83 | long int t = simplify( &r.numerator, &d ); // simplify
|
---|
84 | r.numerator = r.numerator / t;
|
---|
85 | r.denominator = d / t;
|
---|
86 | return prev;
|
---|
87 | } // denominator
|
---|
88 |
|
---|
89 | int ?==?( Rational l, Rational r ) {
|
---|
90 | return l.numerator * r.denominator == l.denominator * r.numerator;
|
---|
91 | } // ?==?
|
---|
92 |
|
---|
93 | int ?!=?( Rational l, Rational r ) {
|
---|
94 | return ! ( l == r );
|
---|
95 | } // ?!=?
|
---|
96 |
|
---|
97 | int ?<?( Rational l, Rational r ) {
|
---|
98 | return l.numerator * r.denominator < l.denominator * r.numerator;
|
---|
99 | } // ?<?
|
---|
100 |
|
---|
101 | int ?<=?( Rational l, Rational r ) {
|
---|
102 | return l < r || l == r;
|
---|
103 | } // ?<=?
|
---|
104 |
|
---|
105 | int ?>?( Rational l, Rational r ) {
|
---|
106 | return ! ( l <= r );
|
---|
107 | } // ?>?
|
---|
108 |
|
---|
109 | int ?>=?( Rational l, Rational r ) {
|
---|
110 | return ! ( l < r );
|
---|
111 | } // ?>=?
|
---|
112 |
|
---|
113 | Rational -?( Rational r ) {
|
---|
114 | Rational t = { -r.numerator, r.denominator };
|
---|
115 | return t;
|
---|
116 | } // -?
|
---|
117 |
|
---|
118 | Rational ?+?( Rational l, Rational r ) {
|
---|
119 | if ( l.denominator == r.denominator ) { // special case
|
---|
120 | Rational t = { l.numerator + r.numerator, l.denominator };
|
---|
121 | return t;
|
---|
122 | } else {
|
---|
123 | Rational t = { l.numerator * r.denominator + l.denominator * r.numerator, l.denominator * r.denominator };
|
---|
124 | return t;
|
---|
125 | } // if
|
---|
126 | } // ?+?
|
---|
127 |
|
---|
128 | Rational ?-?( Rational l, Rational r ) {
|
---|
129 | if ( l.denominator == r.denominator ) { // special case
|
---|
130 | Rational t = { l.numerator - r.numerator, l.denominator };
|
---|
131 | return t;
|
---|
132 | } else {
|
---|
133 | Rational t = { l.numerator * r.denominator - l.denominator * r.numerator, l.denominator * r.denominator };
|
---|
134 | return t;
|
---|
135 | } // if
|
---|
136 | } // ?-?
|
---|
137 |
|
---|
138 | Rational ?*?( Rational l, Rational r ) {
|
---|
139 | Rational t = { l.numerator * r.numerator, l.denominator * r.denominator };
|
---|
140 | return t;
|
---|
141 | } // ?*?
|
---|
142 |
|
---|
143 | Rational ?/?( Rational l, Rational r ) {
|
---|
144 | if ( r.numerator < 0 ) {
|
---|
145 | r.numerator = -r.numerator;
|
---|
146 | r.denominator = -r.denominator;
|
---|
147 | } // if
|
---|
148 | Rational t = { l.numerator * r.denominator, l.denominator * r.numerator };
|
---|
149 | return t;
|
---|
150 | } // ?/?
|
---|
151 |
|
---|
152 | double widen( Rational r ) {
|
---|
153 | return (double)r.numerator / (double)r.denominator;
|
---|
154 | } // widen
|
---|
155 |
|
---|
156 | // https://rosettacode.org/wiki/Convert_decimal_number_to_rational#C
|
---|
157 | Rational narrow( double f, long int md ) {
|
---|
158 | if ( md <= 1 ) { // maximum fractional digits too small?
|
---|
159 | Rational t = rational( f, 1 ); // truncate fraction
|
---|
160 | return t;
|
---|
161 | } // if
|
---|
162 |
|
---|
163 | // continued fraction coefficients
|
---|
164 | long int a, h[3] = { 0, 1, 0 }, k[3] = { 1, 0, 0 };
|
---|
165 | long int x, d, n = 1;
|
---|
166 | int i, neg = 0;
|
---|
167 |
|
---|
168 | if ( f < 0 ) { neg = 1; f = -f; }
|
---|
169 | while ( f != floor( f ) ) { n <<= 1; f *= 2; }
|
---|
170 | d = f;
|
---|
171 |
|
---|
172 | // continued fraction and check denominator each step
|
---|
173 | for (i = 0; i < 64; i++) {
|
---|
174 | a = n ? d / n : 0;
|
---|
175 | if (i && !a) break;
|
---|
176 | x = d; d = n; n = x % n;
|
---|
177 | x = a;
|
---|
178 | if (k[1] * a + k[0] >= md) {
|
---|
179 | x = (md - k[0]) / k[1];
|
---|
180 | if ( ! (x * 2 >= a || k[1] >= md) ) break;
|
---|
181 | i = 65;
|
---|
182 | } // if
|
---|
183 | h[2] = x * h[1] + h[0]; h[0] = h[1]; h[1] = h[2];
|
---|
184 | k[2] = x * k[1] + k[0]; k[0] = k[1]; k[1] = k[2];
|
---|
185 | } // for
|
---|
186 | Rational t = rational( neg ? -h[1] : h[1], k[1] );
|
---|
187 | return t;
|
---|
188 | } // narrow
|
---|
189 |
|
---|
190 | forall( dtype istype | istream( istype ) )
|
---|
191 | istype * ?|?( istype *is, Rational *r ) {
|
---|
192 | long int t;
|
---|
193 | is | &(r->numerator) | &(r->denominator);
|
---|
194 | t = simplify( &(r->numerator), &(r->denominator) );
|
---|
195 | r->numerator /= t;
|
---|
196 | r->denominator /= t;
|
---|
197 | return is;
|
---|
198 | } // ?|?
|
---|
199 |
|
---|
200 | forall( dtype ostype | ostream( ostype ) )
|
---|
201 | ostype * ?|?( ostype *os, Rational r ) {
|
---|
202 | return os | r.numerator | '/' | r.denominator;
|
---|
203 | } // ?|?
|
---|
204 |
|
---|
205 | // Local Variables: //
|
---|
206 | // tab-width: 4 //
|
---|
207 | // End: //
|
---|