| 1 | //
 | 
|---|
| 2 | // Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
 | 
|---|
| 3 | //
 | 
|---|
| 4 | // The contents of this file are covered under the licence agreement in the
 | 
|---|
| 5 | // file "LICENCE" distributed with Cforall.
 | 
|---|
| 6 | //
 | 
|---|
| 7 | // rational.c --
 | 
|---|
| 8 | //
 | 
|---|
| 9 | // Author           : Peter A. Buhr
 | 
|---|
| 10 | // Created On       : Wed Apr  6 17:54:28 2016
 | 
|---|
| 11 | // Last Modified By : Peter A. Buhr
 | 
|---|
| 12 | // Last Modified On : Wed Aug 23 22:38:48 2017
 | 
|---|
| 13 | // Update Count     : 154
 | 
|---|
| 14 | //
 | 
|---|
| 15 | 
 | 
|---|
| 16 | #include "rational"
 | 
|---|
| 17 | #include "fstream"
 | 
|---|
| 18 | #include "stdlib"
 | 
|---|
| 19 | 
 | 
|---|
| 20 | // helper routines
 | 
|---|
| 21 | 
 | 
|---|
| 22 | // Calculate greatest common denominator of two numbers, the first of which may be negative. Used to reduce rationals.
 | 
|---|
| 23 | // alternative: https://en.wikipedia.org/wiki/Binary_GCD_algorithm
 | 
|---|
| 24 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
 | 
|---|
| 25 | static RationalImpl gcd( RationalImpl a, RationalImpl b ) {
 | 
|---|
| 26 |         for ( ;; ) {                                                                            // Euclid's algorithm
 | 
|---|
| 27 |                 RationalImpl r = a % b;
 | 
|---|
| 28 |           if ( r == (RationalImpl){0} ) break;
 | 
|---|
| 29 |                 a = b;
 | 
|---|
| 30 |                 b = r;
 | 
|---|
| 31 |         } // for
 | 
|---|
| 32 |         return b;
 | 
|---|
| 33 | } // gcd
 | 
|---|
| 34 | 
 | 
|---|
| 35 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
 | 
|---|
| 36 | static RationalImpl simplify( RationalImpl & n, RationalImpl & d ) {
 | 
|---|
| 37 |         if ( d == (RationalImpl){0} ) {
 | 
|---|
| 38 |                 serr | "Invalid rational number construction: denominator cannot be equal to 0." | endl;
 | 
|---|
| 39 |                 exit( EXIT_FAILURE );
 | 
|---|
| 40 |         } // exit
 | 
|---|
| 41 |         if ( d < (RationalImpl){0} ) { d = -d; n = -n; }        // move sign to numerator
 | 
|---|
| 42 |         return gcd( abs( n ), d );                                                      // simplify
 | 
|---|
| 43 | } // Rationalnumber::simplify
 | 
|---|
| 44 | 
 | 
|---|
| 45 | 
 | 
|---|
| 46 | // constructors
 | 
|---|
| 47 | 
 | 
|---|
| 48 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
 | 
|---|
| 49 | void ?{}( Rational(RationalImpl) & r ) {
 | 
|---|
| 50 |         r{ (RationalImpl){0}, (RationalImpl){1} };
 | 
|---|
| 51 | } // rational
 | 
|---|
| 52 | 
 | 
|---|
| 53 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
 | 
|---|
| 54 | void ?{}( Rational(RationalImpl) & r, RationalImpl n ) {
 | 
|---|
| 55 |         r{ n, (RationalImpl){1} };
 | 
|---|
| 56 | } // rational
 | 
|---|
| 57 | 
 | 
|---|
| 58 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
 | 
|---|
| 59 | void ?{}( Rational(RationalImpl) & r, RationalImpl n, RationalImpl d ) {
 | 
|---|
| 60 |         RationalImpl t = simplify( n, d );                                      // simplify
 | 
|---|
| 61 |         r.numerator = n / t;
 | 
|---|
| 62 |         r.denominator = d / t;
 | 
|---|
| 63 | } // rational
 | 
|---|
| 64 | 
 | 
|---|
| 65 | 
 | 
|---|
| 66 | // getter for numerator/denominator
 | 
|---|
| 67 | 
 | 
|---|
| 68 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
 | 
|---|
| 69 | RationalImpl numerator( Rational(RationalImpl) r ) {
 | 
|---|
| 70 |         return r.numerator;
 | 
|---|
| 71 | } // numerator
 | 
|---|
| 72 | 
 | 
|---|
| 73 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
 | 
|---|
| 74 | RationalImpl denominator( Rational(RationalImpl) r ) {
 | 
|---|
| 75 |         return r.denominator;
 | 
|---|
| 76 | } // denominator
 | 
|---|
| 77 | 
 | 
|---|
| 78 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
 | 
|---|
| 79 | [ RationalImpl, RationalImpl ] ?=?( & [ RationalImpl, RationalImpl ] dest, Rational(RationalImpl) src ) {
 | 
|---|
| 80 |         return dest = src.[ numerator, denominator ];
 | 
|---|
| 81 | }
 | 
|---|
| 82 | 
 | 
|---|
| 83 | // setter for numerator/denominator
 | 
|---|
| 84 | 
 | 
|---|
| 85 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
 | 
|---|
| 86 | RationalImpl numerator( Rational(RationalImpl) r, RationalImpl n ) {
 | 
|---|
| 87 |         RationalImpl prev = r.numerator;
 | 
|---|
| 88 |         RationalImpl t = gcd( abs( n ), r.denominator );                // simplify
 | 
|---|
| 89 |         r.numerator = n / t;
 | 
|---|
| 90 |         r.denominator = r.denominator / t;
 | 
|---|
| 91 |         return prev;
 | 
|---|
| 92 | } // numerator
 | 
|---|
| 93 | 
 | 
|---|
| 94 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
 | 
|---|
| 95 | RationalImpl denominator( Rational(RationalImpl) r, RationalImpl d ) {
 | 
|---|
| 96 |         RationalImpl prev = r.denominator;
 | 
|---|
| 97 |         RationalImpl t = simplify( r.numerator, d );                    // simplify
 | 
|---|
| 98 |         r.numerator = r.numerator / t;
 | 
|---|
| 99 |         r.denominator = d / t;
 | 
|---|
| 100 |         return prev;
 | 
|---|
| 101 | } // denominator
 | 
|---|
| 102 | 
 | 
|---|
| 103 | 
 | 
|---|
| 104 | // comparison
 | 
|---|
| 105 | 
 | 
|---|
| 106 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
 | 
|---|
| 107 | int ?==?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
 | 
|---|
| 108 |         return l.numerator * r.denominator == l.denominator * r.numerator;
 | 
|---|
| 109 | } // ?==?
 | 
|---|
| 110 | 
 | 
|---|
| 111 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
 | 
|---|
| 112 | int ?!=?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
 | 
|---|
| 113 |         return ! ( l == r );
 | 
|---|
| 114 | } // ?!=?
 | 
|---|
| 115 | 
 | 
|---|
| 116 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
 | 
|---|
| 117 | int ?<?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
 | 
|---|
| 118 |         return l.numerator * r.denominator < l.denominator * r.numerator;
 | 
|---|
| 119 | } // ?<?
 | 
|---|
| 120 | 
 | 
|---|
| 121 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
 | 
|---|
| 122 | int ?<=?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
 | 
|---|
| 123 |         return l.numerator * r.denominator <= l.denominator * r.numerator;
 | 
|---|
| 124 | } // ?<=?
 | 
|---|
| 125 | 
 | 
|---|
| 126 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
 | 
|---|
| 127 | int ?>?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
 | 
|---|
| 128 |         return ! ( l <= r );
 | 
|---|
| 129 | } // ?>?
 | 
|---|
| 130 | 
 | 
|---|
| 131 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
 | 
|---|
| 132 | int ?>=?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
 | 
|---|
| 133 |         return ! ( l < r );
 | 
|---|
| 134 | } // ?>=?
 | 
|---|
| 135 | 
 | 
|---|
| 136 | 
 | 
|---|
| 137 | // arithmetic
 | 
|---|
| 138 | 
 | 
|---|
| 139 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
 | 
|---|
| 140 | Rational(RationalImpl) +?( Rational(RationalImpl) r ) {
 | 
|---|
| 141 |         Rational(RationalImpl) t = { r.numerator, r.denominator };
 | 
|---|
| 142 |         return t;
 | 
|---|
| 143 | } // +?
 | 
|---|
| 144 | 
 | 
|---|
| 145 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
 | 
|---|
| 146 | Rational(RationalImpl) -?( Rational(RationalImpl) r ) {
 | 
|---|
| 147 |         Rational(RationalImpl) t = { -r.numerator, r.denominator };
 | 
|---|
| 148 |         return t;
 | 
|---|
| 149 | } // -?
 | 
|---|
| 150 | 
 | 
|---|
| 151 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
 | 
|---|
| 152 | Rational(RationalImpl) ?+?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
 | 
|---|
| 153 |         if ( l.denominator == r.denominator ) {                         // special case
 | 
|---|
| 154 |                 Rational(RationalImpl) t = { l.numerator + r.numerator, l.denominator };
 | 
|---|
| 155 |                 return t;
 | 
|---|
| 156 |         } else {
 | 
|---|
| 157 |                 Rational(RationalImpl) t = { l.numerator * r.denominator + l.denominator * r.numerator, l.denominator * r.denominator };
 | 
|---|
| 158 |                 return t;
 | 
|---|
| 159 |         } // if
 | 
|---|
| 160 | } // ?+?
 | 
|---|
| 161 | 
 | 
|---|
| 162 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
 | 
|---|
| 163 | Rational(RationalImpl) ?-?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
 | 
|---|
| 164 |         if ( l.denominator == r.denominator ) {                         // special case
 | 
|---|
| 165 |                 Rational(RationalImpl) t = { l.numerator - r.numerator, l.denominator };
 | 
|---|
| 166 |                 return t;
 | 
|---|
| 167 |         } else {
 | 
|---|
| 168 |                 Rational(RationalImpl) t = { l.numerator * r.denominator - l.denominator * r.numerator, l.denominator * r.denominator };
 | 
|---|
| 169 |                 return t;
 | 
|---|
| 170 |         } // if
 | 
|---|
| 171 | } // ?-?
 | 
|---|
| 172 | 
 | 
|---|
| 173 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
 | 
|---|
| 174 | Rational(RationalImpl) ?*?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
 | 
|---|
| 175 |         Rational(RationalImpl) t = { l.numerator * r.numerator, l.denominator * r.denominator };
 | 
|---|
| 176 |         return t;
 | 
|---|
| 177 | } // ?*?
 | 
|---|
| 178 | 
 | 
|---|
| 179 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
 | 
|---|
| 180 | Rational(RationalImpl) ?/?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
 | 
|---|
| 181 |         if ( r.numerator < (RationalImpl){0} ) {
 | 
|---|
| 182 |                 r.numerator = -r.numerator;
 | 
|---|
| 183 |                 r.denominator = -r.denominator;
 | 
|---|
| 184 |         } // if
 | 
|---|
| 185 |         Rational(RationalImpl) t = { l.numerator * r.denominator, l.denominator * r.numerator };
 | 
|---|
| 186 |         return t;
 | 
|---|
| 187 | } // ?/?
 | 
|---|
| 188 | 
 | 
|---|
| 189 | 
 | 
|---|
| 190 | // conversion
 | 
|---|
| 191 | 
 | 
|---|
| 192 | forall( otype RationalImpl | arithmetic( RationalImpl ) | { double convert( RationalImpl ); } )
 | 
|---|
| 193 | double widen( Rational(RationalImpl) r ) {
 | 
|---|
| 194 |         return convert( r.numerator ) / convert( r.denominator );
 | 
|---|
| 195 | } // widen
 | 
|---|
| 196 | 
 | 
|---|
| 197 | // http://www.ics.uci.edu/~eppstein/numth/frap.c
 | 
|---|
| 198 | forall( otype RationalImpl | arithmetic( RationalImpl ) | { double convert( RationalImpl ); RationalImpl convert( double ); } )
 | 
|---|
| 199 | Rational(RationalImpl) narrow( double f, RationalImpl md ) {
 | 
|---|
| 200 |         if ( md <= (RationalImpl){1} ) {                                        // maximum fractional digits too small?
 | 
|---|
| 201 |                 return (Rational(RationalImpl)){ convert( f ), (RationalImpl){1}}; // truncate fraction
 | 
|---|
| 202 |         } // if
 | 
|---|
| 203 | 
 | 
|---|
| 204 |         // continued fraction coefficients
 | 
|---|
| 205 |         RationalImpl m00 = {1}, m11 = { 1 }, m01 = { 0 }, m10 = { 0 };
 | 
|---|
| 206 |         RationalImpl ai, t;
 | 
|---|
| 207 | 
 | 
|---|
| 208 |         // find terms until denom gets too big
 | 
|---|
| 209 |         for ( ;; ) {
 | 
|---|
| 210 |                 ai = convert( f );
 | 
|---|
| 211 |           if ( ! (m10 * ai + m11 <= md) ) break;
 | 
|---|
| 212 |                 t = m00 * ai + m01;
 | 
|---|
| 213 |                 m01 = m00;
 | 
|---|
| 214 |                 m00 = t;
 | 
|---|
| 215 |                 t = m10 * ai + m11;
 | 
|---|
| 216 |                 m11 = m10;
 | 
|---|
| 217 |                 m10 = t;
 | 
|---|
| 218 |                 double temp = convert( ai );
 | 
|---|
| 219 |           if ( f == temp ) break;                                                       // prevent division by zero
 | 
|---|
| 220 |                 f = 1 / (f - temp);
 | 
|---|
| 221 |           if ( f > (double)0x7FFFFFFF ) break;                          // representation failure
 | 
|---|
| 222 |         } // for
 | 
|---|
| 223 |         return (Rational(RationalImpl)){ m00, m10 };
 | 
|---|
| 224 | } // narrow
 | 
|---|
| 225 | 
 | 
|---|
| 226 | 
 | 
|---|
| 227 | // I/O
 | 
|---|
| 228 | 
 | 
|---|
| 229 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
 | 
|---|
| 230 | forall( dtype istype | istream( istype ) | { istype * ?|?( istype *, RationalImpl & ); } )
 | 
|---|
| 231 | istype * ?|?( istype * is, Rational(RationalImpl) & r ) {
 | 
|---|
| 232 |         RationalImpl t;
 | 
|---|
| 233 |         is | r.numerator | r.denominator;
 | 
|---|
| 234 |         t = simplify( r.numerator, r.denominator );
 | 
|---|
| 235 |         r.numerator /= t;
 | 
|---|
| 236 |         r.denominator /= t;
 | 
|---|
| 237 |         return is;
 | 
|---|
| 238 | } // ?|?
 | 
|---|
| 239 | 
 | 
|---|
| 240 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
 | 
|---|
| 241 | forall( dtype ostype | ostream( ostype ) | { ostype * ?|?( ostype *, RationalImpl ); } )
 | 
|---|
| 242 | ostype * ?|?( ostype * os, Rational(RationalImpl ) r ) {
 | 
|---|
| 243 |         return os | r.numerator | '/' | r.denominator;
 | 
|---|
| 244 | } // ?|?
 | 
|---|
| 245 | 
 | 
|---|
| 246 | // Local Variables: //
 | 
|---|
| 247 | // tab-width: 4 //
 | 
|---|
| 248 | // End: //
 | 
|---|