| 1 | //                               -*- Mode: C -*- 
 | 
|---|
| 2 | // 
 | 
|---|
| 3 | // Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
 | 
|---|
| 4 | //
 | 
|---|
| 5 | // The contents of this file are covered under the licence agreement in the
 | 
|---|
| 6 | // file "LICENCE" distributed with Cforall.
 | 
|---|
| 7 | // 
 | 
|---|
| 8 | // rational.c -- 
 | 
|---|
| 9 | // 
 | 
|---|
| 10 | // Author           : Peter A. Buhr
 | 
|---|
| 11 | // Created On       : Wed Apr  6 17:54:28 2016
 | 
|---|
| 12 | // Last Modified By : Peter A. Buhr
 | 
|---|
| 13 | // Last Modified On : Wed May  4 14:16:14 2016
 | 
|---|
| 14 | // Update Count     : 25
 | 
|---|
| 15 | // 
 | 
|---|
| 16 | 
 | 
|---|
| 17 | #include "rational"
 | 
|---|
| 18 | #include "fstream"
 | 
|---|
| 19 | #include "stdlib"
 | 
|---|
| 20 | #include "math"                                                                                 // floor
 | 
|---|
| 21 | 
 | 
|---|
| 22 | 
 | 
|---|
| 23 | // constants
 | 
|---|
| 24 | 
 | 
|---|
| 25 | struct Rational 0 = {0, 1};
 | 
|---|
| 26 | struct Rational 1 = {1, 1};
 | 
|---|
| 27 | 
 | 
|---|
| 28 | 
 | 
|---|
| 29 | // helper routines
 | 
|---|
| 30 | 
 | 
|---|
| 31 | // Calculate greatest common denominator of two numbers, the first of which may be negative. Used to reduce rationals.
 | 
|---|
| 32 | // alternative: https://en.wikipedia.org/wiki/Binary_GCD_algorithm
 | 
|---|
| 33 | static long int gcd( long int a, long int b ) {
 | 
|---|
| 34 |     for ( ;; ) {                                                                                // Euclid's algorithm
 | 
|---|
| 35 |                 long int r = a % b;
 | 
|---|
| 36 |           if ( r == 0 ) break;
 | 
|---|
| 37 |                 a = b;
 | 
|---|
| 38 |                 b = r;
 | 
|---|
| 39 |     } // for
 | 
|---|
| 40 |         return b;
 | 
|---|
| 41 | } // gcd
 | 
|---|
| 42 | 
 | 
|---|
| 43 | static long int simplify( long int *n, long int *d ) {
 | 
|---|
| 44 |     if ( *d == 0 ) {
 | 
|---|
| 45 |                 serr | "Invalid rational number construction: denominator cannot be equal to 0." | endl;
 | 
|---|
| 46 |                 exit( EXIT_FAILURE );
 | 
|---|
| 47 |     } // exit
 | 
|---|
| 48 |     if ( *d < 0 ) { *d = -*d; *n = -*n; }                               // move sign to numerator
 | 
|---|
| 49 |     return gcd( abs( *n ), *d );                                                // simplify
 | 
|---|
| 50 | } // Rationalnumber::simplify
 | 
|---|
| 51 | 
 | 
|---|
| 52 | 
 | 
|---|
| 53 | // constructors
 | 
|---|
| 54 | 
 | 
|---|
| 55 | void ?{}( Rational * r ) {
 | 
|---|
| 56 |     r{ 0, 1 };
 | 
|---|
| 57 | } // rational
 | 
|---|
| 58 | 
 | 
|---|
| 59 | void ?{}( Rational * r, long int n ) {
 | 
|---|
| 60 |     r{ n, 1 };
 | 
|---|
| 61 | } // rational
 | 
|---|
| 62 | 
 | 
|---|
| 63 | void ?{}( Rational * r, long int n, long int d ) {
 | 
|---|
| 64 |     long int t = simplify( &n, &d );                                    // simplify
 | 
|---|
| 65 |     r->numerator = n / t;
 | 
|---|
| 66 |         r->denominator = d / t;
 | 
|---|
| 67 | } // rational
 | 
|---|
| 68 | 
 | 
|---|
| 69 | 
 | 
|---|
| 70 | // getter/setter for numerator/denominator
 | 
|---|
| 71 | 
 | 
|---|
| 72 | long int numerator( Rational r ) {
 | 
|---|
| 73 |     return r.numerator;
 | 
|---|
| 74 | } // numerator
 | 
|---|
| 75 | 
 | 
|---|
| 76 | long int numerator( Rational r, long int n ) {
 | 
|---|
| 77 |     long int prev = r.numerator;
 | 
|---|
| 78 |     long int t = gcd( abs( n ), r.denominator );                // simplify
 | 
|---|
| 79 |     r.numerator = n / t;
 | 
|---|
| 80 |     r.denominator = r.denominator / t;
 | 
|---|
| 81 |     return prev;
 | 
|---|
| 82 | } // numerator
 | 
|---|
| 83 | 
 | 
|---|
| 84 | long int denominator( Rational r ) {
 | 
|---|
| 85 |     return r.denominator;
 | 
|---|
| 86 | } // denominator
 | 
|---|
| 87 | 
 | 
|---|
| 88 | long int denominator( Rational r, long int d ) {
 | 
|---|
| 89 |     long int prev = r.denominator;
 | 
|---|
| 90 |     long int t = simplify( &r.numerator, &d );                  // simplify
 | 
|---|
| 91 |     r.numerator = r.numerator / t;
 | 
|---|
| 92 |     r.denominator = d / t;
 | 
|---|
| 93 |     return prev;
 | 
|---|
| 94 | } // denominator
 | 
|---|
| 95 | 
 | 
|---|
| 96 | 
 | 
|---|
| 97 | // comparison
 | 
|---|
| 98 | 
 | 
|---|
| 99 | int ?==?( Rational l, Rational r ) {
 | 
|---|
| 100 |     return l.numerator * r.denominator == l.denominator * r.numerator;
 | 
|---|
| 101 | } // ?==?
 | 
|---|
| 102 | 
 | 
|---|
| 103 | int ?!=?( Rational l, Rational r ) {
 | 
|---|
| 104 |     return ! ( l == r );
 | 
|---|
| 105 | } // ?!=?
 | 
|---|
| 106 | 
 | 
|---|
| 107 | int ?<?( Rational l, Rational r ) {
 | 
|---|
| 108 |     return l.numerator * r.denominator < l.denominator * r.numerator;
 | 
|---|
| 109 | } // ?<?
 | 
|---|
| 110 | 
 | 
|---|
| 111 | int ?<=?( Rational l, Rational r ) {
 | 
|---|
| 112 |     return l < r || l == r;
 | 
|---|
| 113 | } // ?<=?
 | 
|---|
| 114 | 
 | 
|---|
| 115 | int ?>?( Rational l, Rational r ) {
 | 
|---|
| 116 |     return ! ( l <= r );
 | 
|---|
| 117 | } // ?>?
 | 
|---|
| 118 | 
 | 
|---|
| 119 | int ?>=?( Rational l, Rational r ) {
 | 
|---|
| 120 |     return ! ( l < r );
 | 
|---|
| 121 | } // ?>=?
 | 
|---|
| 122 | 
 | 
|---|
| 123 | 
 | 
|---|
| 124 | // arithmetic
 | 
|---|
| 125 | 
 | 
|---|
| 126 | Rational -?( Rational r ) {
 | 
|---|
| 127 |         Rational t = { -r.numerator, r.denominator };
 | 
|---|
| 128 |     return t;
 | 
|---|
| 129 | } // -?
 | 
|---|
| 130 | 
 | 
|---|
| 131 | Rational ?+?( Rational l, Rational r ) {
 | 
|---|
| 132 |     if ( l.denominator == r.denominator ) {                             // special case
 | 
|---|
| 133 |                 Rational t = { l.numerator + r.numerator, l.denominator };
 | 
|---|
| 134 |                 return t;
 | 
|---|
| 135 |     } else {
 | 
|---|
| 136 |                 Rational t = { l.numerator * r.denominator + l.denominator * r.numerator, l.denominator * r.denominator };
 | 
|---|
| 137 |                 return t;
 | 
|---|
| 138 |     } // if
 | 
|---|
| 139 | } // ?+?
 | 
|---|
| 140 | 
 | 
|---|
| 141 | Rational ?-?( Rational l, Rational r ) {
 | 
|---|
| 142 |     if ( l.denominator == r.denominator ) {                             // special case
 | 
|---|
| 143 |                 Rational t = { l.numerator - r.numerator, l.denominator };
 | 
|---|
| 144 |                 return t;
 | 
|---|
| 145 |     } else {
 | 
|---|
| 146 |                 Rational t = { l.numerator * r.denominator - l.denominator * r.numerator, l.denominator * r.denominator };
 | 
|---|
| 147 |                 return t;
 | 
|---|
| 148 |     } // if
 | 
|---|
| 149 | } // ?-?
 | 
|---|
| 150 | 
 | 
|---|
| 151 | Rational ?*?( Rational l, Rational r ) {
 | 
|---|
| 152 |     Rational t = { l.numerator * r.numerator, l.denominator * r.denominator };
 | 
|---|
| 153 |         return t;
 | 
|---|
| 154 | } // ?*?
 | 
|---|
| 155 | 
 | 
|---|
| 156 | Rational ?/?( Rational l, Rational r ) {
 | 
|---|
| 157 |     if ( r.numerator < 0 ) {
 | 
|---|
| 158 |                 r.numerator = -r.numerator;
 | 
|---|
| 159 |                 r.denominator = -r.denominator;
 | 
|---|
| 160 |         } // if
 | 
|---|
| 161 |         Rational t = { l.numerator * r.denominator, l.denominator * r.numerator };
 | 
|---|
| 162 |     return t;
 | 
|---|
| 163 | } // ?/?
 | 
|---|
| 164 | 
 | 
|---|
| 165 | 
 | 
|---|
| 166 | // conversion
 | 
|---|
| 167 | 
 | 
|---|
| 168 | double widen( Rational r ) {
 | 
|---|
| 169 |         return (double)r.numerator / (double)r.denominator;
 | 
|---|
| 170 | } // widen
 | 
|---|
| 171 | 
 | 
|---|
| 172 | // https://rosettacode.org/wiki/Convert_decimal_number_to_rational#C
 | 
|---|
| 173 | Rational narrow( double f, long int md ) {
 | 
|---|
| 174 |         if ( md <= 1 ) {                                                                        // maximum fractional digits too small?
 | 
|---|
| 175 |                 return (Rational){ f, 1};                                               // truncate fraction
 | 
|---|
| 176 |         } // if
 | 
|---|
| 177 | 
 | 
|---|
| 178 |         // continued fraction coefficients
 | 
|---|
| 179 |         long int a, h[3] = { 0, 1, 0 }, k[3] = { 1, 0, 0 };
 | 
|---|
| 180 |         long int x, d, n = 1;
 | 
|---|
| 181 |         int i, neg = 0;
 | 
|---|
| 182 |  
 | 
|---|
| 183 |         if ( f < 0 ) { neg = 1; f = -f; }
 | 
|---|
| 184 |         while ( f != floor( f ) ) { n <<= 1; f *= 2; }
 | 
|---|
| 185 |         d = f;
 | 
|---|
| 186 |  
 | 
|---|
| 187 |         // continued fraction and check denominator each step
 | 
|---|
| 188 |         for (i = 0; i < 64; i++) {
 | 
|---|
| 189 |                 a = n ? d / n : 0;
 | 
|---|
| 190 |           if (i && !a) break;
 | 
|---|
| 191 |                 x = d; d = n; n = x % n;
 | 
|---|
| 192 |                 x = a;
 | 
|---|
| 193 |                 if (k[1] * a + k[0] >= md) {
 | 
|---|
| 194 |                         x = (md - k[0]) / k[1];
 | 
|---|
| 195 |                   if ( ! (x * 2 >= a || k[1] >= md) ) break;
 | 
|---|
| 196 |                         i = 65;
 | 
|---|
| 197 |                 } // if
 | 
|---|
| 198 |                 h[2] = x * h[1] + h[0]; h[0] = h[1]; h[1] = h[2];
 | 
|---|
| 199 |                 k[2] = x * k[1] + k[0]; k[0] = k[1]; k[1] = k[2];
 | 
|---|
| 200 |         } // for
 | 
|---|
| 201 |         return (Rational){ neg ? -h[1] : h[1], k[1] };
 | 
|---|
| 202 | } // narrow
 | 
|---|
| 203 | 
 | 
|---|
| 204 | 
 | 
|---|
| 205 | // I/O
 | 
|---|
| 206 | 
 | 
|---|
| 207 | forall( dtype istype | istream( istype ) )
 | 
|---|
| 208 | istype * ?|?( istype *is, Rational *r ) {
 | 
|---|
| 209 |         long int t;
 | 
|---|
| 210 |     is | &(r->numerator) | &(r->denominator);
 | 
|---|
| 211 |         t = simplify( &(r->numerator), &(r->denominator) );
 | 
|---|
| 212 |     r->numerator /= t;
 | 
|---|
| 213 |     r->denominator /= t;
 | 
|---|
| 214 |     return is;
 | 
|---|
| 215 | } // ?|?
 | 
|---|
| 216 | 
 | 
|---|
| 217 | forall( dtype ostype | ostream( ostype ) )
 | 
|---|
| 218 | ostype * ?|?( ostype *os, Rational r ) {
 | 
|---|
| 219 |     return os | r.numerator | '/' | r.denominator;
 | 
|---|
| 220 | } // ?|?
 | 
|---|
| 221 | 
 | 
|---|
| 222 | // Local Variables: //
 | 
|---|
| 223 | // tab-width: 4 //
 | 
|---|
| 224 | // End: //
 | 
|---|