| 1 | //
|
|---|
| 2 | // Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
|
|---|
| 3 | //
|
|---|
| 4 | // The contents of this file are covered under the licence agreement in the
|
|---|
| 5 | // file "LICENCE" distributed with Cforall.
|
|---|
| 6 | //
|
|---|
| 7 | // rational.c --
|
|---|
| 8 | //
|
|---|
| 9 | // Author : Peter A. Buhr
|
|---|
| 10 | // Created On : Wed Apr 6 17:54:28 2016
|
|---|
| 11 | // Last Modified By : Peter A. Buhr
|
|---|
| 12 | // Last Modified On : Wed Dec 6 23:13:58 2017
|
|---|
| 13 | // Update Count : 156
|
|---|
| 14 | //
|
|---|
| 15 |
|
|---|
| 16 | #include "rational"
|
|---|
| 17 | #include "fstream"
|
|---|
| 18 | #include "stdlib"
|
|---|
| 19 |
|
|---|
| 20 | // helper routines
|
|---|
| 21 |
|
|---|
| 22 | // Calculate greatest common denominator of two numbers, the first of which may be negative. Used to reduce rationals.
|
|---|
| 23 | // alternative: https://en.wikipedia.org/wiki/Binary_GCD_algorithm
|
|---|
| 24 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
|
|---|
| 25 | static RationalImpl gcd( RationalImpl a, RationalImpl b ) {
|
|---|
| 26 | for ( ;; ) { // Euclid's algorithm
|
|---|
| 27 | RationalImpl r = a % b;
|
|---|
| 28 | if ( r == (RationalImpl){0} ) break;
|
|---|
| 29 | a = b;
|
|---|
| 30 | b = r;
|
|---|
| 31 | } // for
|
|---|
| 32 | return b;
|
|---|
| 33 | } // gcd
|
|---|
| 34 |
|
|---|
| 35 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
|
|---|
| 36 | static RationalImpl simplify( RationalImpl & n, RationalImpl & d ) {
|
|---|
| 37 | if ( d == (RationalImpl){0} ) {
|
|---|
| 38 | serr | "Invalid rational number construction: denominator cannot be equal to 0." | endl;
|
|---|
| 39 | exit( EXIT_FAILURE );
|
|---|
| 40 | } // exit
|
|---|
| 41 | if ( d < (RationalImpl){0} ) { d = -d; n = -n; } // move sign to numerator
|
|---|
| 42 | return gcd( abs( n ), d ); // simplify
|
|---|
| 43 | } // Rationalnumber::simplify
|
|---|
| 44 |
|
|---|
| 45 |
|
|---|
| 46 | // constructors
|
|---|
| 47 |
|
|---|
| 48 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
|
|---|
| 49 | void ?{}( Rational(RationalImpl) & r ) {
|
|---|
| 50 | r{ (RationalImpl){0}, (RationalImpl){1} };
|
|---|
| 51 | } // rational
|
|---|
| 52 |
|
|---|
| 53 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
|
|---|
| 54 | void ?{}( Rational(RationalImpl) & r, RationalImpl n ) {
|
|---|
| 55 | r{ n, (RationalImpl){1} };
|
|---|
| 56 | } // rational
|
|---|
| 57 |
|
|---|
| 58 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
|
|---|
| 59 | void ?{}( Rational(RationalImpl) & r, RationalImpl n, RationalImpl d ) {
|
|---|
| 60 | RationalImpl t = simplify( n, d ); // simplify
|
|---|
| 61 | r.numerator = n / t;
|
|---|
| 62 | r.denominator = d / t;
|
|---|
| 63 | } // rational
|
|---|
| 64 |
|
|---|
| 65 |
|
|---|
| 66 | // getter for numerator/denominator
|
|---|
| 67 |
|
|---|
| 68 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
|
|---|
| 69 | RationalImpl numerator( Rational(RationalImpl) r ) {
|
|---|
| 70 | return r.numerator;
|
|---|
| 71 | } // numerator
|
|---|
| 72 |
|
|---|
| 73 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
|
|---|
| 74 | RationalImpl denominator( Rational(RationalImpl) r ) {
|
|---|
| 75 | return r.denominator;
|
|---|
| 76 | } // denominator
|
|---|
| 77 |
|
|---|
| 78 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
|
|---|
| 79 | [ RationalImpl, RationalImpl ] ?=?( & [ RationalImpl, RationalImpl ] dest, Rational(RationalImpl) src ) {
|
|---|
| 80 | return dest = src.[ numerator, denominator ];
|
|---|
| 81 | }
|
|---|
| 82 |
|
|---|
| 83 | // setter for numerator/denominator
|
|---|
| 84 |
|
|---|
| 85 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
|
|---|
| 86 | RationalImpl numerator( Rational(RationalImpl) r, RationalImpl n ) {
|
|---|
| 87 | RationalImpl prev = r.numerator;
|
|---|
| 88 | RationalImpl t = gcd( abs( n ), r.denominator ); // simplify
|
|---|
| 89 | r.numerator = n / t;
|
|---|
| 90 | r.denominator = r.denominator / t;
|
|---|
| 91 | return prev;
|
|---|
| 92 | } // numerator
|
|---|
| 93 |
|
|---|
| 94 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
|
|---|
| 95 | RationalImpl denominator( Rational(RationalImpl) r, RationalImpl d ) {
|
|---|
| 96 | RationalImpl prev = r.denominator;
|
|---|
| 97 | RationalImpl t = simplify( r.numerator, d ); // simplify
|
|---|
| 98 | r.numerator = r.numerator / t;
|
|---|
| 99 | r.denominator = d / t;
|
|---|
| 100 | return prev;
|
|---|
| 101 | } // denominator
|
|---|
| 102 |
|
|---|
| 103 |
|
|---|
| 104 | // comparison
|
|---|
| 105 |
|
|---|
| 106 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
|
|---|
| 107 | int ?==?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
|
|---|
| 108 | return l.numerator * r.denominator == l.denominator * r.numerator;
|
|---|
| 109 | } // ?==?
|
|---|
| 110 |
|
|---|
| 111 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
|
|---|
| 112 | int ?!=?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
|
|---|
| 113 | return ! ( l == r );
|
|---|
| 114 | } // ?!=?
|
|---|
| 115 |
|
|---|
| 116 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
|
|---|
| 117 | int ?<?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
|
|---|
| 118 | return l.numerator * r.denominator < l.denominator * r.numerator;
|
|---|
| 119 | } // ?<?
|
|---|
| 120 |
|
|---|
| 121 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
|
|---|
| 122 | int ?<=?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
|
|---|
| 123 | return l.numerator * r.denominator <= l.denominator * r.numerator;
|
|---|
| 124 | } // ?<=?
|
|---|
| 125 |
|
|---|
| 126 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
|
|---|
| 127 | int ?>?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
|
|---|
| 128 | return ! ( l <= r );
|
|---|
| 129 | } // ?>?
|
|---|
| 130 |
|
|---|
| 131 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
|
|---|
| 132 | int ?>=?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
|
|---|
| 133 | return ! ( l < r );
|
|---|
| 134 | } // ?>=?
|
|---|
| 135 |
|
|---|
| 136 |
|
|---|
| 137 | // arithmetic
|
|---|
| 138 |
|
|---|
| 139 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
|
|---|
| 140 | Rational(RationalImpl) +?( Rational(RationalImpl) r ) {
|
|---|
| 141 | Rational(RationalImpl) t = { r.numerator, r.denominator };
|
|---|
| 142 | return t;
|
|---|
| 143 | } // +?
|
|---|
| 144 |
|
|---|
| 145 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
|
|---|
| 146 | Rational(RationalImpl) -?( Rational(RationalImpl) r ) {
|
|---|
| 147 | Rational(RationalImpl) t = { -r.numerator, r.denominator };
|
|---|
| 148 | return t;
|
|---|
| 149 | } // -?
|
|---|
| 150 |
|
|---|
| 151 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
|
|---|
| 152 | Rational(RationalImpl) ?+?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
|
|---|
| 153 | if ( l.denominator == r.denominator ) { // special case
|
|---|
| 154 | Rational(RationalImpl) t = { l.numerator + r.numerator, l.denominator };
|
|---|
| 155 | return t;
|
|---|
| 156 | } else {
|
|---|
| 157 | Rational(RationalImpl) t = { l.numerator * r.denominator + l.denominator * r.numerator, l.denominator * r.denominator };
|
|---|
| 158 | return t;
|
|---|
| 159 | } // if
|
|---|
| 160 | } // ?+?
|
|---|
| 161 |
|
|---|
| 162 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
|
|---|
| 163 | Rational(RationalImpl) ?-?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
|
|---|
| 164 | if ( l.denominator == r.denominator ) { // special case
|
|---|
| 165 | Rational(RationalImpl) t = { l.numerator - r.numerator, l.denominator };
|
|---|
| 166 | return t;
|
|---|
| 167 | } else {
|
|---|
| 168 | Rational(RationalImpl) t = { l.numerator * r.denominator - l.denominator * r.numerator, l.denominator * r.denominator };
|
|---|
| 169 | return t;
|
|---|
| 170 | } // if
|
|---|
| 171 | } // ?-?
|
|---|
| 172 |
|
|---|
| 173 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
|
|---|
| 174 | Rational(RationalImpl) ?*?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
|
|---|
| 175 | Rational(RationalImpl) t = { l.numerator * r.numerator, l.denominator * r.denominator };
|
|---|
| 176 | return t;
|
|---|
| 177 | } // ?*?
|
|---|
| 178 |
|
|---|
| 179 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
|
|---|
| 180 | Rational(RationalImpl) ?/?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
|
|---|
| 181 | if ( r.numerator < (RationalImpl){0} ) {
|
|---|
| 182 | r.numerator = -r.numerator;
|
|---|
| 183 | r.denominator = -r.denominator;
|
|---|
| 184 | } // if
|
|---|
| 185 | Rational(RationalImpl) t = { l.numerator * r.denominator, l.denominator * r.numerator };
|
|---|
| 186 | return t;
|
|---|
| 187 | } // ?/?
|
|---|
| 188 |
|
|---|
| 189 |
|
|---|
| 190 | // conversion
|
|---|
| 191 |
|
|---|
| 192 | forall( otype RationalImpl | arithmetic( RationalImpl ) | { double convert( RationalImpl ); } )
|
|---|
| 193 | double widen( Rational(RationalImpl) r ) {
|
|---|
| 194 | return convert( r.numerator ) / convert( r.denominator );
|
|---|
| 195 | } // widen
|
|---|
| 196 |
|
|---|
| 197 | // http://www.ics.uci.edu/~eppstein/numth/frap.c
|
|---|
| 198 | forall( otype RationalImpl | arithmetic( RationalImpl ) | { double convert( RationalImpl ); RationalImpl convert( double ); } )
|
|---|
| 199 | Rational(RationalImpl) narrow( double f, RationalImpl md ) {
|
|---|
| 200 | if ( md <= (RationalImpl){1} ) { // maximum fractional digits too small?
|
|---|
| 201 | return (Rational(RationalImpl)){ convert( f ), (RationalImpl){1}}; // truncate fraction
|
|---|
| 202 | } // if
|
|---|
| 203 |
|
|---|
| 204 | // continued fraction coefficients
|
|---|
| 205 | RationalImpl m00 = {1}, m11 = { 1 }, m01 = { 0 }, m10 = { 0 };
|
|---|
| 206 | RationalImpl ai, t;
|
|---|
| 207 |
|
|---|
| 208 | // find terms until denom gets too big
|
|---|
| 209 | for ( ;; ) {
|
|---|
| 210 | ai = convert( f );
|
|---|
| 211 | if ( ! (m10 * ai + m11 <= md) ) break;
|
|---|
| 212 | t = m00 * ai + m01;
|
|---|
| 213 | m01 = m00;
|
|---|
| 214 | m00 = t;
|
|---|
| 215 | t = m10 * ai + m11;
|
|---|
| 216 | m11 = m10;
|
|---|
| 217 | m10 = t;
|
|---|
| 218 | double temp = convert( ai );
|
|---|
| 219 | if ( f == temp ) break; // prevent division by zero
|
|---|
| 220 | f = 1 / (f - temp);
|
|---|
| 221 | if ( f > (double)0x7FFFFFFF ) break; // representation failure
|
|---|
| 222 | } // for
|
|---|
| 223 | return (Rational(RationalImpl)){ m00, m10 };
|
|---|
| 224 | } // narrow
|
|---|
| 225 |
|
|---|
| 226 |
|
|---|
| 227 | // I/O
|
|---|
| 228 |
|
|---|
| 229 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
|
|---|
| 230 | forall( dtype istype | istream( istype ) | { istype & ?|?( istype &, RationalImpl & ); } )
|
|---|
| 231 | istype & ?|?( istype & is, Rational(RationalImpl) & r ) {
|
|---|
| 232 | RationalImpl t;
|
|---|
| 233 | is | r.numerator | r.denominator;
|
|---|
| 234 | t = simplify( r.numerator, r.denominator );
|
|---|
| 235 | r.numerator /= t;
|
|---|
| 236 | r.denominator /= t;
|
|---|
| 237 | return is;
|
|---|
| 238 | } // ?|?
|
|---|
| 239 |
|
|---|
| 240 | forall( otype RationalImpl | arithmetic( RationalImpl ) )
|
|---|
| 241 | forall( dtype ostype | ostream( ostype ) | { ostype & ?|?( ostype &, RationalImpl ); } )
|
|---|
| 242 | ostype & ?|?( ostype & os, Rational(RationalImpl ) r ) {
|
|---|
| 243 | return os | r.numerator | '/' | r.denominator;
|
|---|
| 244 | } // ?|?
|
|---|
| 245 |
|
|---|
| 246 | // Local Variables: //
|
|---|
| 247 | // tab-width: 4 //
|
|---|
| 248 | // End: //
|
|---|