| 1 | //                               -*- Mode: C -*- | 
|---|
| 2 | // | 
|---|
| 3 | // Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo | 
|---|
| 4 | // | 
|---|
| 5 | // The contents of this file are covered under the licence agreement in the | 
|---|
| 6 | // file "LICENCE" distributed with Cforall. | 
|---|
| 7 | // | 
|---|
| 8 | // rational.c -- | 
|---|
| 9 | // | 
|---|
| 10 | // Author           : Peter A. Buhr | 
|---|
| 11 | // Created On       : Wed Apr  6 17:54:28 2016 | 
|---|
| 12 | // Last Modified By : Peter A. Buhr | 
|---|
| 13 | // Last Modified On : Fri Apr  8 17:35:05 2016 | 
|---|
| 14 | // Update Count     : 18 | 
|---|
| 15 | // | 
|---|
| 16 |  | 
|---|
| 17 | #include "rational" | 
|---|
| 18 | #include "fstream" | 
|---|
| 19 | #include "stdlib" | 
|---|
| 20 |  | 
|---|
| 21 | extern "C" { | 
|---|
| 22 | #include <stdlib.h>                                                                             // exit | 
|---|
| 23 | } // extern | 
|---|
| 24 |  | 
|---|
| 25 |  | 
|---|
| 26 | // constants | 
|---|
| 27 |  | 
|---|
| 28 | struct Rational 0 = {0, 1}; | 
|---|
| 29 | struct Rational 1 = {1, 1}; | 
|---|
| 30 |  | 
|---|
| 31 |  | 
|---|
| 32 | // helper | 
|---|
| 33 |  | 
|---|
| 34 | // Calculate greatest common denominator of two numbers, the first of which may be negative. Used to reduce rationals. | 
|---|
| 35 | static long int gcd( long int a, long int b ) { | 
|---|
| 36 | for ( ;; ) {                                                                                // Euclid's algorithm | 
|---|
| 37 | long int r = a % b; | 
|---|
| 38 | if ( r == 0 ) break; | 
|---|
| 39 | a = b; | 
|---|
| 40 | b = r; | 
|---|
| 41 | } // for | 
|---|
| 42 | return b; | 
|---|
| 43 | } // gcd | 
|---|
| 44 |  | 
|---|
| 45 | static long int simplify( long int *n, long int *d ) { | 
|---|
| 46 | if ( *d == 0 ) { | 
|---|
| 47 | serr | "Invalid rational number construction: denominator cannot be equal to 0." | endl; | 
|---|
| 48 | exit( EXIT_FAILURE ); | 
|---|
| 49 | } // exit | 
|---|
| 50 | if ( *d < 0 ) { *d = -*d; *n = -*n; }                               // move sign to numerator | 
|---|
| 51 | return gcd( abs( *n ), *d );                                                // simplify | 
|---|
| 52 | } // Rationalnumber::simplify | 
|---|
| 53 |  | 
|---|
| 54 |  | 
|---|
| 55 | // constructors | 
|---|
| 56 |  | 
|---|
| 57 | Rational rational() { | 
|---|
| 58 | return (Rational){ 0, 1 }; | 
|---|
| 59 | } // rational | 
|---|
| 60 |  | 
|---|
| 61 | Rational rational( long int n ) { | 
|---|
| 62 | return (Rational){ n, 1 }; | 
|---|
| 63 | } // rational | 
|---|
| 64 |  | 
|---|
| 65 | Rational rational( long int n, long int d ) { | 
|---|
| 66 | long int t = simplify( &n, &d );                                    // simplify | 
|---|
| 67 | return (Rational){ n / t, d / t }; | 
|---|
| 68 | } // rational | 
|---|
| 69 |  | 
|---|
| 70 |  | 
|---|
| 71 | // getter/setter for numerator/denominator | 
|---|
| 72 |  | 
|---|
| 73 | long int numerator( Rational r ) { | 
|---|
| 74 | return r.numerator; | 
|---|
| 75 | } // numerator | 
|---|
| 76 |  | 
|---|
| 77 | long int numerator( Rational r, long int n ) { | 
|---|
| 78 | long int prev = r.numerator; | 
|---|
| 79 | long int t = gcd( abs( n ), r.denominator );                // simplify | 
|---|
| 80 | r.numerator = n / t; | 
|---|
| 81 | r.denominator = r.denominator / t; | 
|---|
| 82 | return prev; | 
|---|
| 83 | } // numerator | 
|---|
| 84 |  | 
|---|
| 85 | long int denominator( Rational r ) { | 
|---|
| 86 | return r.denominator; | 
|---|
| 87 | } // denominator | 
|---|
| 88 |  | 
|---|
| 89 | long int denominator( Rational r, long int d ) { | 
|---|
| 90 | long int prev = r.denominator; | 
|---|
| 91 | long int t = simplify( &r.numerator, &d );                  // simplify | 
|---|
| 92 | r.numerator = r.numerator / t; | 
|---|
| 93 | r.denominator = d / t; | 
|---|
| 94 | return prev; | 
|---|
| 95 | } // denominator | 
|---|
| 96 |  | 
|---|
| 97 |  | 
|---|
| 98 | // comparison | 
|---|
| 99 |  | 
|---|
| 100 | int ?==?( Rational l, Rational r ) { | 
|---|
| 101 | return l.numerator * r.denominator == l.denominator * r.numerator; | 
|---|
| 102 | } // ?==? | 
|---|
| 103 |  | 
|---|
| 104 | int ?!=?( Rational l, Rational r ) { | 
|---|
| 105 | return ! ( l == r ); | 
|---|
| 106 | } // ?!=? | 
|---|
| 107 |  | 
|---|
| 108 | int ?<?( Rational l, Rational r ) { | 
|---|
| 109 | return l.numerator * r.denominator < l.denominator * r.numerator; | 
|---|
| 110 | } // ?<? | 
|---|
| 111 |  | 
|---|
| 112 | int ?<=?( Rational l, Rational r ) { | 
|---|
| 113 | return l < r || l == r; | 
|---|
| 114 | } // ?<=? | 
|---|
| 115 |  | 
|---|
| 116 | int ?>?( Rational l, Rational r ) { | 
|---|
| 117 | return ! ( l <= r ); | 
|---|
| 118 | } // ?>? | 
|---|
| 119 |  | 
|---|
| 120 | int ?>=?( Rational l, Rational r ) { | 
|---|
| 121 | return ! ( l < r ); | 
|---|
| 122 | } // ?>=? | 
|---|
| 123 |  | 
|---|
| 124 |  | 
|---|
| 125 | // arithmetic | 
|---|
| 126 |  | 
|---|
| 127 | Rational -?( Rational r ) { | 
|---|
| 128 | Rational t = { -r.numerator, r.denominator }; | 
|---|
| 129 | return t; | 
|---|
| 130 | } // -? | 
|---|
| 131 |  | 
|---|
| 132 | Rational ?+?( Rational l, Rational r ) { | 
|---|
| 133 | if ( l.denominator == r.denominator ) {                             // special case | 
|---|
| 134 | Rational t = { l.numerator + r.numerator, l.denominator }; | 
|---|
| 135 | return t; | 
|---|
| 136 | } else { | 
|---|
| 137 | Rational t = { l.numerator * r.denominator + l.denominator * r.numerator, l.denominator * r.denominator }; | 
|---|
| 138 | return t; | 
|---|
| 139 | } // if | 
|---|
| 140 | } // ?+? | 
|---|
| 141 |  | 
|---|
| 142 | Rational ?-?( Rational l, Rational r ) { | 
|---|
| 143 | if ( l.denominator == r.denominator ) {                             // special case | 
|---|
| 144 | Rational t = { l.numerator - r.numerator, l.denominator }; | 
|---|
| 145 | return t; | 
|---|
| 146 | } else { | 
|---|
| 147 | Rational t = { l.numerator * r.denominator - l.denominator * r.numerator, l.denominator * r.denominator }; | 
|---|
| 148 | return t; | 
|---|
| 149 | } // if | 
|---|
| 150 | } // ?-? | 
|---|
| 151 |  | 
|---|
| 152 | Rational ?*?( Rational l, Rational r ) { | 
|---|
| 153 | Rational t = { l.numerator * r.numerator, l.denominator * r.denominator }; | 
|---|
| 154 | return t; | 
|---|
| 155 | } // ?*? | 
|---|
| 156 |  | 
|---|
| 157 | Rational ?/?( Rational l, Rational r ) { | 
|---|
| 158 | if ( r.numerator < 0 ) { | 
|---|
| 159 | r.numerator = -r.numerator; | 
|---|
| 160 | r.denominator = -r.denominator; | 
|---|
| 161 | } // if | 
|---|
| 162 | Rational t = { l.numerator * r.denominator, l.denominator * r.numerator }; | 
|---|
| 163 | return t; | 
|---|
| 164 | } // ?/? | 
|---|
| 165 |  | 
|---|
| 166 |  | 
|---|
| 167 | // conversion | 
|---|
| 168 |  | 
|---|
| 169 | double widen( Rational r ) { | 
|---|
| 170 | return (double)r.numerator / (double)r.denominator; | 
|---|
| 171 | } // widen | 
|---|
| 172 |  | 
|---|
| 173 | // https://rosettacode.org/wiki/Convert_decimal_number_to_rational#C | 
|---|
| 174 | Rational narrow( double f, long int md ) { | 
|---|
| 175 | if ( md <= 1 ) {                                                                        // maximum fractional digits too small? | 
|---|
| 176 | Rational t = rational( f, 1 );                                  // truncate fraction | 
|---|
| 177 | return t; | 
|---|
| 178 | } // if | 
|---|
| 179 |  | 
|---|
| 180 | // continued fraction coefficients | 
|---|
| 181 | long int a, h[3] = { 0, 1, 0 }, k[3] = { 1, 0, 0 }; | 
|---|
| 182 | long int x, d, n = 1; | 
|---|
| 183 | int i, neg = 0; | 
|---|
| 184 |  | 
|---|
| 185 | if ( f < 0 ) { neg = 1; f = -f; } | 
|---|
| 186 | while ( f != floor( f ) ) { n <<= 1; f *= 2; } | 
|---|
| 187 | d = f; | 
|---|
| 188 |  | 
|---|
| 189 | // continued fraction and check denominator each step | 
|---|
| 190 | for (i = 0; i < 64; i++) { | 
|---|
| 191 | a = n ? d / n : 0; | 
|---|
| 192 | if (i && !a) break; | 
|---|
| 193 | x = d; d = n; n = x % n; | 
|---|
| 194 | x = a; | 
|---|
| 195 | if (k[1] * a + k[0] >= md) { | 
|---|
| 196 | x = (md - k[0]) / k[1]; | 
|---|
| 197 | if ( ! (x * 2 >= a || k[1] >= md) ) break; | 
|---|
| 198 | i = 65; | 
|---|
| 199 | } // if | 
|---|
| 200 | h[2] = x * h[1] + h[0]; h[0] = h[1]; h[1] = h[2]; | 
|---|
| 201 | k[2] = x * k[1] + k[0]; k[0] = k[1]; k[1] = k[2]; | 
|---|
| 202 | } // for | 
|---|
| 203 | Rational t = rational( neg ? -h[1] : h[1], k[1] ); | 
|---|
| 204 | return t; | 
|---|
| 205 | } // narrow | 
|---|
| 206 |  | 
|---|
| 207 |  | 
|---|
| 208 | // I/O | 
|---|
| 209 |  | 
|---|
| 210 | forall( dtype istype | istream( istype ) ) | 
|---|
| 211 | istype * ?|?( istype *is, Rational *r ) { | 
|---|
| 212 | long int t; | 
|---|
| 213 | is | &(r->numerator) | &(r->denominator); | 
|---|
| 214 | t = simplify( &(r->numerator), &(r->denominator) ); | 
|---|
| 215 | r->numerator /= t; | 
|---|
| 216 | r->denominator /= t; | 
|---|
| 217 | return is; | 
|---|
| 218 | } // ?|? | 
|---|
| 219 |  | 
|---|
| 220 | forall( dtype ostype | ostream( ostype ) ) | 
|---|
| 221 | ostype * ?|?( ostype *os, Rational r ) { | 
|---|
| 222 | return os | r.numerator | '/' | r.denominator; | 
|---|
| 223 | } // ?|? | 
|---|
| 224 |  | 
|---|
| 225 | // Local Variables: // | 
|---|
| 226 | // tab-width: 4 // | 
|---|
| 227 | // End: // | 
|---|