1 | // -*- Mode: C -*- |
---|
2 | // |
---|
3 | // Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo |
---|
4 | // |
---|
5 | // The contents of this file are covered under the licence agreement in the |
---|
6 | // file "LICENCE" distributed with Cforall. |
---|
7 | // |
---|
8 | // rational.c -- |
---|
9 | // |
---|
10 | // Author : Peter A. Buhr |
---|
11 | // Created On : Wed Apr 6 17:54:28 2016 |
---|
12 | // Last Modified By : Peter A. Buhr |
---|
13 | // Last Modified On : Wed May 4 14:16:14 2016 |
---|
14 | // Update Count : 25 |
---|
15 | // |
---|
16 | |
---|
17 | #include "rational" |
---|
18 | #include "fstream" |
---|
19 | #include "stdlib" |
---|
20 | #include "math" // floor |
---|
21 | |
---|
22 | |
---|
23 | // constants |
---|
24 | |
---|
25 | struct Rational 0 = {0, 1}; |
---|
26 | struct Rational 1 = {1, 1}; |
---|
27 | |
---|
28 | |
---|
29 | // helper routines |
---|
30 | |
---|
31 | // Calculate greatest common denominator of two numbers, the first of which may be negative. Used to reduce rationals. |
---|
32 | // alternative: https://en.wikipedia.org/wiki/Binary_GCD_algorithm |
---|
33 | static long int gcd( long int a, long int b ) { |
---|
34 | for ( ;; ) { // Euclid's algorithm |
---|
35 | long int r = a % b; |
---|
36 | if ( r == 0 ) break; |
---|
37 | a = b; |
---|
38 | b = r; |
---|
39 | } // for |
---|
40 | return b; |
---|
41 | } // gcd |
---|
42 | |
---|
43 | static long int simplify( long int *n, long int *d ) { |
---|
44 | if ( *d == 0 ) { |
---|
45 | serr | "Invalid rational number construction: denominator cannot be equal to 0." | endl; |
---|
46 | exit( EXIT_FAILURE ); |
---|
47 | } // exit |
---|
48 | if ( *d < 0 ) { *d = -*d; *n = -*n; } // move sign to numerator |
---|
49 | return gcd( abs( *n ), *d ); // simplify |
---|
50 | } // Rationalnumber::simplify |
---|
51 | |
---|
52 | |
---|
53 | // constructors |
---|
54 | |
---|
55 | void ?{}( Rational * r ) { |
---|
56 | r{ 0, 1 }; |
---|
57 | } // rational |
---|
58 | |
---|
59 | void ?{}( Rational * r, long int n ) { |
---|
60 | r{ n, 1 }; |
---|
61 | } // rational |
---|
62 | |
---|
63 | void ?{}( Rational * r, long int n, long int d ) { |
---|
64 | long int t = simplify( &n, &d ); // simplify |
---|
65 | r->numerator = n / t; |
---|
66 | r->denominator = d / t; |
---|
67 | } // rational |
---|
68 | |
---|
69 | |
---|
70 | // getter/setter for numerator/denominator |
---|
71 | |
---|
72 | long int numerator( Rational r ) { |
---|
73 | return r.numerator; |
---|
74 | } // numerator |
---|
75 | |
---|
76 | long int numerator( Rational r, long int n ) { |
---|
77 | long int prev = r.numerator; |
---|
78 | long int t = gcd( abs( n ), r.denominator ); // simplify |
---|
79 | r.numerator = n / t; |
---|
80 | r.denominator = r.denominator / t; |
---|
81 | return prev; |
---|
82 | } // numerator |
---|
83 | |
---|
84 | long int denominator( Rational r ) { |
---|
85 | return r.denominator; |
---|
86 | } // denominator |
---|
87 | |
---|
88 | long int denominator( Rational r, long int d ) { |
---|
89 | long int prev = r.denominator; |
---|
90 | long int t = simplify( &r.numerator, &d ); // simplify |
---|
91 | r.numerator = r.numerator / t; |
---|
92 | r.denominator = d / t; |
---|
93 | return prev; |
---|
94 | } // denominator |
---|
95 | |
---|
96 | |
---|
97 | // comparison |
---|
98 | |
---|
99 | int ?==?( Rational l, Rational r ) { |
---|
100 | return l.numerator * r.denominator == l.denominator * r.numerator; |
---|
101 | } // ?==? |
---|
102 | |
---|
103 | int ?!=?( Rational l, Rational r ) { |
---|
104 | return ! ( l == r ); |
---|
105 | } // ?!=? |
---|
106 | |
---|
107 | int ?<?( Rational l, Rational r ) { |
---|
108 | return l.numerator * r.denominator < l.denominator * r.numerator; |
---|
109 | } // ?<? |
---|
110 | |
---|
111 | int ?<=?( Rational l, Rational r ) { |
---|
112 | return l < r || l == r; |
---|
113 | } // ?<=? |
---|
114 | |
---|
115 | int ?>?( Rational l, Rational r ) { |
---|
116 | return ! ( l <= r ); |
---|
117 | } // ?>? |
---|
118 | |
---|
119 | int ?>=?( Rational l, Rational r ) { |
---|
120 | return ! ( l < r ); |
---|
121 | } // ?>=? |
---|
122 | |
---|
123 | |
---|
124 | // arithmetic |
---|
125 | |
---|
126 | Rational -?( Rational r ) { |
---|
127 | Rational t = { -r.numerator, r.denominator }; |
---|
128 | return t; |
---|
129 | } // -? |
---|
130 | |
---|
131 | Rational ?+?( Rational l, Rational r ) { |
---|
132 | if ( l.denominator == r.denominator ) { // special case |
---|
133 | Rational t = { l.numerator + r.numerator, l.denominator }; |
---|
134 | return t; |
---|
135 | } else { |
---|
136 | Rational t = { l.numerator * r.denominator + l.denominator * r.numerator, l.denominator * r.denominator }; |
---|
137 | return t; |
---|
138 | } // if |
---|
139 | } // ?+? |
---|
140 | |
---|
141 | Rational ?-?( Rational l, Rational r ) { |
---|
142 | if ( l.denominator == r.denominator ) { // special case |
---|
143 | Rational t = { l.numerator - r.numerator, l.denominator }; |
---|
144 | return t; |
---|
145 | } else { |
---|
146 | Rational t = { l.numerator * r.denominator - l.denominator * r.numerator, l.denominator * r.denominator }; |
---|
147 | return t; |
---|
148 | } // if |
---|
149 | } // ?-? |
---|
150 | |
---|
151 | Rational ?*?( Rational l, Rational r ) { |
---|
152 | Rational t = { l.numerator * r.numerator, l.denominator * r.denominator }; |
---|
153 | return t; |
---|
154 | } // ?*? |
---|
155 | |
---|
156 | Rational ?/?( Rational l, Rational r ) { |
---|
157 | if ( r.numerator < 0 ) { |
---|
158 | r.numerator = -r.numerator; |
---|
159 | r.denominator = -r.denominator; |
---|
160 | } // if |
---|
161 | Rational t = { l.numerator * r.denominator, l.denominator * r.numerator }; |
---|
162 | return t; |
---|
163 | } // ?/? |
---|
164 | |
---|
165 | |
---|
166 | // conversion |
---|
167 | |
---|
168 | double widen( Rational r ) { |
---|
169 | return (double)r.numerator / (double)r.denominator; |
---|
170 | } // widen |
---|
171 | |
---|
172 | // https://rosettacode.org/wiki/Convert_decimal_number_to_rational#C |
---|
173 | Rational narrow( double f, long int md ) { |
---|
174 | if ( md <= 1 ) { // maximum fractional digits too small? |
---|
175 | return (Rational){ f, 1}; // truncate fraction |
---|
176 | } // if |
---|
177 | |
---|
178 | // continued fraction coefficients |
---|
179 | long int a, h[3] = { 0, 1, 0 }, k[3] = { 1, 0, 0 }; |
---|
180 | long int x, d, n = 1; |
---|
181 | int i, neg = 0; |
---|
182 | |
---|
183 | if ( f < 0 ) { neg = 1; f = -f; } |
---|
184 | while ( f != floor( f ) ) { n <<= 1; f *= 2; } |
---|
185 | d = f; |
---|
186 | |
---|
187 | // continued fraction and check denominator each step |
---|
188 | for (i = 0; i < 64; i++) { |
---|
189 | a = n ? d / n : 0; |
---|
190 | if (i && !a) break; |
---|
191 | x = d; d = n; n = x % n; |
---|
192 | x = a; |
---|
193 | if (k[1] * a + k[0] >= md) { |
---|
194 | x = (md - k[0]) / k[1]; |
---|
195 | if ( ! (x * 2 >= a || k[1] >= md) ) break; |
---|
196 | i = 65; |
---|
197 | } // if |
---|
198 | h[2] = x * h[1] + h[0]; h[0] = h[1]; h[1] = h[2]; |
---|
199 | k[2] = x * k[1] + k[0]; k[0] = k[1]; k[1] = k[2]; |
---|
200 | } // for |
---|
201 | return (Rational){ neg ? -h[1] : h[1], k[1] }; |
---|
202 | } // narrow |
---|
203 | |
---|
204 | |
---|
205 | // I/O |
---|
206 | |
---|
207 | forall( dtype istype | istream( istype ) ) |
---|
208 | istype * ?|?( istype *is, Rational *r ) { |
---|
209 | long int t; |
---|
210 | is | &(r->numerator) | &(r->denominator); |
---|
211 | t = simplify( &(r->numerator), &(r->denominator) ); |
---|
212 | r->numerator /= t; |
---|
213 | r->denominator /= t; |
---|
214 | return is; |
---|
215 | } // ?|? |
---|
216 | |
---|
217 | forall( dtype ostype | ostream( ostype ) ) |
---|
218 | ostype * ?|?( ostype *os, Rational r ) { |
---|
219 | return os | r.numerator | '/' | r.denominator; |
---|
220 | } // ?|? |
---|
221 | |
---|
222 | // Local Variables: // |
---|
223 | // tab-width: 4 // |
---|
224 | // End: // |
---|