1 | // -*- Mode: C -*- |
---|
2 | // |
---|
3 | // Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo |
---|
4 | // |
---|
5 | // The contents of this file are covered under the licence agreement in the |
---|
6 | // file "LICENCE" distributed with Cforall. |
---|
7 | // |
---|
8 | // rational.c -- |
---|
9 | // |
---|
10 | // Author : Peter A. Buhr |
---|
11 | // Created On : Wed Apr 6 17:54:28 2016 |
---|
12 | // Last Modified By : Peter A. Buhr |
---|
13 | // Last Modified On : Tue Apr 12 21:26:42 2016 |
---|
14 | // Update Count : 21 |
---|
15 | // |
---|
16 | |
---|
17 | #include "rational" |
---|
18 | #include "fstream" |
---|
19 | #include "stdlib" |
---|
20 | |
---|
21 | |
---|
22 | // constants |
---|
23 | |
---|
24 | struct Rational 0 = {0, 1}; |
---|
25 | struct Rational 1 = {1, 1}; |
---|
26 | |
---|
27 | |
---|
28 | // helper routines |
---|
29 | |
---|
30 | // Calculate greatest common denominator of two numbers, the first of which may be negative. Used to reduce rationals. |
---|
31 | // alternative: https://en.wikipedia.org/wiki/Binary_GCD_algorithm |
---|
32 | static long int gcd( long int a, long int b ) { |
---|
33 | for ( ;; ) { // Euclid's algorithm |
---|
34 | long int r = a % b; |
---|
35 | if ( r == 0 ) break; |
---|
36 | a = b; |
---|
37 | b = r; |
---|
38 | } // for |
---|
39 | return b; |
---|
40 | } // gcd |
---|
41 | |
---|
42 | static long int simplify( long int *n, long int *d ) { |
---|
43 | if ( *d == 0 ) { |
---|
44 | serr | "Invalid rational number construction: denominator cannot be equal to 0." | endl; |
---|
45 | exit( EXIT_FAILURE ); |
---|
46 | } // exit |
---|
47 | if ( *d < 0 ) { *d = -*d; *n = -*n; } // move sign to numerator |
---|
48 | return gcd( abs( *n ), *d ); // simplify |
---|
49 | } // Rationalnumber::simplify |
---|
50 | |
---|
51 | |
---|
52 | // constructors |
---|
53 | |
---|
54 | Rational rational() { |
---|
55 | return (Rational){ 0, 1 }; |
---|
56 | } // rational |
---|
57 | |
---|
58 | Rational rational( long int n ) { |
---|
59 | return (Rational){ n, 1 }; |
---|
60 | } // rational |
---|
61 | |
---|
62 | Rational rational( long int n, long int d ) { |
---|
63 | long int t = simplify( &n, &d ); // simplify |
---|
64 | return (Rational){ n / t, d / t }; |
---|
65 | } // rational |
---|
66 | |
---|
67 | |
---|
68 | // getter/setter for numerator/denominator |
---|
69 | |
---|
70 | long int numerator( Rational r ) { |
---|
71 | return r.numerator; |
---|
72 | } // numerator |
---|
73 | |
---|
74 | long int numerator( Rational r, long int n ) { |
---|
75 | long int prev = r.numerator; |
---|
76 | long int t = gcd( abs( n ), r.denominator ); // simplify |
---|
77 | r.numerator = n / t; |
---|
78 | r.denominator = r.denominator / t; |
---|
79 | return prev; |
---|
80 | } // numerator |
---|
81 | |
---|
82 | long int denominator( Rational r ) { |
---|
83 | return r.denominator; |
---|
84 | } // denominator |
---|
85 | |
---|
86 | long int denominator( Rational r, long int d ) { |
---|
87 | long int prev = r.denominator; |
---|
88 | long int t = simplify( &r.numerator, &d ); // simplify |
---|
89 | r.numerator = r.numerator / t; |
---|
90 | r.denominator = d / t; |
---|
91 | return prev; |
---|
92 | } // denominator |
---|
93 | |
---|
94 | |
---|
95 | // comparison |
---|
96 | |
---|
97 | int ?==?( Rational l, Rational r ) { |
---|
98 | return l.numerator * r.denominator == l.denominator * r.numerator; |
---|
99 | } // ?==? |
---|
100 | |
---|
101 | int ?!=?( Rational l, Rational r ) { |
---|
102 | return ! ( l == r ); |
---|
103 | } // ?!=? |
---|
104 | |
---|
105 | int ?<?( Rational l, Rational r ) { |
---|
106 | return l.numerator * r.denominator < l.denominator * r.numerator; |
---|
107 | } // ?<? |
---|
108 | |
---|
109 | int ?<=?( Rational l, Rational r ) { |
---|
110 | return l < r || l == r; |
---|
111 | } // ?<=? |
---|
112 | |
---|
113 | int ?>?( Rational l, Rational r ) { |
---|
114 | return ! ( l <= r ); |
---|
115 | } // ?>? |
---|
116 | |
---|
117 | int ?>=?( Rational l, Rational r ) { |
---|
118 | return ! ( l < r ); |
---|
119 | } // ?>=? |
---|
120 | |
---|
121 | |
---|
122 | // arithmetic |
---|
123 | |
---|
124 | Rational -?( Rational r ) { |
---|
125 | Rational t = { -r.numerator, r.denominator }; |
---|
126 | return t; |
---|
127 | } // -? |
---|
128 | |
---|
129 | Rational ?+?( Rational l, Rational r ) { |
---|
130 | if ( l.denominator == r.denominator ) { // special case |
---|
131 | Rational t = { l.numerator + r.numerator, l.denominator }; |
---|
132 | return t; |
---|
133 | } else { |
---|
134 | Rational t = { l.numerator * r.denominator + l.denominator * r.numerator, l.denominator * r.denominator }; |
---|
135 | return t; |
---|
136 | } // if |
---|
137 | } // ?+? |
---|
138 | |
---|
139 | Rational ?-?( Rational l, Rational r ) { |
---|
140 | if ( l.denominator == r.denominator ) { // special case |
---|
141 | Rational t = { l.numerator - r.numerator, l.denominator }; |
---|
142 | return t; |
---|
143 | } else { |
---|
144 | Rational t = { l.numerator * r.denominator - l.denominator * r.numerator, l.denominator * r.denominator }; |
---|
145 | return t; |
---|
146 | } // if |
---|
147 | } // ?-? |
---|
148 | |
---|
149 | Rational ?*?( Rational l, Rational r ) { |
---|
150 | Rational t = { l.numerator * r.numerator, l.denominator * r.denominator }; |
---|
151 | return t; |
---|
152 | } // ?*? |
---|
153 | |
---|
154 | Rational ?/?( Rational l, Rational r ) { |
---|
155 | if ( r.numerator < 0 ) { |
---|
156 | r.numerator = -r.numerator; |
---|
157 | r.denominator = -r.denominator; |
---|
158 | } // if |
---|
159 | Rational t = { l.numerator * r.denominator, l.denominator * r.numerator }; |
---|
160 | return t; |
---|
161 | } // ?/? |
---|
162 | |
---|
163 | |
---|
164 | // conversion |
---|
165 | |
---|
166 | double widen( Rational r ) { |
---|
167 | return (double)r.numerator / (double)r.denominator; |
---|
168 | } // widen |
---|
169 | |
---|
170 | // https://rosettacode.org/wiki/Convert_decimal_number_to_rational#C |
---|
171 | Rational narrow( double f, long int md ) { |
---|
172 | if ( md <= 1 ) { // maximum fractional digits too small? |
---|
173 | Rational t = rational( f, 1 ); // truncate fraction |
---|
174 | return t; |
---|
175 | } // if |
---|
176 | |
---|
177 | // continued fraction coefficients |
---|
178 | long int a, h[3] = { 0, 1, 0 }, k[3] = { 1, 0, 0 }; |
---|
179 | long int x, d, n = 1; |
---|
180 | int i, neg = 0; |
---|
181 | |
---|
182 | if ( f < 0 ) { neg = 1; f = -f; } |
---|
183 | while ( f != floor( f ) ) { n <<= 1; f *= 2; } |
---|
184 | d = f; |
---|
185 | |
---|
186 | // continued fraction and check denominator each step |
---|
187 | for (i = 0; i < 64; i++) { |
---|
188 | a = n ? d / n : 0; |
---|
189 | if (i && !a) break; |
---|
190 | x = d; d = n; n = x % n; |
---|
191 | x = a; |
---|
192 | if (k[1] * a + k[0] >= md) { |
---|
193 | x = (md - k[0]) / k[1]; |
---|
194 | if ( ! (x * 2 >= a || k[1] >= md) ) break; |
---|
195 | i = 65; |
---|
196 | } // if |
---|
197 | h[2] = x * h[1] + h[0]; h[0] = h[1]; h[1] = h[2]; |
---|
198 | k[2] = x * k[1] + k[0]; k[0] = k[1]; k[1] = k[2]; |
---|
199 | } // for |
---|
200 | Rational t = rational( neg ? -h[1] : h[1], k[1] ); |
---|
201 | return t; |
---|
202 | } // narrow |
---|
203 | |
---|
204 | |
---|
205 | // I/O |
---|
206 | |
---|
207 | forall( dtype istype | istream( istype ) ) |
---|
208 | istype * ?|?( istype *is, Rational *r ) { |
---|
209 | long int t; |
---|
210 | is | &(r->numerator) | &(r->denominator); |
---|
211 | t = simplify( &(r->numerator), &(r->denominator) ); |
---|
212 | r->numerator /= t; |
---|
213 | r->denominator /= t; |
---|
214 | return is; |
---|
215 | } // ?|? |
---|
216 | |
---|
217 | forall( dtype ostype | ostream( ostype ) ) |
---|
218 | ostype * ?|?( ostype *os, Rational r ) { |
---|
219 | return os | r.numerator | '/' | r.denominator; |
---|
220 | } // ?|? |
---|
221 | |
---|
222 | // Local Variables: // |
---|
223 | // tab-width: 4 // |
---|
224 | // End: // |
---|