source: src/libcfa/rational.c @ d807ca28

ADTaaron-thesisarm-ehast-experimentalcleanup-dtorsdeferred_resndemanglerenumforall-pointer-decayjacob/cs343-translationjenkins-sandboxnew-astnew-ast-unique-exprnew-envno_listpersistent-indexerpthread-emulationqualifiedEnumwith_gc
Last change on this file since d807ca28 was 09687aa, checked in by Peter A. Buhr <pabuhr@…>, 7 years ago

complete conversion of iostream/fstream to use references

  • Property mode set to 100644
File size: 7.9 KB
RevLine 
[a493682]1//
[53ba273]2// Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
[a493682]6//
7// rational.c --
8//
[53ba273]9// Author           : Peter A. Buhr
10// Created On       : Wed Apr  6 17:54:28 2016
11// Last Modified By : Peter A. Buhr
[09687aa]12// Last Modified On : Wed Dec  6 23:13:58 2017
13// Update Count     : 156
[a493682]14//
[53ba273]15
16#include "rational"
[3d9b5da]17#include "fstream"
18#include "stdlib"
[53ba273]19
[45161b4d]20// helper routines
[630a82a]21
22// Calculate greatest common denominator of two numbers, the first of which may be negative. Used to reduce rationals.
[45161b4d]23// alternative: https://en.wikipedia.org/wiki/Binary_GCD_algorithm
[53a6c2a]24forall( otype RationalImpl | arithmetic( RationalImpl ) )
[f621a148]25static RationalImpl gcd( RationalImpl a, RationalImpl b ) {
[6e4b913]26        for ( ;; ) {                                                                            // Euclid's algorithm
[f621a148]27                RationalImpl r = a % b;
[561f730]28          if ( r == (RationalImpl){0} ) break;
[53ba273]29                a = b;
30                b = r;
[6e4b913]31        } // for
[53ba273]32        return b;
33} // gcd
34
[53a6c2a]35forall( otype RationalImpl | arithmetic( RationalImpl ) )
[7bc4e6b]36static RationalImpl simplify( RationalImpl & n, RationalImpl & d ) {
37        if ( d == (RationalImpl){0} ) {
[53ba273]38                serr | "Invalid rational number construction: denominator cannot be equal to 0." | endl;
39                exit( EXIT_FAILURE );
[6e4b913]40        } // exit
[7bc4e6b]41        if ( d < (RationalImpl){0} ) { d = -d; n = -n; }        // move sign to numerator
42        return gcd( abs( n ), d );                                                      // simplify
[53ba273]43} // Rationalnumber::simplify
44
[630a82a]45
46// constructors
47
[53a6c2a]48forall( otype RationalImpl | arithmetic( RationalImpl ) )
[a493682]49void ?{}( Rational(RationalImpl) & r ) {
[561f730]50        r{ (RationalImpl){0}, (RationalImpl){1} };
[53ba273]51} // rational
52
[53a6c2a]53forall( otype RationalImpl | arithmetic( RationalImpl ) )
[a493682]54void ?{}( Rational(RationalImpl) & r, RationalImpl n ) {
[561f730]55        r{ n, (RationalImpl){1} };
[53ba273]56} // rational
57
[53a6c2a]58forall( otype RationalImpl | arithmetic( RationalImpl ) )
[a493682]59void ?{}( Rational(RationalImpl) & r, RationalImpl n, RationalImpl d ) {
[7bc4e6b]60        RationalImpl t = simplify( n, d );                                      // simplify
[53a8e68]61        r.numerator = n / t;
62        r.denominator = d / t;
[53ba273]63} // rational
64
[630a82a]65
[f621a148]66// getter for numerator/denominator
[630a82a]67
[53a6c2a]68forall( otype RationalImpl | arithmetic( RationalImpl ) )
[561f730]69RationalImpl numerator( Rational(RationalImpl) r ) {
[6e4b913]70        return r.numerator;
[53ba273]71} // numerator
72
[53a6c2a]73forall( otype RationalImpl | arithmetic( RationalImpl ) )
[561f730]74RationalImpl denominator( Rational(RationalImpl) r ) {
[f621a148]75        return r.denominator;
76} // denominator
77
[53a6c2a]78forall( otype RationalImpl | arithmetic( RationalImpl ) )
[a493682]79[ RationalImpl, RationalImpl ] ?=?( & [ RationalImpl, RationalImpl ] dest, Rational(RationalImpl) src ) {
[53a8e68]80        return dest = src.[ numerator, denominator ];
[f621a148]81}
82
83// setter for numerator/denominator
84
[53a6c2a]85forall( otype RationalImpl | arithmetic( RationalImpl ) )
[561f730]86RationalImpl numerator( Rational(RationalImpl) r, RationalImpl n ) {
[f621a148]87        RationalImpl prev = r.numerator;
88        RationalImpl t = gcd( abs( n ), r.denominator );                // simplify
[6e4b913]89        r.numerator = n / t;
90        r.denominator = r.denominator / t;
91        return prev;
[53ba273]92} // numerator
93
[53a6c2a]94forall( otype RationalImpl | arithmetic( RationalImpl ) )
[561f730]95RationalImpl denominator( Rational(RationalImpl) r, RationalImpl d ) {
[f621a148]96        RationalImpl prev = r.denominator;
[7bc4e6b]97        RationalImpl t = simplify( r.numerator, d );                    // simplify
[6e4b913]98        r.numerator = r.numerator / t;
99        r.denominator = d / t;
100        return prev;
[53ba273]101} // denominator
102
[630a82a]103
104// comparison
105
[53a6c2a]106forall( otype RationalImpl | arithmetic( RationalImpl ) )
[561f730]107int ?==?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
[6e4b913]108        return l.numerator * r.denominator == l.denominator * r.numerator;
[53ba273]109} // ?==?
110
[53a6c2a]111forall( otype RationalImpl | arithmetic( RationalImpl ) )
[561f730]112int ?!=?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
[6e4b913]113        return ! ( l == r );
[53ba273]114} // ?!=?
115
[53a6c2a]116forall( otype RationalImpl | arithmetic( RationalImpl ) )
[561f730]117int ?<?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
[6e4b913]118        return l.numerator * r.denominator < l.denominator * r.numerator;
[53ba273]119} // ?<?
120
[53a6c2a]121forall( otype RationalImpl | arithmetic( RationalImpl ) )
[561f730]122int ?<=?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
123        return l.numerator * r.denominator <= l.denominator * r.numerator;
[53ba273]124} // ?<=?
125
[53a6c2a]126forall( otype RationalImpl | arithmetic( RationalImpl ) )
[561f730]127int ?>?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
[6e4b913]128        return ! ( l <= r );
[53ba273]129} // ?>?
130
[53a6c2a]131forall( otype RationalImpl | arithmetic( RationalImpl ) )
[561f730]132int ?>=?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
[6e4b913]133        return ! ( l < r );
[53ba273]134} // ?>=?
135
[630a82a]136
137// arithmetic
138
[53a6c2a]139forall( otype RationalImpl | arithmetic( RationalImpl ) )
[561f730]140Rational(RationalImpl) +?( Rational(RationalImpl) r ) {
141        Rational(RationalImpl) t = { r.numerator, r.denominator };
142        return t;
143} // +?
144
[53a6c2a]145forall( otype RationalImpl | arithmetic( RationalImpl ) )
[561f730]146Rational(RationalImpl) -?( Rational(RationalImpl) r ) {
147        Rational(RationalImpl) t = { -r.numerator, r.denominator };
[6e4b913]148        return t;
[53ba273]149} // -?
150
[53a6c2a]151forall( otype RationalImpl | arithmetic( RationalImpl ) )
[561f730]152Rational(RationalImpl) ?+?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
[6e4b913]153        if ( l.denominator == r.denominator ) {                         // special case
[561f730]154                Rational(RationalImpl) t = { l.numerator + r.numerator, l.denominator };
[53ba273]155                return t;
[6e4b913]156        } else {
[561f730]157                Rational(RationalImpl) t = { l.numerator * r.denominator + l.denominator * r.numerator, l.denominator * r.denominator };
[53ba273]158                return t;
[6e4b913]159        } // if
[53ba273]160} // ?+?
161
[53a6c2a]162forall( otype RationalImpl | arithmetic( RationalImpl ) )
[561f730]163Rational(RationalImpl) ?-?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
[6e4b913]164        if ( l.denominator == r.denominator ) {                         // special case
[561f730]165                Rational(RationalImpl) t = { l.numerator - r.numerator, l.denominator };
[53ba273]166                return t;
[6e4b913]167        } else {
[561f730]168                Rational(RationalImpl) t = { l.numerator * r.denominator - l.denominator * r.numerator, l.denominator * r.denominator };
[53ba273]169                return t;
[6e4b913]170        } // if
[53ba273]171} // ?-?
172
[53a6c2a]173forall( otype RationalImpl | arithmetic( RationalImpl ) )
[561f730]174Rational(RationalImpl) ?*?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
175        Rational(RationalImpl) t = { l.numerator * r.numerator, l.denominator * r.denominator };
[53ba273]176        return t;
177} // ?*?
178
[53a6c2a]179forall( otype RationalImpl | arithmetic( RationalImpl ) )
[561f730]180Rational(RationalImpl) ?/?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
181        if ( r.numerator < (RationalImpl){0} ) {
[53ba273]182                r.numerator = -r.numerator;
183                r.denominator = -r.denominator;
184        } // if
[561f730]185        Rational(RationalImpl) t = { l.numerator * r.denominator, l.denominator * r.numerator };
[6e4b913]186        return t;
[53ba273]187} // ?/?
188
[630a82a]189
190// conversion
191
[53a6c2a]192forall( otype RationalImpl | arithmetic( RationalImpl ) | { double convert( RationalImpl ); } )
[6c6455f]193double widen( Rational(RationalImpl) r ) {
194        return convert( r.numerator ) / convert( r.denominator );
195} // widen
196
197// http://www.ics.uci.edu/~eppstein/numth/frap.c
[53a6c2a]198forall( otype RationalImpl | arithmetic( RationalImpl ) | { double convert( RationalImpl ); RationalImpl convert( double ); } )
[6c6455f]199Rational(RationalImpl) narrow( double f, RationalImpl md ) {
200        if ( md <= (RationalImpl){1} ) {                                        // maximum fractional digits too small?
201                return (Rational(RationalImpl)){ convert( f ), (RationalImpl){1}}; // truncate fraction
202        } // if
203
204        // continued fraction coefficients
205        RationalImpl m00 = {1}, m11 = { 1 }, m01 = { 0 }, m10 = { 0 };
206        RationalImpl ai, t;
207
208        // find terms until denom gets too big
209        for ( ;; ) {
210                ai = convert( f );
211          if ( ! (m10 * ai + m11 <= md) ) break;
212                t = m00 * ai + m01;
213                m01 = m00;
214                m00 = t;
215                t = m10 * ai + m11;
216                m11 = m10;
217                m10 = t;
218                double temp = convert( ai );
219          if ( f == temp ) break;                                                       // prevent division by zero
220                f = 1 / (f - temp);
221          if ( f > (double)0x7FFFFFFF ) break;                          // representation failure
222        } // for
223        return (Rational(RationalImpl)){ m00, m10 };
224} // narrow
[53ba273]225
[630a82a]226
227// I/O
228
[53a6c2a]229forall( otype RationalImpl | arithmetic( RationalImpl ) )
[09687aa]230forall( dtype istype | istream( istype ) | { istype & ?|?( istype &, RationalImpl & ); } )
231istype & ?|?( istype & is, Rational(RationalImpl) & r ) {
[f621a148]232        RationalImpl t;
[7bc4e6b]233        is | r.numerator | r.denominator;
234        t = simplify( r.numerator, r.denominator );
235        r.numerator /= t;
236        r.denominator /= t;
[6e4b913]237        return is;
[53ba273]238} // ?|?
239
[53a6c2a]240forall( otype RationalImpl | arithmetic( RationalImpl ) )
[09687aa]241forall( dtype ostype | ostream( ostype ) | { ostype & ?|?( ostype &, RationalImpl ); } )
242ostype & ?|?( ostype & os, Rational(RationalImpl ) r ) {
[6e4b913]243        return os | r.numerator | '/' | r.denominator;
[53ba273]244} // ?|?
245
246// Local Variables: //
247// tab-width: 4 //
248// End: //
Note: See TracBrowser for help on using the repository browser.