| [53ba273] | 1 | // | 
|---|
|  | 2 | // Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo | 
|---|
|  | 3 | // | 
|---|
|  | 4 | // The contents of this file are covered under the licence agreement in the | 
|---|
|  | 5 | // file "LICENCE" distributed with Cforall. | 
|---|
|  | 6 | // | 
|---|
|  | 7 | // rational.c -- | 
|---|
|  | 8 | // | 
|---|
|  | 9 | // Author           : Peter A. Buhr | 
|---|
|  | 10 | // Created On       : Wed Apr  6 17:54:28 2016 | 
|---|
|  | 11 | // Last Modified By : Peter A. Buhr | 
|---|
| [6e4b913] | 12 | // Last Modified On : Sat Jul  9 11:18:04 2016 | 
|---|
|  | 13 | // Update Count     : 40 | 
|---|
| [53ba273] | 14 | // | 
|---|
|  | 15 |  | 
|---|
|  | 16 | #include "rational" | 
|---|
| [3d9b5da] | 17 | #include "fstream" | 
|---|
|  | 18 | #include "stdlib" | 
|---|
| [6e991d6] | 19 | #include "math"                                                                                 // floor | 
|---|
| [53ba273] | 20 |  | 
|---|
| [630a82a] | 21 |  | 
|---|
|  | 22 | // constants | 
|---|
|  | 23 |  | 
|---|
| [53ba273] | 24 | struct Rational 0 = {0, 1}; | 
|---|
|  | 25 | struct Rational 1 = {1, 1}; | 
|---|
|  | 26 |  | 
|---|
|  | 27 |  | 
|---|
| [45161b4d] | 28 | // helper routines | 
|---|
| [630a82a] | 29 |  | 
|---|
|  | 30 | // Calculate greatest common denominator of two numbers, the first of which may be negative. Used to reduce rationals. | 
|---|
| [45161b4d] | 31 | // alternative: https://en.wikipedia.org/wiki/Binary_GCD_algorithm | 
|---|
| [630a82a] | 32 | static long int gcd( long int a, long int b ) { | 
|---|
| [6e4b913] | 33 | for ( ;; ) {                                                                            // Euclid's algorithm | 
|---|
| [53ba273] | 34 | long int r = a % b; | 
|---|
|  | 35 | if ( r == 0 ) break; | 
|---|
|  | 36 | a = b; | 
|---|
|  | 37 | b = r; | 
|---|
| [6e4b913] | 38 | } // for | 
|---|
| [53ba273] | 39 | return b; | 
|---|
|  | 40 | } // gcd | 
|---|
|  | 41 |  | 
|---|
| [630a82a] | 42 | static long int simplify( long int *n, long int *d ) { | 
|---|
| [6e4b913] | 43 | if ( *d == 0 ) { | 
|---|
| [53ba273] | 44 | serr | "Invalid rational number construction: denominator cannot be equal to 0." | endl; | 
|---|
|  | 45 | exit( EXIT_FAILURE ); | 
|---|
| [6e4b913] | 46 | } // exit | 
|---|
|  | 47 | if ( *d < 0 ) { *d = -*d; *n = -*n; }                           // move sign to numerator | 
|---|
|  | 48 | return gcd( abs( *n ), *d );                                            // simplify | 
|---|
| [53ba273] | 49 | } // Rationalnumber::simplify | 
|---|
|  | 50 |  | 
|---|
| [630a82a] | 51 |  | 
|---|
|  | 52 | // constructors | 
|---|
|  | 53 |  | 
|---|
| [d1ab5331] | 54 | void ?{}( Rational * r ) { | 
|---|
| [6e4b913] | 55 | r{ 0, 1 }; | 
|---|
| [53ba273] | 56 | } // rational | 
|---|
|  | 57 |  | 
|---|
| [d1ab5331] | 58 | void ?{}( Rational * r, long int n ) { | 
|---|
| [6e4b913] | 59 | r{ n, 1 }; | 
|---|
| [53ba273] | 60 | } // rational | 
|---|
|  | 61 |  | 
|---|
| [d1ab5331] | 62 | void ?{}( Rational * r, long int n, long int d ) { | 
|---|
| [6e4b913] | 63 | long int t = simplify( &n, &d );                                        // simplify | 
|---|
|  | 64 | r->numerator = n / t; | 
|---|
| [d1ab5331] | 65 | r->denominator = d / t; | 
|---|
| [53ba273] | 66 | } // rational | 
|---|
|  | 67 |  | 
|---|
| [630a82a] | 68 |  | 
|---|
|  | 69 | // getter/setter for numerator/denominator | 
|---|
|  | 70 |  | 
|---|
| [53ba273] | 71 | long int numerator( Rational r ) { | 
|---|
| [6e4b913] | 72 | return r.numerator; | 
|---|
| [53ba273] | 73 | } // numerator | 
|---|
|  | 74 |  | 
|---|
|  | 75 | long int numerator( Rational r, long int n ) { | 
|---|
| [6e4b913] | 76 | long int prev = r.numerator; | 
|---|
|  | 77 | long int t = gcd( abs( n ), r.denominator );            // simplify | 
|---|
|  | 78 | r.numerator = n / t; | 
|---|
|  | 79 | r.denominator = r.denominator / t; | 
|---|
|  | 80 | return prev; | 
|---|
| [53ba273] | 81 | } // numerator | 
|---|
|  | 82 |  | 
|---|
| [630a82a] | 83 | long int denominator( Rational r ) { | 
|---|
| [6e4b913] | 84 | return r.denominator; | 
|---|
| [630a82a] | 85 | } // denominator | 
|---|
|  | 86 |  | 
|---|
| [53ba273] | 87 | long int denominator( Rational r, long int d ) { | 
|---|
| [6e4b913] | 88 | long int prev = r.denominator; | 
|---|
|  | 89 | long int t = simplify( &r.numerator, &d );                      // simplify | 
|---|
|  | 90 | r.numerator = r.numerator / t; | 
|---|
|  | 91 | r.denominator = d / t; | 
|---|
|  | 92 | return prev; | 
|---|
| [53ba273] | 93 | } // denominator | 
|---|
|  | 94 |  | 
|---|
| [630a82a] | 95 |  | 
|---|
|  | 96 | // comparison | 
|---|
|  | 97 |  | 
|---|
| [53ba273] | 98 | int ?==?( Rational l, Rational r ) { | 
|---|
| [6e4b913] | 99 | return l.numerator * r.denominator == l.denominator * r.numerator; | 
|---|
| [53ba273] | 100 | } // ?==? | 
|---|
|  | 101 |  | 
|---|
|  | 102 | int ?!=?( Rational l, Rational r ) { | 
|---|
| [6e4b913] | 103 | return ! ( l == r ); | 
|---|
| [53ba273] | 104 | } // ?!=? | 
|---|
|  | 105 |  | 
|---|
|  | 106 | int ?<?( Rational l, Rational r ) { | 
|---|
| [6e4b913] | 107 | return l.numerator * r.denominator < l.denominator * r.numerator; | 
|---|
| [53ba273] | 108 | } // ?<? | 
|---|
|  | 109 |  | 
|---|
|  | 110 | int ?<=?( Rational l, Rational r ) { | 
|---|
| [6e4b913] | 111 | return l < r || l == r; | 
|---|
| [53ba273] | 112 | } // ?<=? | 
|---|
|  | 113 |  | 
|---|
|  | 114 | int ?>?( Rational l, Rational r ) { | 
|---|
| [6e4b913] | 115 | return ! ( l <= r ); | 
|---|
| [53ba273] | 116 | } // ?>? | 
|---|
|  | 117 |  | 
|---|
|  | 118 | int ?>=?( Rational l, Rational r ) { | 
|---|
| [6e4b913] | 119 | return ! ( l < r ); | 
|---|
| [53ba273] | 120 | } // ?>=? | 
|---|
|  | 121 |  | 
|---|
| [630a82a] | 122 |  | 
|---|
|  | 123 | // arithmetic | 
|---|
|  | 124 |  | 
|---|
| [53ba273] | 125 | Rational -?( Rational r ) { | 
|---|
|  | 126 | Rational t = { -r.numerator, r.denominator }; | 
|---|
| [6e4b913] | 127 | return t; | 
|---|
| [53ba273] | 128 | } // -? | 
|---|
|  | 129 |  | 
|---|
|  | 130 | Rational ?+?( Rational l, Rational r ) { | 
|---|
| [6e4b913] | 131 | if ( l.denominator == r.denominator ) {                         // special case | 
|---|
| [53ba273] | 132 | Rational t = { l.numerator + r.numerator, l.denominator }; | 
|---|
|  | 133 | return t; | 
|---|
| [6e4b913] | 134 | } else { | 
|---|
| [53ba273] | 135 | Rational t = { l.numerator * r.denominator + l.denominator * r.numerator, l.denominator * r.denominator }; | 
|---|
|  | 136 | return t; | 
|---|
| [6e4b913] | 137 | } // if | 
|---|
| [53ba273] | 138 | } // ?+? | 
|---|
|  | 139 |  | 
|---|
|  | 140 | Rational ?-?( Rational l, Rational r ) { | 
|---|
| [6e4b913] | 141 | if ( l.denominator == r.denominator ) {                         // special case | 
|---|
| [53ba273] | 142 | Rational t = { l.numerator - r.numerator, l.denominator }; | 
|---|
|  | 143 | return t; | 
|---|
| [6e4b913] | 144 | } else { | 
|---|
| [53ba273] | 145 | Rational t = { l.numerator * r.denominator - l.denominator * r.numerator, l.denominator * r.denominator }; | 
|---|
|  | 146 | return t; | 
|---|
| [6e4b913] | 147 | } // if | 
|---|
| [53ba273] | 148 | } // ?-? | 
|---|
|  | 149 |  | 
|---|
|  | 150 | Rational ?*?( Rational l, Rational r ) { | 
|---|
| [6e4b913] | 151 | Rational t = { l.numerator * r.numerator, l.denominator * r.denominator }; | 
|---|
| [53ba273] | 152 | return t; | 
|---|
|  | 153 | } // ?*? | 
|---|
|  | 154 |  | 
|---|
|  | 155 | Rational ?/?( Rational l, Rational r ) { | 
|---|
| [6e4b913] | 156 | if ( r.numerator < 0 ) { | 
|---|
| [53ba273] | 157 | r.numerator = -r.numerator; | 
|---|
|  | 158 | r.denominator = -r.denominator; | 
|---|
|  | 159 | } // if | 
|---|
|  | 160 | Rational t = { l.numerator * r.denominator, l.denominator * r.numerator }; | 
|---|
| [6e4b913] | 161 | return t; | 
|---|
| [53ba273] | 162 | } // ?/? | 
|---|
|  | 163 |  | 
|---|
| [630a82a] | 164 |  | 
|---|
|  | 165 | // conversion | 
|---|
|  | 166 |  | 
|---|
| [53ba273] | 167 | double widen( Rational r ) { | 
|---|
|  | 168 | return (double)r.numerator / (double)r.denominator; | 
|---|
|  | 169 | } // widen | 
|---|
|  | 170 |  | 
|---|
| [6e4b913] | 171 | // http://www.ics.uci.edu/~eppstein/numth/frap.c | 
|---|
| [53ba273] | 172 | Rational narrow( double f, long int md ) { | 
|---|
|  | 173 | if ( md <= 1 ) {                                                                        // maximum fractional digits too small? | 
|---|
| [d1ab5331] | 174 | return (Rational){ f, 1};                                               // truncate fraction | 
|---|
| [53ba273] | 175 | } // if | 
|---|
|  | 176 |  | 
|---|
|  | 177 | // continued fraction coefficients | 
|---|
| [6e4b913] | 178 | long int m00 = 1, m11 = 1, m01 = 0, m10 = 0; | 
|---|
|  | 179 | long int ai, t; | 
|---|
|  | 180 |  | 
|---|
|  | 181 | // find terms until denom gets too big | 
|---|
|  | 182 | for ( ;; ) { | 
|---|
|  | 183 | ai = (long int)f; | 
|---|
|  | 184 | if ( ! (m10 * ai + m11 <= md) ) break; | 
|---|
|  | 185 | t = m00 * ai + m01; | 
|---|
|  | 186 | m01 = m00; | 
|---|
|  | 187 | m00 = t; | 
|---|
|  | 188 | t = m10 * ai + m11; | 
|---|
|  | 189 | m11 = m10; | 
|---|
|  | 190 | m10 = t; | 
|---|
|  | 191 | t = (double)ai; | 
|---|
|  | 192 | if ( f == t ) break;                                                          // prevent division by zero | 
|---|
|  | 193 | f = 1 / (f - t); | 
|---|
|  | 194 | if ( f > (double)0x7FFFFFFF ) break;                          // representation failure | 
|---|
|  | 195 | } | 
|---|
|  | 196 | return (Rational){ m00, m10 }; | 
|---|
| [53ba273] | 197 | } // narrow | 
|---|
|  | 198 |  | 
|---|
| [630a82a] | 199 |  | 
|---|
|  | 200 | // I/O | 
|---|
|  | 201 |  | 
|---|
| [3d9b5da] | 202 | forall( dtype istype | istream( istype ) ) | 
|---|
|  | 203 | istype * ?|?( istype *is, Rational *r ) { | 
|---|
| [53ba273] | 204 | long int t; | 
|---|
| [6e4b913] | 205 | is | &(r->numerator) | &(r->denominator); | 
|---|
| [53ba273] | 206 | t = simplify( &(r->numerator), &(r->denominator) ); | 
|---|
| [6e4b913] | 207 | r->numerator /= t; | 
|---|
|  | 208 | r->denominator /= t; | 
|---|
|  | 209 | return is; | 
|---|
| [53ba273] | 210 | } // ?|? | 
|---|
|  | 211 |  | 
|---|
| [3d9b5da] | 212 | forall( dtype ostype | ostream( ostype ) ) | 
|---|
|  | 213 | ostype * ?|?( ostype *os, Rational r ) { | 
|---|
| [6e4b913] | 214 | return os | r.numerator | '/' | r.denominator; | 
|---|
| [53ba273] | 215 | } // ?|? | 
|---|
|  | 216 |  | 
|---|
|  | 217 | // Local Variables: // | 
|---|
|  | 218 | // tab-width: 4 // | 
|---|
|  | 219 | // End: // | 
|---|