[53ba273] | 1 | // -*- Mode: C -*- |
---|
| 2 | // |
---|
| 3 | // Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo |
---|
| 4 | // |
---|
| 5 | // The contents of this file are covered under the licence agreement in the |
---|
| 6 | // file "LICENCE" distributed with Cforall. |
---|
| 7 | // |
---|
| 8 | // rational.c -- |
---|
| 9 | // |
---|
| 10 | // Author : Peter A. Buhr |
---|
| 11 | // Created On : Wed Apr 6 17:54:28 2016 |
---|
| 12 | // Last Modified By : Peter A. Buhr |
---|
[d1ab5331] | 13 | // Last Modified On : Wed May 4 14:16:14 2016 |
---|
| 14 | // Update Count : 25 |
---|
[53ba273] | 15 | // |
---|
| 16 | |
---|
| 17 | #include "rational" |
---|
[3d9b5da] | 18 | #include "fstream" |
---|
| 19 | #include "stdlib" |
---|
[6e991d6] | 20 | #include "math" // floor |
---|
[53ba273] | 21 | |
---|
[630a82a] | 22 | |
---|
| 23 | // constants |
---|
| 24 | |
---|
[53ba273] | 25 | struct Rational 0 = {0, 1}; |
---|
| 26 | struct Rational 1 = {1, 1}; |
---|
| 27 | |
---|
| 28 | |
---|
[45161b4d] | 29 | // helper routines |
---|
[630a82a] | 30 | |
---|
| 31 | // Calculate greatest common denominator of two numbers, the first of which may be negative. Used to reduce rationals. |
---|
[45161b4d] | 32 | // alternative: https://en.wikipedia.org/wiki/Binary_GCD_algorithm |
---|
[630a82a] | 33 | static long int gcd( long int a, long int b ) { |
---|
[53ba273] | 34 | for ( ;; ) { // Euclid's algorithm |
---|
| 35 | long int r = a % b; |
---|
| 36 | if ( r == 0 ) break; |
---|
| 37 | a = b; |
---|
| 38 | b = r; |
---|
| 39 | } // for |
---|
| 40 | return b; |
---|
| 41 | } // gcd |
---|
| 42 | |
---|
[630a82a] | 43 | static long int simplify( long int *n, long int *d ) { |
---|
[53ba273] | 44 | if ( *d == 0 ) { |
---|
| 45 | serr | "Invalid rational number construction: denominator cannot be equal to 0." | endl; |
---|
| 46 | exit( EXIT_FAILURE ); |
---|
| 47 | } // exit |
---|
| 48 | if ( *d < 0 ) { *d = -*d; *n = -*n; } // move sign to numerator |
---|
| 49 | return gcd( abs( *n ), *d ); // simplify |
---|
| 50 | } // Rationalnumber::simplify |
---|
| 51 | |
---|
[630a82a] | 52 | |
---|
| 53 | // constructors |
---|
| 54 | |
---|
[d1ab5331] | 55 | void ?{}( Rational * r ) { |
---|
| 56 | r{ 0, 1 }; |
---|
[53ba273] | 57 | } // rational |
---|
| 58 | |
---|
[d1ab5331] | 59 | void ?{}( Rational * r, long int n ) { |
---|
| 60 | r{ n, 1 }; |
---|
[53ba273] | 61 | } // rational |
---|
| 62 | |
---|
[d1ab5331] | 63 | void ?{}( Rational * r, long int n, long int d ) { |
---|
[53ba273] | 64 | long int t = simplify( &n, &d ); // simplify |
---|
[d1ab5331] | 65 | r->numerator = n / t; |
---|
| 66 | r->denominator = d / t; |
---|
[53ba273] | 67 | } // rational |
---|
| 68 | |
---|
[630a82a] | 69 | |
---|
| 70 | // getter/setter for numerator/denominator |
---|
| 71 | |
---|
[53ba273] | 72 | long int numerator( Rational r ) { |
---|
| 73 | return r.numerator; |
---|
| 74 | } // numerator |
---|
| 75 | |
---|
| 76 | long int numerator( Rational r, long int n ) { |
---|
| 77 | long int prev = r.numerator; |
---|
| 78 | long int t = gcd( abs( n ), r.denominator ); // simplify |
---|
| 79 | r.numerator = n / t; |
---|
| 80 | r.denominator = r.denominator / t; |
---|
| 81 | return prev; |
---|
| 82 | } // numerator |
---|
| 83 | |
---|
[630a82a] | 84 | long int denominator( Rational r ) { |
---|
| 85 | return r.denominator; |
---|
| 86 | } // denominator |
---|
| 87 | |
---|
[53ba273] | 88 | long int denominator( Rational r, long int d ) { |
---|
| 89 | long int prev = r.denominator; |
---|
| 90 | long int t = simplify( &r.numerator, &d ); // simplify |
---|
| 91 | r.numerator = r.numerator / t; |
---|
| 92 | r.denominator = d / t; |
---|
| 93 | return prev; |
---|
| 94 | } // denominator |
---|
| 95 | |
---|
[630a82a] | 96 | |
---|
| 97 | // comparison |
---|
| 98 | |
---|
[53ba273] | 99 | int ?==?( Rational l, Rational r ) { |
---|
| 100 | return l.numerator * r.denominator == l.denominator * r.numerator; |
---|
| 101 | } // ?==? |
---|
| 102 | |
---|
| 103 | int ?!=?( Rational l, Rational r ) { |
---|
| 104 | return ! ( l == r ); |
---|
| 105 | } // ?!=? |
---|
| 106 | |
---|
| 107 | int ?<?( Rational l, Rational r ) { |
---|
| 108 | return l.numerator * r.denominator < l.denominator * r.numerator; |
---|
| 109 | } // ?<? |
---|
| 110 | |
---|
| 111 | int ?<=?( Rational l, Rational r ) { |
---|
| 112 | return l < r || l == r; |
---|
| 113 | } // ?<=? |
---|
| 114 | |
---|
| 115 | int ?>?( Rational l, Rational r ) { |
---|
| 116 | return ! ( l <= r ); |
---|
| 117 | } // ?>? |
---|
| 118 | |
---|
| 119 | int ?>=?( Rational l, Rational r ) { |
---|
| 120 | return ! ( l < r ); |
---|
| 121 | } // ?>=? |
---|
| 122 | |
---|
[630a82a] | 123 | |
---|
| 124 | // arithmetic |
---|
| 125 | |
---|
[53ba273] | 126 | Rational -?( Rational r ) { |
---|
| 127 | Rational t = { -r.numerator, r.denominator }; |
---|
| 128 | return t; |
---|
| 129 | } // -? |
---|
| 130 | |
---|
| 131 | Rational ?+?( Rational l, Rational r ) { |
---|
| 132 | if ( l.denominator == r.denominator ) { // special case |
---|
| 133 | Rational t = { l.numerator + r.numerator, l.denominator }; |
---|
| 134 | return t; |
---|
| 135 | } else { |
---|
| 136 | Rational t = { l.numerator * r.denominator + l.denominator * r.numerator, l.denominator * r.denominator }; |
---|
| 137 | return t; |
---|
| 138 | } // if |
---|
| 139 | } // ?+? |
---|
| 140 | |
---|
| 141 | Rational ?-?( Rational l, Rational r ) { |
---|
| 142 | if ( l.denominator == r.denominator ) { // special case |
---|
| 143 | Rational t = { l.numerator - r.numerator, l.denominator }; |
---|
| 144 | return t; |
---|
| 145 | } else { |
---|
| 146 | Rational t = { l.numerator * r.denominator - l.denominator * r.numerator, l.denominator * r.denominator }; |
---|
| 147 | return t; |
---|
| 148 | } // if |
---|
| 149 | } // ?-? |
---|
| 150 | |
---|
| 151 | Rational ?*?( Rational l, Rational r ) { |
---|
| 152 | Rational t = { l.numerator * r.numerator, l.denominator * r.denominator }; |
---|
| 153 | return t; |
---|
| 154 | } // ?*? |
---|
| 155 | |
---|
| 156 | Rational ?/?( Rational l, Rational r ) { |
---|
| 157 | if ( r.numerator < 0 ) { |
---|
| 158 | r.numerator = -r.numerator; |
---|
| 159 | r.denominator = -r.denominator; |
---|
| 160 | } // if |
---|
| 161 | Rational t = { l.numerator * r.denominator, l.denominator * r.numerator }; |
---|
| 162 | return t; |
---|
| 163 | } // ?/? |
---|
| 164 | |
---|
[630a82a] | 165 | |
---|
| 166 | // conversion |
---|
| 167 | |
---|
[53ba273] | 168 | double widen( Rational r ) { |
---|
| 169 | return (double)r.numerator / (double)r.denominator; |
---|
| 170 | } // widen |
---|
| 171 | |
---|
| 172 | // https://rosettacode.org/wiki/Convert_decimal_number_to_rational#C |
---|
| 173 | Rational narrow( double f, long int md ) { |
---|
| 174 | if ( md <= 1 ) { // maximum fractional digits too small? |
---|
[d1ab5331] | 175 | return (Rational){ f, 1}; // truncate fraction |
---|
[53ba273] | 176 | } // if |
---|
| 177 | |
---|
| 178 | // continued fraction coefficients |
---|
| 179 | long int a, h[3] = { 0, 1, 0 }, k[3] = { 1, 0, 0 }; |
---|
| 180 | long int x, d, n = 1; |
---|
| 181 | int i, neg = 0; |
---|
| 182 | |
---|
| 183 | if ( f < 0 ) { neg = 1; f = -f; } |
---|
| 184 | while ( f != floor( f ) ) { n <<= 1; f *= 2; } |
---|
| 185 | d = f; |
---|
| 186 | |
---|
| 187 | // continued fraction and check denominator each step |
---|
| 188 | for (i = 0; i < 64; i++) { |
---|
| 189 | a = n ? d / n : 0; |
---|
| 190 | if (i && !a) break; |
---|
| 191 | x = d; d = n; n = x % n; |
---|
| 192 | x = a; |
---|
| 193 | if (k[1] * a + k[0] >= md) { |
---|
| 194 | x = (md - k[0]) / k[1]; |
---|
| 195 | if ( ! (x * 2 >= a || k[1] >= md) ) break; |
---|
| 196 | i = 65; |
---|
| 197 | } // if |
---|
| 198 | h[2] = x * h[1] + h[0]; h[0] = h[1]; h[1] = h[2]; |
---|
| 199 | k[2] = x * k[1] + k[0]; k[0] = k[1]; k[1] = k[2]; |
---|
| 200 | } // for |
---|
[d1ab5331] | 201 | return (Rational){ neg ? -h[1] : h[1], k[1] }; |
---|
[53ba273] | 202 | } // narrow |
---|
| 203 | |
---|
[630a82a] | 204 | |
---|
| 205 | // I/O |
---|
| 206 | |
---|
[3d9b5da] | 207 | forall( dtype istype | istream( istype ) ) |
---|
| 208 | istype * ?|?( istype *is, Rational *r ) { |
---|
[53ba273] | 209 | long int t; |
---|
| 210 | is | &(r->numerator) | &(r->denominator); |
---|
| 211 | t = simplify( &(r->numerator), &(r->denominator) ); |
---|
| 212 | r->numerator /= t; |
---|
| 213 | r->denominator /= t; |
---|
| 214 | return is; |
---|
| 215 | } // ?|? |
---|
| 216 | |
---|
[3d9b5da] | 217 | forall( dtype ostype | ostream( ostype ) ) |
---|
| 218 | ostype * ?|?( ostype *os, Rational r ) { |
---|
[53ba273] | 219 | return os | r.numerator | '/' | r.denominator; |
---|
| 220 | } // ?|? |
---|
| 221 | |
---|
| 222 | // Local Variables: // |
---|
| 223 | // tab-width: 4 // |
---|
| 224 | // End: // |
---|