[53ba273] | 1 | //
|
---|
| 2 | // Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
|
---|
| 3 | //
|
---|
| 4 | // The contents of this file are covered under the licence agreement in the
|
---|
| 5 | // file "LICENCE" distributed with Cforall.
|
---|
| 6 | //
|
---|
| 7 | // rational.c --
|
---|
| 8 | //
|
---|
| 9 | // Author : Peter A. Buhr
|
---|
| 10 | // Created On : Wed Apr 6 17:54:28 2016
|
---|
| 11 | // Last Modified By : Peter A. Buhr
|
---|
[a6151ba] | 12 | // Last Modified On : Tue Jul 5 18:29:12 2016
|
---|
| 13 | // Update Count : 26
|
---|
[53ba273] | 14 | //
|
---|
| 15 |
|
---|
| 16 | #include "rational"
|
---|
[3d9b5da] | 17 | #include "fstream"
|
---|
| 18 | #include "stdlib"
|
---|
[6e991d6] | 19 | #include "math" // floor
|
---|
[53ba273] | 20 |
|
---|
[630a82a] | 21 |
|
---|
| 22 | // constants
|
---|
| 23 |
|
---|
[53ba273] | 24 | struct Rational 0 = {0, 1};
|
---|
| 25 | struct Rational 1 = {1, 1};
|
---|
| 26 |
|
---|
| 27 |
|
---|
[45161b4d] | 28 | // helper routines
|
---|
[630a82a] | 29 |
|
---|
| 30 | // Calculate greatest common denominator of two numbers, the first of which may be negative. Used to reduce rationals.
|
---|
[45161b4d] | 31 | // alternative: https://en.wikipedia.org/wiki/Binary_GCD_algorithm
|
---|
[630a82a] | 32 | static long int gcd( long int a, long int b ) {
|
---|
[53ba273] | 33 | for ( ;; ) { // Euclid's algorithm
|
---|
| 34 | long int r = a % b;
|
---|
| 35 | if ( r == 0 ) break;
|
---|
| 36 | a = b;
|
---|
| 37 | b = r;
|
---|
| 38 | } // for
|
---|
| 39 | return b;
|
---|
| 40 | } // gcd
|
---|
| 41 |
|
---|
[630a82a] | 42 | static long int simplify( long int *n, long int *d ) {
|
---|
[53ba273] | 43 | if ( *d == 0 ) {
|
---|
| 44 | serr | "Invalid rational number construction: denominator cannot be equal to 0." | endl;
|
---|
| 45 | exit( EXIT_FAILURE );
|
---|
| 46 | } // exit
|
---|
| 47 | if ( *d < 0 ) { *d = -*d; *n = -*n; } // move sign to numerator
|
---|
| 48 | return gcd( abs( *n ), *d ); // simplify
|
---|
| 49 | } // Rationalnumber::simplify
|
---|
| 50 |
|
---|
[630a82a] | 51 |
|
---|
| 52 | // constructors
|
---|
| 53 |
|
---|
[d1ab5331] | 54 | void ?{}( Rational * r ) {
|
---|
| 55 | r{ 0, 1 };
|
---|
[53ba273] | 56 | } // rational
|
---|
| 57 |
|
---|
[d1ab5331] | 58 | void ?{}( Rational * r, long int n ) {
|
---|
| 59 | r{ n, 1 };
|
---|
[53ba273] | 60 | } // rational
|
---|
| 61 |
|
---|
[d1ab5331] | 62 | void ?{}( Rational * r, long int n, long int d ) {
|
---|
[53ba273] | 63 | long int t = simplify( &n, &d ); // simplify
|
---|
[d1ab5331] | 64 | r->numerator = n / t;
|
---|
| 65 | r->denominator = d / t;
|
---|
[53ba273] | 66 | } // rational
|
---|
| 67 |
|
---|
[630a82a] | 68 |
|
---|
| 69 | // getter/setter for numerator/denominator
|
---|
| 70 |
|
---|
[53ba273] | 71 | long int numerator( Rational r ) {
|
---|
| 72 | return r.numerator;
|
---|
| 73 | } // numerator
|
---|
| 74 |
|
---|
| 75 | long int numerator( Rational r, long int n ) {
|
---|
| 76 | long int prev = r.numerator;
|
---|
| 77 | long int t = gcd( abs( n ), r.denominator ); // simplify
|
---|
| 78 | r.numerator = n / t;
|
---|
| 79 | r.denominator = r.denominator / t;
|
---|
| 80 | return prev;
|
---|
| 81 | } // numerator
|
---|
| 82 |
|
---|
[630a82a] | 83 | long int denominator( Rational r ) {
|
---|
| 84 | return r.denominator;
|
---|
| 85 | } // denominator
|
---|
| 86 |
|
---|
[53ba273] | 87 | long int denominator( Rational r, long int d ) {
|
---|
| 88 | long int prev = r.denominator;
|
---|
| 89 | long int t = simplify( &r.numerator, &d ); // simplify
|
---|
| 90 | r.numerator = r.numerator / t;
|
---|
| 91 | r.denominator = d / t;
|
---|
| 92 | return prev;
|
---|
| 93 | } // denominator
|
---|
| 94 |
|
---|
[630a82a] | 95 |
|
---|
| 96 | // comparison
|
---|
| 97 |
|
---|
[53ba273] | 98 | int ?==?( Rational l, Rational r ) {
|
---|
| 99 | return l.numerator * r.denominator == l.denominator * r.numerator;
|
---|
| 100 | } // ?==?
|
---|
| 101 |
|
---|
| 102 | int ?!=?( Rational l, Rational r ) {
|
---|
| 103 | return ! ( l == r );
|
---|
| 104 | } // ?!=?
|
---|
| 105 |
|
---|
| 106 | int ?<?( Rational l, Rational r ) {
|
---|
| 107 | return l.numerator * r.denominator < l.denominator * r.numerator;
|
---|
| 108 | } // ?<?
|
---|
| 109 |
|
---|
| 110 | int ?<=?( Rational l, Rational r ) {
|
---|
| 111 | return l < r || l == r;
|
---|
| 112 | } // ?<=?
|
---|
| 113 |
|
---|
| 114 | int ?>?( Rational l, Rational r ) {
|
---|
| 115 | return ! ( l <= r );
|
---|
| 116 | } // ?>?
|
---|
| 117 |
|
---|
| 118 | int ?>=?( Rational l, Rational r ) {
|
---|
| 119 | return ! ( l < r );
|
---|
| 120 | } // ?>=?
|
---|
| 121 |
|
---|
[630a82a] | 122 |
|
---|
| 123 | // arithmetic
|
---|
| 124 |
|
---|
[53ba273] | 125 | Rational -?( Rational r ) {
|
---|
| 126 | Rational t = { -r.numerator, r.denominator };
|
---|
| 127 | return t;
|
---|
| 128 | } // -?
|
---|
| 129 |
|
---|
| 130 | Rational ?+?( Rational l, Rational r ) {
|
---|
| 131 | if ( l.denominator == r.denominator ) { // special case
|
---|
| 132 | Rational t = { l.numerator + r.numerator, l.denominator };
|
---|
| 133 | return t;
|
---|
| 134 | } else {
|
---|
| 135 | Rational t = { l.numerator * r.denominator + l.denominator * r.numerator, l.denominator * r.denominator };
|
---|
| 136 | return t;
|
---|
| 137 | } // if
|
---|
| 138 | } // ?+?
|
---|
| 139 |
|
---|
| 140 | Rational ?-?( Rational l, Rational r ) {
|
---|
| 141 | if ( l.denominator == r.denominator ) { // special case
|
---|
| 142 | Rational t = { l.numerator - r.numerator, l.denominator };
|
---|
| 143 | return t;
|
---|
| 144 | } else {
|
---|
| 145 | Rational t = { l.numerator * r.denominator - l.denominator * r.numerator, l.denominator * r.denominator };
|
---|
| 146 | return t;
|
---|
| 147 | } // if
|
---|
| 148 | } // ?-?
|
---|
| 149 |
|
---|
| 150 | Rational ?*?( Rational l, Rational r ) {
|
---|
| 151 | Rational t = { l.numerator * r.numerator, l.denominator * r.denominator };
|
---|
| 152 | return t;
|
---|
| 153 | } // ?*?
|
---|
| 154 |
|
---|
| 155 | Rational ?/?( Rational l, Rational r ) {
|
---|
| 156 | if ( r.numerator < 0 ) {
|
---|
| 157 | r.numerator = -r.numerator;
|
---|
| 158 | r.denominator = -r.denominator;
|
---|
| 159 | } // if
|
---|
| 160 | Rational t = { l.numerator * r.denominator, l.denominator * r.numerator };
|
---|
| 161 | return t;
|
---|
| 162 | } // ?/?
|
---|
| 163 |
|
---|
[630a82a] | 164 |
|
---|
| 165 | // conversion
|
---|
| 166 |
|
---|
[53ba273] | 167 | double widen( Rational r ) {
|
---|
| 168 | return (double)r.numerator / (double)r.denominator;
|
---|
| 169 | } // widen
|
---|
| 170 |
|
---|
| 171 | // https://rosettacode.org/wiki/Convert_decimal_number_to_rational#C
|
---|
| 172 | Rational narrow( double f, long int md ) {
|
---|
| 173 | if ( md <= 1 ) { // maximum fractional digits too small?
|
---|
[d1ab5331] | 174 | return (Rational){ f, 1}; // truncate fraction
|
---|
[53ba273] | 175 | } // if
|
---|
| 176 |
|
---|
| 177 | // continued fraction coefficients
|
---|
| 178 | long int a, h[3] = { 0, 1, 0 }, k[3] = { 1, 0, 0 };
|
---|
| 179 | long int x, d, n = 1;
|
---|
| 180 | int i, neg = 0;
|
---|
| 181 |
|
---|
| 182 | if ( f < 0 ) { neg = 1; f = -f; }
|
---|
| 183 | while ( f != floor( f ) ) { n <<= 1; f *= 2; }
|
---|
| 184 | d = f;
|
---|
| 185 |
|
---|
| 186 | // continued fraction and check denominator each step
|
---|
| 187 | for (i = 0; i < 64; i++) {
|
---|
| 188 | a = n ? d / n : 0;
|
---|
| 189 | if (i && !a) break;
|
---|
| 190 | x = d; d = n; n = x % n;
|
---|
| 191 | x = a;
|
---|
| 192 | if (k[1] * a + k[0] >= md) {
|
---|
| 193 | x = (md - k[0]) / k[1];
|
---|
| 194 | if ( ! (x * 2 >= a || k[1] >= md) ) break;
|
---|
| 195 | i = 65;
|
---|
| 196 | } // if
|
---|
| 197 | h[2] = x * h[1] + h[0]; h[0] = h[1]; h[1] = h[2];
|
---|
| 198 | k[2] = x * k[1] + k[0]; k[0] = k[1]; k[1] = k[2];
|
---|
| 199 | } // for
|
---|
[d1ab5331] | 200 | return (Rational){ neg ? -h[1] : h[1], k[1] };
|
---|
[53ba273] | 201 | } // narrow
|
---|
| 202 |
|
---|
[630a82a] | 203 |
|
---|
| 204 | // I/O
|
---|
| 205 |
|
---|
[3d9b5da] | 206 | forall( dtype istype | istream( istype ) )
|
---|
| 207 | istype * ?|?( istype *is, Rational *r ) {
|
---|
[53ba273] | 208 | long int t;
|
---|
| 209 | is | &(r->numerator) | &(r->denominator);
|
---|
| 210 | t = simplify( &(r->numerator), &(r->denominator) );
|
---|
| 211 | r->numerator /= t;
|
---|
| 212 | r->denominator /= t;
|
---|
| 213 | return is;
|
---|
| 214 | } // ?|?
|
---|
| 215 |
|
---|
[3d9b5da] | 216 | forall( dtype ostype | ostream( ostype ) )
|
---|
| 217 | ostype * ?|?( ostype *os, Rational r ) {
|
---|
[53ba273] | 218 | return os | r.numerator | '/' | r.denominator;
|
---|
| 219 | } // ?|?
|
---|
| 220 |
|
---|
| 221 | // Local Variables: //
|
---|
| 222 | // tab-width: 4 //
|
---|
| 223 | // End: //
|
---|