source: src/libcfa/rational.c@ 3f869f0

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors ctor deferred_resn demangler enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox memory new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum resolv-new with_gc
Last change on this file since 3f869f0 was a6151ba, checked in by Peter A. Buhr <pabuhr@…>, 9 years ago

update comments in code and tests, and add test searchsort

  • Property mode set to 100644
File size: 5.4 KB
RevLine 
[53ba273]1//
2// Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// rational.c --
8//
9// Author : Peter A. Buhr
10// Created On : Wed Apr 6 17:54:28 2016
11// Last Modified By : Peter A. Buhr
[a6151ba]12// Last Modified On : Tue Jul 5 18:29:12 2016
13// Update Count : 26
[53ba273]14//
15
16#include "rational"
[3d9b5da]17#include "fstream"
18#include "stdlib"
[6e991d6]19#include "math" // floor
[53ba273]20
[630a82a]21
22// constants
23
[53ba273]24struct Rational 0 = {0, 1};
25struct Rational 1 = {1, 1};
26
27
[45161b4d]28// helper routines
[630a82a]29
30// Calculate greatest common denominator of two numbers, the first of which may be negative. Used to reduce rationals.
[45161b4d]31// alternative: https://en.wikipedia.org/wiki/Binary_GCD_algorithm
[630a82a]32static long int gcd( long int a, long int b ) {
[53ba273]33 for ( ;; ) { // Euclid's algorithm
34 long int r = a % b;
35 if ( r == 0 ) break;
36 a = b;
37 b = r;
38 } // for
39 return b;
40} // gcd
41
[630a82a]42static long int simplify( long int *n, long int *d ) {
[53ba273]43 if ( *d == 0 ) {
44 serr | "Invalid rational number construction: denominator cannot be equal to 0." | endl;
45 exit( EXIT_FAILURE );
46 } // exit
47 if ( *d < 0 ) { *d = -*d; *n = -*n; } // move sign to numerator
48 return gcd( abs( *n ), *d ); // simplify
49} // Rationalnumber::simplify
50
[630a82a]51
52// constructors
53
[d1ab5331]54void ?{}( Rational * r ) {
55 r{ 0, 1 };
[53ba273]56} // rational
57
[d1ab5331]58void ?{}( Rational * r, long int n ) {
59 r{ n, 1 };
[53ba273]60} // rational
61
[d1ab5331]62void ?{}( Rational * r, long int n, long int d ) {
[53ba273]63 long int t = simplify( &n, &d ); // simplify
[d1ab5331]64 r->numerator = n / t;
65 r->denominator = d / t;
[53ba273]66} // rational
67
[630a82a]68
69// getter/setter for numerator/denominator
70
[53ba273]71long int numerator( Rational r ) {
72 return r.numerator;
73} // numerator
74
75long int numerator( Rational r, long int n ) {
76 long int prev = r.numerator;
77 long int t = gcd( abs( n ), r.denominator ); // simplify
78 r.numerator = n / t;
79 r.denominator = r.denominator / t;
80 return prev;
81} // numerator
82
[630a82a]83long int denominator( Rational r ) {
84 return r.denominator;
85} // denominator
86
[53ba273]87long int denominator( Rational r, long int d ) {
88 long int prev = r.denominator;
89 long int t = simplify( &r.numerator, &d ); // simplify
90 r.numerator = r.numerator / t;
91 r.denominator = d / t;
92 return prev;
93} // denominator
94
[630a82a]95
96// comparison
97
[53ba273]98int ?==?( Rational l, Rational r ) {
99 return l.numerator * r.denominator == l.denominator * r.numerator;
100} // ?==?
101
102int ?!=?( Rational l, Rational r ) {
103 return ! ( l == r );
104} // ?!=?
105
106int ?<?( Rational l, Rational r ) {
107 return l.numerator * r.denominator < l.denominator * r.numerator;
108} // ?<?
109
110int ?<=?( Rational l, Rational r ) {
111 return l < r || l == r;
112} // ?<=?
113
114int ?>?( Rational l, Rational r ) {
115 return ! ( l <= r );
116} // ?>?
117
118int ?>=?( Rational l, Rational r ) {
119 return ! ( l < r );
120} // ?>=?
121
[630a82a]122
123// arithmetic
124
[53ba273]125Rational -?( Rational r ) {
126 Rational t = { -r.numerator, r.denominator };
127 return t;
128} // -?
129
130Rational ?+?( Rational l, Rational r ) {
131 if ( l.denominator == r.denominator ) { // special case
132 Rational t = { l.numerator + r.numerator, l.denominator };
133 return t;
134 } else {
135 Rational t = { l.numerator * r.denominator + l.denominator * r.numerator, l.denominator * r.denominator };
136 return t;
137 } // if
138} // ?+?
139
140Rational ?-?( Rational l, Rational r ) {
141 if ( l.denominator == r.denominator ) { // special case
142 Rational t = { l.numerator - r.numerator, l.denominator };
143 return t;
144 } else {
145 Rational t = { l.numerator * r.denominator - l.denominator * r.numerator, l.denominator * r.denominator };
146 return t;
147 } // if
148} // ?-?
149
150Rational ?*?( Rational l, Rational r ) {
151 Rational t = { l.numerator * r.numerator, l.denominator * r.denominator };
152 return t;
153} // ?*?
154
155Rational ?/?( Rational l, Rational r ) {
156 if ( r.numerator < 0 ) {
157 r.numerator = -r.numerator;
158 r.denominator = -r.denominator;
159 } // if
160 Rational t = { l.numerator * r.denominator, l.denominator * r.numerator };
161 return t;
162} // ?/?
163
[630a82a]164
165// conversion
166
[53ba273]167double widen( Rational r ) {
168 return (double)r.numerator / (double)r.denominator;
169} // widen
170
171// https://rosettacode.org/wiki/Convert_decimal_number_to_rational#C
172Rational narrow( double f, long int md ) {
173 if ( md <= 1 ) { // maximum fractional digits too small?
[d1ab5331]174 return (Rational){ f, 1}; // truncate fraction
[53ba273]175 } // if
176
177 // continued fraction coefficients
178 long int a, h[3] = { 0, 1, 0 }, k[3] = { 1, 0, 0 };
179 long int x, d, n = 1;
180 int i, neg = 0;
181
182 if ( f < 0 ) { neg = 1; f = -f; }
183 while ( f != floor( f ) ) { n <<= 1; f *= 2; }
184 d = f;
185
186 // continued fraction and check denominator each step
187 for (i = 0; i < 64; i++) {
188 a = n ? d / n : 0;
189 if (i && !a) break;
190 x = d; d = n; n = x % n;
191 x = a;
192 if (k[1] * a + k[0] >= md) {
193 x = (md - k[0]) / k[1];
194 if ( ! (x * 2 >= a || k[1] >= md) ) break;
195 i = 65;
196 } // if
197 h[2] = x * h[1] + h[0]; h[0] = h[1]; h[1] = h[2];
198 k[2] = x * k[1] + k[0]; k[0] = k[1]; k[1] = k[2];
199 } // for
[d1ab5331]200 return (Rational){ neg ? -h[1] : h[1], k[1] };
[53ba273]201} // narrow
202
[630a82a]203
204// I/O
205
[3d9b5da]206forall( dtype istype | istream( istype ) )
207istype * ?|?( istype *is, Rational *r ) {
[53ba273]208 long int t;
209 is | &(r->numerator) | &(r->denominator);
210 t = simplify( &(r->numerator), &(r->denominator) );
211 r->numerator /= t;
212 r->denominator /= t;
213 return is;
214} // ?|?
215
[3d9b5da]216forall( dtype ostype | ostream( ostype ) )
217ostype * ?|?( ostype *os, Rational r ) {
[53ba273]218 return os | r.numerator | '/' | r.denominator;
219} // ?|?
220
221// Local Variables: //
222// tab-width: 4 //
223// End: //
Note: See TracBrowser for help on using the repository browser.