source: src/libcfa/rational.c @ 3dafd83

ADTaaron-thesisarm-ehast-experimentalcleanup-dtorsdeferred_resndemanglerenumforall-pointer-decayjacob/cs343-translationjenkins-sandboxnew-astnew-ast-unique-exprnew-envno_listpersistent-indexerpthread-emulationqualifiedEnumresolv-newwith_gc
Last change on this file since 3dafd83 was 561f730, checked in by Peter A. Buhr <pabuhr@…>, 7 years ago

first attempt converting rational numbers to generic type

  • Property mode set to 100644
File size: 7.9 KB
RevLine 
[53ba273]1//
2// Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// rational.c --
8//
9// Author           : Peter A. Buhr
10// Created On       : Wed Apr  6 17:54:28 2016
11// Last Modified By : Peter A. Buhr
[561f730]12// Last Modified On : Sun May 14 17:25:19 2017
13// Update Count     : 131
[53ba273]14//
15
16#include "rational"
[3d9b5da]17#include "fstream"
18#include "stdlib"
[53ba273]19
[45161b4d]20// helper routines
[630a82a]21
22// Calculate greatest common denominator of two numbers, the first of which may be negative. Used to reduce rationals.
[45161b4d]23// alternative: https://en.wikipedia.org/wiki/Binary_GCD_algorithm
[561f730]24forall ( otype RationalImpl | arithmetic( RationalImpl ) )
[f621a148]25static RationalImpl gcd( RationalImpl a, RationalImpl b ) {
[6e4b913]26        for ( ;; ) {                                                                            // Euclid's algorithm
[f621a148]27                RationalImpl r = a % b;
[561f730]28          if ( r == (RationalImpl){0} ) break;
[53ba273]29                a = b;
30                b = r;
[6e4b913]31        } // for
[53ba273]32        return b;
33} // gcd
34
[561f730]35forall ( otype RationalImpl | arithmetic( RationalImpl ) )
36static RationalImpl simplify( RationalImpl * n, RationalImpl * d ) {
37        if ( *d == (RationalImpl){0} ) {
[53ba273]38                serr | "Invalid rational number construction: denominator cannot be equal to 0." | endl;
39                exit( EXIT_FAILURE );
[6e4b913]40        } // exit
[561f730]41        if ( *d < (RationalImpl){0} ) { *d = -*d; *n = -*n; } // move sign to numerator
[6e4b913]42        return gcd( abs( *n ), *d );                                            // simplify
[53ba273]43} // Rationalnumber::simplify
44
[630a82a]45
46// constructors
47
[561f730]48forall ( otype RationalImpl | arithmetic( RationalImpl ) )
49void ?{}( Rational(RationalImpl) * r ) {
50        r{ (RationalImpl){0}, (RationalImpl){1} };
[53ba273]51} // rational
52
[561f730]53forall ( otype RationalImpl | arithmetic( RationalImpl ) )
54void ?{}( Rational(RationalImpl) * r, RationalImpl n ) {
55        r{ n, (RationalImpl){1} };
[53ba273]56} // rational
57
[561f730]58forall ( otype RationalImpl | arithmetic( RationalImpl ) )
59void ?{}( Rational(RationalImpl) * r, RationalImpl n, RationalImpl d ) {
[f621a148]60        RationalImpl t = simplify( &n, &d );                            // simplify
[6e4b913]61        r->numerator = n / t;
[d1ab5331]62        r->denominator = d / t;
[53ba273]63} // rational
64
[630a82a]65
[f621a148]66// getter for numerator/denominator
[630a82a]67
[561f730]68forall ( otype RationalImpl | arithmetic( RationalImpl ) )
69RationalImpl numerator( Rational(RationalImpl) r ) {
[6e4b913]70        return r.numerator;
[53ba273]71} // numerator
72
[561f730]73forall ( otype RationalImpl | arithmetic( RationalImpl ) )
74RationalImpl denominator( Rational(RationalImpl) r ) {
[f621a148]75        return r.denominator;
76} // denominator
77
[561f730]78forall ( otype RationalImpl | arithmetic( RationalImpl ) )
79[ RationalImpl, RationalImpl ] ?=?( * [ RationalImpl, RationalImpl ] dest, Rational(RationalImpl) src ) {
[f621a148]80        return *dest = src.[ numerator, denominator ];
81}
82
83// setter for numerator/denominator
84
[561f730]85forall ( otype RationalImpl | arithmetic( RationalImpl ) )
86RationalImpl numerator( Rational(RationalImpl) r, RationalImpl n ) {
[f621a148]87        RationalImpl prev = r.numerator;
88        RationalImpl t = gcd( abs( n ), r.denominator );                // simplify
[6e4b913]89        r.numerator = n / t;
90        r.denominator = r.denominator / t;
91        return prev;
[53ba273]92} // numerator
93
[561f730]94forall ( otype RationalImpl | arithmetic( RationalImpl ) )
95RationalImpl denominator( Rational(RationalImpl) r, RationalImpl d ) {
[f621a148]96        RationalImpl prev = r.denominator;
97        RationalImpl t = simplify( &r.numerator, &d );                  // simplify
[6e4b913]98        r.numerator = r.numerator / t;
99        r.denominator = d / t;
100        return prev;
[53ba273]101} // denominator
102
[630a82a]103
104// comparison
105
[561f730]106forall ( otype RationalImpl | arithmetic( RationalImpl ) )
107int ?==?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
[6e4b913]108        return l.numerator * r.denominator == l.denominator * r.numerator;
[53ba273]109} // ?==?
110
[561f730]111forall ( otype RationalImpl | arithmetic( RationalImpl ) )
112int ?!=?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
[6e4b913]113        return ! ( l == r );
[53ba273]114} // ?!=?
115
[561f730]116forall ( otype RationalImpl | arithmetic( RationalImpl ) )
117int ?<?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
[6e4b913]118        return l.numerator * r.denominator < l.denominator * r.numerator;
[53ba273]119} // ?<?
120
[561f730]121forall ( otype RationalImpl | arithmetic( RationalImpl ) )
122int ?<=?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
123        return l.numerator * r.denominator <= l.denominator * r.numerator;
[53ba273]124} // ?<=?
125
[561f730]126forall ( otype RationalImpl | arithmetic( RationalImpl ) )
127int ?>?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
[6e4b913]128        return ! ( l <= r );
[53ba273]129} // ?>?
130
[561f730]131forall ( otype RationalImpl | arithmetic( RationalImpl ) )
132int ?>=?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
[6e4b913]133        return ! ( l < r );
[53ba273]134} // ?>=?
135
[630a82a]136
137// arithmetic
138
[561f730]139forall ( otype RationalImpl | arithmetic( RationalImpl ) )
140Rational(RationalImpl) +?( Rational(RationalImpl) r ) {
141        Rational(RationalImpl) t = { r.numerator, r.denominator };
142        return t;
143} // +?
144
145forall ( otype RationalImpl | arithmetic( RationalImpl ) )
146Rational(RationalImpl) -?( Rational(RationalImpl) r ) {
147        Rational(RationalImpl) t = { -r.numerator, r.denominator };
[6e4b913]148        return t;
[53ba273]149} // -?
150
[561f730]151forall ( otype RationalImpl | arithmetic( RationalImpl ) )
152Rational(RationalImpl) ?+?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
[6e4b913]153        if ( l.denominator == r.denominator ) {                         // special case
[561f730]154                Rational(RationalImpl) t = { l.numerator + r.numerator, l.denominator };
[53ba273]155                return t;
[6e4b913]156        } else {
[561f730]157                Rational(RationalImpl) t = { l.numerator * r.denominator + l.denominator * r.numerator, l.denominator * r.denominator };
[53ba273]158                return t;
[6e4b913]159        } // if
[53ba273]160} // ?+?
161
[561f730]162forall ( otype RationalImpl | arithmetic( RationalImpl ) )
163Rational(RationalImpl) ?-?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
[6e4b913]164        if ( l.denominator == r.denominator ) {                         // special case
[561f730]165                Rational(RationalImpl) t = { l.numerator - r.numerator, l.denominator };
[53ba273]166                return t;
[6e4b913]167        } else {
[561f730]168                Rational(RationalImpl) t = { l.numerator * r.denominator - l.denominator * r.numerator, l.denominator * r.denominator };
[53ba273]169                return t;
[6e4b913]170        } // if
[53ba273]171} // ?-?
172
[561f730]173forall ( otype RationalImpl | arithmetic( RationalImpl ) )
174Rational(RationalImpl) ?*?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
175        Rational(RationalImpl) t = { l.numerator * r.numerator, l.denominator * r.denominator };
[53ba273]176        return t;
177} // ?*?
178
[561f730]179forall ( otype RationalImpl | arithmetic( RationalImpl ) )
180Rational(RationalImpl) ?/?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
181        if ( r.numerator < (RationalImpl){0} ) {
[53ba273]182                r.numerator = -r.numerator;
183                r.denominator = -r.denominator;
184        } // if
[561f730]185        Rational(RationalImpl) t = { l.numerator * r.denominator, l.denominator * r.numerator };
[6e4b913]186        return t;
[53ba273]187} // ?/?
188
[630a82a]189
190// conversion
191
[561f730]192// forall ( otype RationalImpl | arithmetic( RationalImpl ) )
193// double widen( Rational(RationalImpl) r ) {
194//      return (double)r.numerator / (double)r.denominator;
195// } // widen
196
197// // http://www.ics.uci.edu/~eppstein/numth/frap.c
198// forall ( otype RationalImpl | arithmetic( RationalImpl ) )
199// Rational(RationalImpl) narrow( double f, RationalImpl md ) {
200//      if ( md <= 1 ) {                                                                        // maximum fractional digits too small?
201//              return (Rational(RationalImpl)){ f, 1};                 // truncate fraction
202//      } // if
203
204//      // continued fraction coefficients
205//      RationalImpl m00 = 1, m11 = 1, m01 = 0, m10 = 0;
206//      RationalImpl ai, t;
207
208//      // find terms until denom gets too big
209//      for ( ;; ) {
210//              ai = (RationalImpl)f;
211//        if ( ! (m10 * ai + m11 <= md) ) break;
212//              t = m00 * ai + m01;
213//              m01 = m00;
214//              m00 = t;
215//              t = m10 * ai + m11;
216//              m11 = m10;
217//              m10 = t;
218//              t = (double)ai;
219//        if ( f == t ) break;                                                          // prevent division by zero
220//        f = 1 / (f - (double)t);
221//        if ( f > (double)0x7FFFFFFF ) break;                          // representation failure
222//      }
223//      return (Rational(RationalImpl)){ m00, m10 };
224// } // narrow
[53ba273]225
[630a82a]226
227// I/O
228
[561f730]229forall ( otype RationalImpl | arithmetic( RationalImpl ) )
230forall( dtype istype | istream( istype ) | { istype * ?|?( istype *, RationalImpl * ); } )
231istype * ?|?( istype * is, Rational(RationalImpl) * r ) {
[f621a148]232        RationalImpl t;
[6e4b913]233        is | &(r->numerator) | &(r->denominator);
[53ba273]234        t = simplify( &(r->numerator), &(r->denominator) );
[6e4b913]235        r->numerator /= t;
236        r->denominator /= t;
237        return is;
[53ba273]238} // ?|?
239
[561f730]240forall ( otype RationalImpl | arithmetic( RationalImpl ) )
241forall( dtype ostype | ostream( ostype ) | { ostype * ?|?( ostype *, RationalImpl ); } )
242ostype * ?|?( ostype * os, Rational(RationalImpl ) r ) {
[6e4b913]243        return os | r.numerator | '/' | r.denominator;
[53ba273]244} // ?|?
245
246// Local Variables: //
247// tab-width: 4 //
248// End: //
Note: See TracBrowser for help on using the repository browser.