| [53ba273] | 1 | // -*- Mode: C -*-
|
|---|
| 2 | //
|
|---|
| 3 | // Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
|
|---|
| 4 | //
|
|---|
| 5 | // The contents of this file are covered under the licence agreement in the
|
|---|
| 6 | // file "LICENCE" distributed with Cforall.
|
|---|
| 7 | //
|
|---|
| 8 | // rational.c --
|
|---|
| 9 | //
|
|---|
| 10 | // Author : Peter A. Buhr
|
|---|
| 11 | // Created On : Wed Apr 6 17:54:28 2016
|
|---|
| 12 | // Last Modified By : Peter A. Buhr
|
|---|
| [9827c7ba] | 13 | // Last Modified On : Fri Apr 8 17:35:05 2016
|
|---|
| 14 | // Update Count : 18
|
|---|
| [53ba273] | 15 | //
|
|---|
| 16 |
|
|---|
| 17 | #include "rational"
|
|---|
| [3d9b5da] | 18 | #include "fstream"
|
|---|
| 19 | #include "stdlib"
|
|---|
| [53ba273] | 20 |
|
|---|
| 21 | extern "C" {
|
|---|
| 22 | #include <stdlib.h> // exit
|
|---|
| 23 | } // extern
|
|---|
| 24 |
|
|---|
| [630a82a] | 25 |
|
|---|
| 26 | // constants
|
|---|
| 27 |
|
|---|
| [53ba273] | 28 | struct Rational 0 = {0, 1};
|
|---|
| 29 | struct Rational 1 = {1, 1};
|
|---|
| 30 |
|
|---|
| 31 |
|
|---|
| [630a82a] | 32 | // helper
|
|---|
| 33 |
|
|---|
| 34 | // Calculate greatest common denominator of two numbers, the first of which may be negative. Used to reduce rationals.
|
|---|
| 35 | static long int gcd( long int a, long int b ) {
|
|---|
| [53ba273] | 36 | for ( ;; ) { // Euclid's algorithm
|
|---|
| 37 | long int r = a % b;
|
|---|
| 38 | if ( r == 0 ) break;
|
|---|
| 39 | a = b;
|
|---|
| 40 | b = r;
|
|---|
| 41 | } // for
|
|---|
| 42 | return b;
|
|---|
| 43 | } // gcd
|
|---|
| 44 |
|
|---|
| [630a82a] | 45 | static long int simplify( long int *n, long int *d ) {
|
|---|
| [53ba273] | 46 | if ( *d == 0 ) {
|
|---|
| 47 | serr | "Invalid rational number construction: denominator cannot be equal to 0." | endl;
|
|---|
| 48 | exit( EXIT_FAILURE );
|
|---|
| 49 | } // exit
|
|---|
| 50 | if ( *d < 0 ) { *d = -*d; *n = -*n; } // move sign to numerator
|
|---|
| 51 | return gcd( abs( *n ), *d ); // simplify
|
|---|
| 52 | } // Rationalnumber::simplify
|
|---|
| 53 |
|
|---|
| [630a82a] | 54 |
|
|---|
| 55 | // constructors
|
|---|
| 56 |
|
|---|
| 57 | Rational rational() {
|
|---|
| 58 | return (Rational){ 0, 1 };
|
|---|
| [53ba273] | 59 | } // rational
|
|---|
| 60 |
|
|---|
| [630a82a] | 61 | Rational rational( long int n ) {
|
|---|
| 62 | return (Rational){ n, 1 };
|
|---|
| [53ba273] | 63 | } // rational
|
|---|
| 64 |
|
|---|
| [630a82a] | 65 | Rational rational( long int n, long int d ) {
|
|---|
| [53ba273] | 66 | long int t = simplify( &n, &d ); // simplify
|
|---|
| [9827c7ba] | 67 | return (Rational){ n / t, d / t };
|
|---|
| [53ba273] | 68 | } // rational
|
|---|
| 69 |
|
|---|
| [630a82a] | 70 |
|
|---|
| 71 | // getter/setter for numerator/denominator
|
|---|
| 72 |
|
|---|
| [53ba273] | 73 | long int numerator( Rational r ) {
|
|---|
| 74 | return r.numerator;
|
|---|
| 75 | } // numerator
|
|---|
| 76 |
|
|---|
| 77 | long int numerator( Rational r, long int n ) {
|
|---|
| 78 | long int prev = r.numerator;
|
|---|
| 79 | long int t = gcd( abs( n ), r.denominator ); // simplify
|
|---|
| 80 | r.numerator = n / t;
|
|---|
| 81 | r.denominator = r.denominator / t;
|
|---|
| 82 | return prev;
|
|---|
| 83 | } // numerator
|
|---|
| 84 |
|
|---|
| [630a82a] | 85 | long int denominator( Rational r ) {
|
|---|
| 86 | return r.denominator;
|
|---|
| 87 | } // denominator
|
|---|
| 88 |
|
|---|
| [53ba273] | 89 | long int denominator( Rational r, long int d ) {
|
|---|
| 90 | long int prev = r.denominator;
|
|---|
| 91 | long int t = simplify( &r.numerator, &d ); // simplify
|
|---|
| 92 | r.numerator = r.numerator / t;
|
|---|
| 93 | r.denominator = d / t;
|
|---|
| 94 | return prev;
|
|---|
| 95 | } // denominator
|
|---|
| 96 |
|
|---|
| [630a82a] | 97 |
|
|---|
| 98 | // comparison
|
|---|
| 99 |
|
|---|
| [53ba273] | 100 | int ?==?( Rational l, Rational r ) {
|
|---|
| 101 | return l.numerator * r.denominator == l.denominator * r.numerator;
|
|---|
| 102 | } // ?==?
|
|---|
| 103 |
|
|---|
| 104 | int ?!=?( Rational l, Rational r ) {
|
|---|
| 105 | return ! ( l == r );
|
|---|
| 106 | } // ?!=?
|
|---|
| 107 |
|
|---|
| 108 | int ?<?( Rational l, Rational r ) {
|
|---|
| 109 | return l.numerator * r.denominator < l.denominator * r.numerator;
|
|---|
| 110 | } // ?<?
|
|---|
| 111 |
|
|---|
| 112 | int ?<=?( Rational l, Rational r ) {
|
|---|
| 113 | return l < r || l == r;
|
|---|
| 114 | } // ?<=?
|
|---|
| 115 |
|
|---|
| 116 | int ?>?( Rational l, Rational r ) {
|
|---|
| 117 | return ! ( l <= r );
|
|---|
| 118 | } // ?>?
|
|---|
| 119 |
|
|---|
| 120 | int ?>=?( Rational l, Rational r ) {
|
|---|
| 121 | return ! ( l < r );
|
|---|
| 122 | } // ?>=?
|
|---|
| 123 |
|
|---|
| [630a82a] | 124 |
|
|---|
| 125 | // arithmetic
|
|---|
| 126 |
|
|---|
| [53ba273] | 127 | Rational -?( Rational r ) {
|
|---|
| 128 | Rational t = { -r.numerator, r.denominator };
|
|---|
| 129 | return t;
|
|---|
| 130 | } // -?
|
|---|
| 131 |
|
|---|
| 132 | Rational ?+?( Rational l, Rational r ) {
|
|---|
| 133 | if ( l.denominator == r.denominator ) { // special case
|
|---|
| 134 | Rational t = { l.numerator + r.numerator, l.denominator };
|
|---|
| 135 | return t;
|
|---|
| 136 | } else {
|
|---|
| 137 | Rational t = { l.numerator * r.denominator + l.denominator * r.numerator, l.denominator * r.denominator };
|
|---|
| 138 | return t;
|
|---|
| 139 | } // if
|
|---|
| 140 | } // ?+?
|
|---|
| 141 |
|
|---|
| 142 | Rational ?-?( Rational l, Rational r ) {
|
|---|
| 143 | if ( l.denominator == r.denominator ) { // special case
|
|---|
| 144 | Rational t = { l.numerator - r.numerator, l.denominator };
|
|---|
| 145 | return t;
|
|---|
| 146 | } else {
|
|---|
| 147 | Rational t = { l.numerator * r.denominator - l.denominator * r.numerator, l.denominator * r.denominator };
|
|---|
| 148 | return t;
|
|---|
| 149 | } // if
|
|---|
| 150 | } // ?-?
|
|---|
| 151 |
|
|---|
| 152 | Rational ?*?( Rational l, Rational r ) {
|
|---|
| 153 | Rational t = { l.numerator * r.numerator, l.denominator * r.denominator };
|
|---|
| 154 | return t;
|
|---|
| 155 | } // ?*?
|
|---|
| 156 |
|
|---|
| 157 | Rational ?/?( Rational l, Rational r ) {
|
|---|
| 158 | if ( r.numerator < 0 ) {
|
|---|
| 159 | r.numerator = -r.numerator;
|
|---|
| 160 | r.denominator = -r.denominator;
|
|---|
| 161 | } // if
|
|---|
| 162 | Rational t = { l.numerator * r.denominator, l.denominator * r.numerator };
|
|---|
| 163 | return t;
|
|---|
| 164 | } // ?/?
|
|---|
| 165 |
|
|---|
| [630a82a] | 166 |
|
|---|
| 167 | // conversion
|
|---|
| 168 |
|
|---|
| [53ba273] | 169 | double widen( Rational r ) {
|
|---|
| 170 | return (double)r.numerator / (double)r.denominator;
|
|---|
| 171 | } // widen
|
|---|
| 172 |
|
|---|
| 173 | // https://rosettacode.org/wiki/Convert_decimal_number_to_rational#C
|
|---|
| 174 | Rational narrow( double f, long int md ) {
|
|---|
| 175 | if ( md <= 1 ) { // maximum fractional digits too small?
|
|---|
| 176 | Rational t = rational( f, 1 ); // truncate fraction
|
|---|
| 177 | return t;
|
|---|
| 178 | } // if
|
|---|
| 179 |
|
|---|
| 180 | // continued fraction coefficients
|
|---|
| 181 | long int a, h[3] = { 0, 1, 0 }, k[3] = { 1, 0, 0 };
|
|---|
| 182 | long int x, d, n = 1;
|
|---|
| 183 | int i, neg = 0;
|
|---|
| 184 |
|
|---|
| 185 | if ( f < 0 ) { neg = 1; f = -f; }
|
|---|
| 186 | while ( f != floor( f ) ) { n <<= 1; f *= 2; }
|
|---|
| 187 | d = f;
|
|---|
| 188 |
|
|---|
| 189 | // continued fraction and check denominator each step
|
|---|
| 190 | for (i = 0; i < 64; i++) {
|
|---|
| 191 | a = n ? d / n : 0;
|
|---|
| 192 | if (i && !a) break;
|
|---|
| 193 | x = d; d = n; n = x % n;
|
|---|
| 194 | x = a;
|
|---|
| 195 | if (k[1] * a + k[0] >= md) {
|
|---|
| 196 | x = (md - k[0]) / k[1];
|
|---|
| 197 | if ( ! (x * 2 >= a || k[1] >= md) ) break;
|
|---|
| 198 | i = 65;
|
|---|
| 199 | } // if
|
|---|
| 200 | h[2] = x * h[1] + h[0]; h[0] = h[1]; h[1] = h[2];
|
|---|
| 201 | k[2] = x * k[1] + k[0]; k[0] = k[1]; k[1] = k[2];
|
|---|
| 202 | } // for
|
|---|
| 203 | Rational t = rational( neg ? -h[1] : h[1], k[1] );
|
|---|
| 204 | return t;
|
|---|
| 205 | } // narrow
|
|---|
| 206 |
|
|---|
| [630a82a] | 207 |
|
|---|
| 208 | // I/O
|
|---|
| 209 |
|
|---|
| [3d9b5da] | 210 | forall( dtype istype | istream( istype ) )
|
|---|
| 211 | istype * ?|?( istype *is, Rational *r ) {
|
|---|
| [53ba273] | 212 | long int t;
|
|---|
| 213 | is | &(r->numerator) | &(r->denominator);
|
|---|
| 214 | t = simplify( &(r->numerator), &(r->denominator) );
|
|---|
| 215 | r->numerator /= t;
|
|---|
| 216 | r->denominator /= t;
|
|---|
| 217 | return is;
|
|---|
| 218 | } // ?|?
|
|---|
| 219 |
|
|---|
| [3d9b5da] | 220 | forall( dtype ostype | ostream( ostype ) )
|
|---|
| 221 | ostype * ?|?( ostype *os, Rational r ) {
|
|---|
| [53ba273] | 222 | return os | r.numerator | '/' | r.denominator;
|
|---|
| 223 | } // ?|?
|
|---|
| 224 |
|
|---|
| 225 | // Local Variables: //
|
|---|
| 226 | // tab-width: 4 //
|
|---|
| 227 | // End: //
|
|---|