source: src/libcfa/rational.c@ 348006f

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors deferred_resn demangler enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum resolv-new with_gc
Last change on this file since 348006f was 6e4b913, checked in by Peter A. Buhr <pabuhr@…>, 9 years ago

allow 32-bit compilation of cfa-cpp, and 32-bit compilation of CFA programs (including CFA libraries)

  • Property mode set to 100644
File size: 5.1 KB
RevLine 
[53ba273]1//
2// Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// rational.c --
8//
9// Author : Peter A. Buhr
10// Created On : Wed Apr 6 17:54:28 2016
11// Last Modified By : Peter A. Buhr
[6e4b913]12// Last Modified On : Sat Jul 9 11:18:04 2016
13// Update Count : 40
[53ba273]14//
15
16#include "rational"
[3d9b5da]17#include "fstream"
18#include "stdlib"
[6e991d6]19#include "math" // floor
[53ba273]20
[630a82a]21
22// constants
23
[53ba273]24struct Rational 0 = {0, 1};
25struct Rational 1 = {1, 1};
26
27
[45161b4d]28// helper routines
[630a82a]29
30// Calculate greatest common denominator of two numbers, the first of which may be negative. Used to reduce rationals.
[45161b4d]31// alternative: https://en.wikipedia.org/wiki/Binary_GCD_algorithm
[630a82a]32static long int gcd( long int a, long int b ) {
[6e4b913]33 for ( ;; ) { // Euclid's algorithm
[53ba273]34 long int r = a % b;
35 if ( r == 0 ) break;
36 a = b;
37 b = r;
[6e4b913]38 } // for
[53ba273]39 return b;
40} // gcd
41
[630a82a]42static long int simplify( long int *n, long int *d ) {
[6e4b913]43 if ( *d == 0 ) {
[53ba273]44 serr | "Invalid rational number construction: denominator cannot be equal to 0." | endl;
45 exit( EXIT_FAILURE );
[6e4b913]46 } // exit
47 if ( *d < 0 ) { *d = -*d; *n = -*n; } // move sign to numerator
48 return gcd( abs( *n ), *d ); // simplify
[53ba273]49} // Rationalnumber::simplify
50
[630a82a]51
52// constructors
53
[d1ab5331]54void ?{}( Rational * r ) {
[6e4b913]55 r{ 0, 1 };
[53ba273]56} // rational
57
[d1ab5331]58void ?{}( Rational * r, long int n ) {
[6e4b913]59 r{ n, 1 };
[53ba273]60} // rational
61
[d1ab5331]62void ?{}( Rational * r, long int n, long int d ) {
[6e4b913]63 long int t = simplify( &n, &d ); // simplify
64 r->numerator = n / t;
[d1ab5331]65 r->denominator = d / t;
[53ba273]66} // rational
67
[630a82a]68
69// getter/setter for numerator/denominator
70
[53ba273]71long int numerator( Rational r ) {
[6e4b913]72 return r.numerator;
[53ba273]73} // numerator
74
75long int numerator( Rational r, long int n ) {
[6e4b913]76 long int prev = r.numerator;
77 long int t = gcd( abs( n ), r.denominator ); // simplify
78 r.numerator = n / t;
79 r.denominator = r.denominator / t;
80 return prev;
[53ba273]81} // numerator
82
[630a82a]83long int denominator( Rational r ) {
[6e4b913]84 return r.denominator;
[630a82a]85} // denominator
86
[53ba273]87long int denominator( Rational r, long int d ) {
[6e4b913]88 long int prev = r.denominator;
89 long int t = simplify( &r.numerator, &d ); // simplify
90 r.numerator = r.numerator / t;
91 r.denominator = d / t;
92 return prev;
[53ba273]93} // denominator
94
[630a82a]95
96// comparison
97
[53ba273]98int ?==?( Rational l, Rational r ) {
[6e4b913]99 return l.numerator * r.denominator == l.denominator * r.numerator;
[53ba273]100} // ?==?
101
102int ?!=?( Rational l, Rational r ) {
[6e4b913]103 return ! ( l == r );
[53ba273]104} // ?!=?
105
106int ?<?( Rational l, Rational r ) {
[6e4b913]107 return l.numerator * r.denominator < l.denominator * r.numerator;
[53ba273]108} // ?<?
109
110int ?<=?( Rational l, Rational r ) {
[6e4b913]111 return l < r || l == r;
[53ba273]112} // ?<=?
113
114int ?>?( Rational l, Rational r ) {
[6e4b913]115 return ! ( l <= r );
[53ba273]116} // ?>?
117
118int ?>=?( Rational l, Rational r ) {
[6e4b913]119 return ! ( l < r );
[53ba273]120} // ?>=?
121
[630a82a]122
123// arithmetic
124
[53ba273]125Rational -?( Rational r ) {
126 Rational t = { -r.numerator, r.denominator };
[6e4b913]127 return t;
[53ba273]128} // -?
129
130Rational ?+?( Rational l, Rational r ) {
[6e4b913]131 if ( l.denominator == r.denominator ) { // special case
[53ba273]132 Rational t = { l.numerator + r.numerator, l.denominator };
133 return t;
[6e4b913]134 } else {
[53ba273]135 Rational t = { l.numerator * r.denominator + l.denominator * r.numerator, l.denominator * r.denominator };
136 return t;
[6e4b913]137 } // if
[53ba273]138} // ?+?
139
140Rational ?-?( Rational l, Rational r ) {
[6e4b913]141 if ( l.denominator == r.denominator ) { // special case
[53ba273]142 Rational t = { l.numerator - r.numerator, l.denominator };
143 return t;
[6e4b913]144 } else {
[53ba273]145 Rational t = { l.numerator * r.denominator - l.denominator * r.numerator, l.denominator * r.denominator };
146 return t;
[6e4b913]147 } // if
[53ba273]148} // ?-?
149
150Rational ?*?( Rational l, Rational r ) {
[6e4b913]151 Rational t = { l.numerator * r.numerator, l.denominator * r.denominator };
[53ba273]152 return t;
153} // ?*?
154
155Rational ?/?( Rational l, Rational r ) {
[6e4b913]156 if ( r.numerator < 0 ) {
[53ba273]157 r.numerator = -r.numerator;
158 r.denominator = -r.denominator;
159 } // if
160 Rational t = { l.numerator * r.denominator, l.denominator * r.numerator };
[6e4b913]161 return t;
[53ba273]162} // ?/?
163
[630a82a]164
165// conversion
166
[53ba273]167double widen( Rational r ) {
168 return (double)r.numerator / (double)r.denominator;
169} // widen
170
[6e4b913]171// http://www.ics.uci.edu/~eppstein/numth/frap.c
[53ba273]172Rational narrow( double f, long int md ) {
173 if ( md <= 1 ) { // maximum fractional digits too small?
[d1ab5331]174 return (Rational){ f, 1}; // truncate fraction
[53ba273]175 } // if
176
177 // continued fraction coefficients
[6e4b913]178 long int m00 = 1, m11 = 1, m01 = 0, m10 = 0;
179 long int ai, t;
180
181 // find terms until denom gets too big
182 for ( ;; ) {
183 ai = (long int)f;
184 if ( ! (m10 * ai + m11 <= md) ) break;
185 t = m00 * ai + m01;
186 m01 = m00;
187 m00 = t;
188 t = m10 * ai + m11;
189 m11 = m10;
190 m10 = t;
191 t = (double)ai;
192 if ( f == t ) break; // prevent division by zero
193 f = 1 / (f - t);
194 if ( f > (double)0x7FFFFFFF ) break; // representation failure
195 }
196 return (Rational){ m00, m10 };
[53ba273]197} // narrow
198
[630a82a]199
200// I/O
201
[3d9b5da]202forall( dtype istype | istream( istype ) )
203istype * ?|?( istype *is, Rational *r ) {
[53ba273]204 long int t;
[6e4b913]205 is | &(r->numerator) | &(r->denominator);
[53ba273]206 t = simplify( &(r->numerator), &(r->denominator) );
[6e4b913]207 r->numerator /= t;
208 r->denominator /= t;
209 return is;
[53ba273]210} // ?|?
211
[3d9b5da]212forall( dtype ostype | ostream( ostype ) )
213ostype * ?|?( ostype *os, Rational r ) {
[6e4b913]214 return os | r.numerator | '/' | r.denominator;
[53ba273]215} // ?|?
216
217// Local Variables: //
218// tab-width: 4 //
219// End: //
Note: See TracBrowser for help on using the repository browser.