| [a493682] | 1 | // | 
|---|
| [53ba273] | 2 | // Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo | 
|---|
|  | 3 | // | 
|---|
|  | 4 | // The contents of this file are covered under the licence agreement in the | 
|---|
|  | 5 | // file "LICENCE" distributed with Cforall. | 
|---|
| [a493682] | 6 | // | 
|---|
|  | 7 | // rational.c -- | 
|---|
|  | 8 | // | 
|---|
| [53ba273] | 9 | // Author           : Peter A. Buhr | 
|---|
|  | 10 | // Created On       : Wed Apr  6 17:54:28 2016 | 
|---|
|  | 11 | // Last Modified By : Peter A. Buhr | 
|---|
| [3ce0d440] | 12 | // Last Modified On : Sat Jun  2 09:24:33 2018 | 
|---|
|  | 13 | // Update Count     : 162 | 
|---|
| [a493682] | 14 | // | 
|---|
| [53ba273] | 15 |  | 
|---|
|  | 16 | #include "rational" | 
|---|
| [3d9b5da] | 17 | #include "fstream" | 
|---|
|  | 18 | #include "stdlib" | 
|---|
| [53ba273] | 19 |  | 
|---|
| [3ce0d440] | 20 | forall( otype RationalImpl | arithmetic( RationalImpl ) ) { | 
|---|
|  | 21 | // helper routines | 
|---|
|  | 22 |  | 
|---|
|  | 23 | // Calculate greatest common denominator of two numbers, the first of which may be negative. Used to reduce | 
|---|
|  | 24 | // rationals.  alternative: https://en.wikipedia.org/wiki/Binary_GCD_algorithm | 
|---|
|  | 25 | static RationalImpl gcd( RationalImpl a, RationalImpl b ) { | 
|---|
|  | 26 | for ( ;; ) {                                                                    // Euclid's algorithm | 
|---|
|  | 27 | RationalImpl r = a % b; | 
|---|
|  | 28 | if ( r == (RationalImpl){0} ) break; | 
|---|
|  | 29 | a = b; | 
|---|
|  | 30 | b = r; | 
|---|
|  | 31 | } // for | 
|---|
|  | 32 | return b; | 
|---|
|  | 33 | } // gcd | 
|---|
|  | 34 |  | 
|---|
|  | 35 | static RationalImpl simplify( RationalImpl & n, RationalImpl & d ) { | 
|---|
|  | 36 | if ( d == (RationalImpl){0} ) { | 
|---|
|  | 37 | serr | "Invalid rational number construction: denominator cannot be equal to 0." | endl; | 
|---|
|  | 38 | exit( EXIT_FAILURE ); | 
|---|
|  | 39 | } // exit | 
|---|
|  | 40 | if ( d < (RationalImpl){0} ) { d = -d; n = -n; } // move sign to numerator | 
|---|
|  | 41 | return gcd( abs( n ), d );                                              // simplify | 
|---|
|  | 42 | } // Rationalnumber::simplify | 
|---|
|  | 43 |  | 
|---|
|  | 44 | // constructors | 
|---|
|  | 45 |  | 
|---|
|  | 46 | void ?{}( Rational(RationalImpl) & r ) { | 
|---|
|  | 47 | r{ (RationalImpl){0}, (RationalImpl){1} }; | 
|---|
|  | 48 | } // rational | 
|---|
|  | 49 |  | 
|---|
|  | 50 | void ?{}( Rational(RationalImpl) & r, RationalImpl n ) { | 
|---|
|  | 51 | r{ n, (RationalImpl){1} }; | 
|---|
|  | 52 | } // rational | 
|---|
|  | 53 |  | 
|---|
|  | 54 | void ?{}( Rational(RationalImpl) & r, RationalImpl n, RationalImpl d ) { | 
|---|
|  | 55 | RationalImpl t = simplify( n, d );                              // simplify | 
|---|
|  | 56 | r.numerator = n / t; | 
|---|
|  | 57 | r.denominator = d / t; | 
|---|
|  | 58 | } // rational | 
|---|
|  | 59 |  | 
|---|
|  | 60 |  | 
|---|
|  | 61 | // getter for numerator/denominator | 
|---|
|  | 62 |  | 
|---|
|  | 63 | RationalImpl numerator( Rational(RationalImpl) r ) { | 
|---|
|  | 64 | return r.numerator; | 
|---|
|  | 65 | } // numerator | 
|---|
|  | 66 |  | 
|---|
|  | 67 | RationalImpl denominator( Rational(RationalImpl) r ) { | 
|---|
|  | 68 | return r.denominator; | 
|---|
|  | 69 | } // denominator | 
|---|
|  | 70 |  | 
|---|
|  | 71 | [ RationalImpl, RationalImpl ] ?=?( & [ RationalImpl, RationalImpl ] dest, Rational(RationalImpl) src ) { | 
|---|
|  | 72 | return dest = src.[ numerator, denominator ]; | 
|---|
|  | 73 | } // ?=? | 
|---|
|  | 74 |  | 
|---|
|  | 75 | // setter for numerator/denominator | 
|---|
|  | 76 |  | 
|---|
|  | 77 | RationalImpl numerator( Rational(RationalImpl) r, RationalImpl n ) { | 
|---|
|  | 78 | RationalImpl prev = r.numerator; | 
|---|
|  | 79 | RationalImpl t = gcd( abs( n ), r.denominator ); // simplify | 
|---|
|  | 80 | r.numerator = n / t; | 
|---|
|  | 81 | r.denominator = r.denominator / t; | 
|---|
|  | 82 | return prev; | 
|---|
|  | 83 | } // numerator | 
|---|
|  | 84 |  | 
|---|
|  | 85 | RationalImpl denominator( Rational(RationalImpl) r, RationalImpl d ) { | 
|---|
|  | 86 | RationalImpl prev = r.denominator; | 
|---|
|  | 87 | RationalImpl t = simplify( r.numerator, d );    // simplify | 
|---|
|  | 88 | r.numerator = r.numerator / t; | 
|---|
|  | 89 | r.denominator = d / t; | 
|---|
|  | 90 | return prev; | 
|---|
|  | 91 | } // denominator | 
|---|
|  | 92 |  | 
|---|
|  | 93 | // comparison | 
|---|
|  | 94 |  | 
|---|
|  | 95 | int ?==?( Rational(RationalImpl) l, Rational(RationalImpl) r ) { | 
|---|
|  | 96 | return l.numerator * r.denominator == l.denominator * r.numerator; | 
|---|
|  | 97 | } // ?==? | 
|---|
|  | 98 |  | 
|---|
|  | 99 | int ?!=?( Rational(RationalImpl) l, Rational(RationalImpl) r ) { | 
|---|
|  | 100 | return ! ( l == r ); | 
|---|
|  | 101 | } // ?!=? | 
|---|
|  | 102 |  | 
|---|
|  | 103 | int ?<?( Rational(RationalImpl) l, Rational(RationalImpl) r ) { | 
|---|
|  | 104 | return l.numerator * r.denominator < l.denominator * r.numerator; | 
|---|
|  | 105 | } // ?<? | 
|---|
|  | 106 |  | 
|---|
|  | 107 | int ?<=?( Rational(RationalImpl) l, Rational(RationalImpl) r ) { | 
|---|
|  | 108 | return l.numerator * r.denominator <= l.denominator * r.numerator; | 
|---|
|  | 109 | } // ?<=? | 
|---|
|  | 110 |  | 
|---|
|  | 111 | int ?>?( Rational(RationalImpl) l, Rational(RationalImpl) r ) { | 
|---|
|  | 112 | return ! ( l <= r ); | 
|---|
|  | 113 | } // ?>? | 
|---|
|  | 114 |  | 
|---|
|  | 115 | int ?>=?( Rational(RationalImpl) l, Rational(RationalImpl) r ) { | 
|---|
|  | 116 | return ! ( l < r ); | 
|---|
|  | 117 | } // ?>=? | 
|---|
|  | 118 |  | 
|---|
|  | 119 | // arithmetic | 
|---|
|  | 120 |  | 
|---|
|  | 121 | Rational(RationalImpl) +?( Rational(RationalImpl) r ) { | 
|---|
|  | 122 | Rational(RationalImpl) t = { r.numerator, r.denominator }; | 
|---|
| [53ba273] | 123 | return t; | 
|---|
| [3ce0d440] | 124 | } // +? | 
|---|
| [53ba273] | 125 |  | 
|---|
| [3ce0d440] | 126 | Rational(RationalImpl) -?( Rational(RationalImpl) r ) { | 
|---|
|  | 127 | Rational(RationalImpl) t = { -r.numerator, r.denominator }; | 
|---|
| [53ba273] | 128 | return t; | 
|---|
| [3ce0d440] | 129 | } // -? | 
|---|
|  | 130 |  | 
|---|
|  | 131 | Rational(RationalImpl) ?+?( Rational(RationalImpl) l, Rational(RationalImpl) r ) { | 
|---|
|  | 132 | if ( l.denominator == r.denominator ) {                 // special case | 
|---|
|  | 133 | Rational(RationalImpl) t = { l.numerator + r.numerator, l.denominator }; | 
|---|
|  | 134 | return t; | 
|---|
|  | 135 | } else { | 
|---|
|  | 136 | Rational(RationalImpl) t = { l.numerator * r.denominator + l.denominator * r.numerator, l.denominator * r.denominator }; | 
|---|
|  | 137 | return t; | 
|---|
|  | 138 | } // if | 
|---|
|  | 139 | } // ?+? | 
|---|
|  | 140 |  | 
|---|
|  | 141 | Rational(RationalImpl) ?-?( Rational(RationalImpl) l, Rational(RationalImpl) r ) { | 
|---|
|  | 142 | if ( l.denominator == r.denominator ) {                 // special case | 
|---|
|  | 143 | Rational(RationalImpl) t = { l.numerator - r.numerator, l.denominator }; | 
|---|
|  | 144 | return t; | 
|---|
|  | 145 | } else { | 
|---|
|  | 146 | Rational(RationalImpl) t = { l.numerator * r.denominator - l.denominator * r.numerator, l.denominator * r.denominator }; | 
|---|
|  | 147 | return t; | 
|---|
|  | 148 | } // if | 
|---|
|  | 149 | } // ?-? | 
|---|
|  | 150 |  | 
|---|
|  | 151 | Rational(RationalImpl) ?*?( Rational(RationalImpl) l, Rational(RationalImpl) r ) { | 
|---|
|  | 152 | Rational(RationalImpl) t = { l.numerator * r.numerator, l.denominator * r.denominator }; | 
|---|
| [53ba273] | 153 | return t; | 
|---|
| [3ce0d440] | 154 | } // ?*? | 
|---|
|  | 155 |  | 
|---|
|  | 156 | Rational(RationalImpl) ?/?( Rational(RationalImpl) l, Rational(RationalImpl) r ) { | 
|---|
|  | 157 | if ( r.numerator < (RationalImpl){0} ) { | 
|---|
|  | 158 | r.numerator = -r.numerator; | 
|---|
|  | 159 | r.denominator = -r.denominator; | 
|---|
|  | 160 | } // if | 
|---|
|  | 161 | Rational(RationalImpl) t = { l.numerator * r.denominator, l.denominator * r.numerator }; | 
|---|
|  | 162 | return t; | 
|---|
|  | 163 | } // ?/? | 
|---|
|  | 164 |  | 
|---|
|  | 165 | // I/O | 
|---|
|  | 166 |  | 
|---|
|  | 167 | forall( dtype istype | istream( istype ) | { istype & ?|?( istype &, RationalImpl & ); } ) | 
|---|
|  | 168 | istype & ?|?( istype & is, Rational(RationalImpl) & r ) { | 
|---|
|  | 169 | RationalImpl t; | 
|---|
|  | 170 | is | r.numerator | r.denominator; | 
|---|
|  | 171 | t = simplify( r.numerator, r.denominator ); | 
|---|
|  | 172 | r.numerator /= t; | 
|---|
|  | 173 | r.denominator /= t; | 
|---|
|  | 174 | return is; | 
|---|
|  | 175 | } // ?|? | 
|---|
|  | 176 |  | 
|---|
|  | 177 | forall( dtype ostype | ostream( ostype ) | { ostype & ?|?( ostype &, RationalImpl ); } ) | 
|---|
|  | 178 | ostype & ?|?( ostype & os, Rational(RationalImpl ) r ) { | 
|---|
|  | 179 | return os | r.numerator | '/' | r.denominator; | 
|---|
|  | 180 | } // ?|? | 
|---|
|  | 181 | } // distribution | 
|---|
| [630a82a] | 182 |  | 
|---|
|  | 183 | // conversion | 
|---|
|  | 184 |  | 
|---|
| [53a6c2a] | 185 | forall( otype RationalImpl | arithmetic( RationalImpl ) | { double convert( RationalImpl ); } ) | 
|---|
| [6c6455f] | 186 | double widen( Rational(RationalImpl) r ) { | 
|---|
|  | 187 | return convert( r.numerator ) / convert( r.denominator ); | 
|---|
|  | 188 | } // widen | 
|---|
|  | 189 |  | 
|---|
| [53a6c2a] | 190 | forall( otype RationalImpl | arithmetic( RationalImpl ) | { double convert( RationalImpl ); RationalImpl convert( double ); } ) | 
|---|
| [6c6455f] | 191 | Rational(RationalImpl) narrow( double f, RationalImpl md ) { | 
|---|
| [3ce0d440] | 192 | // http://www.ics.uci.edu/~eppstein/numth/frap.c | 
|---|
| [6c6455f] | 193 | if ( md <= (RationalImpl){1} ) {                                        // maximum fractional digits too small? | 
|---|
|  | 194 | return (Rational(RationalImpl)){ convert( f ), (RationalImpl){1}}; // truncate fraction | 
|---|
|  | 195 | } // if | 
|---|
|  | 196 |  | 
|---|
|  | 197 | // continued fraction coefficients | 
|---|
|  | 198 | RationalImpl m00 = {1}, m11 = { 1 }, m01 = { 0 }, m10 = { 0 }; | 
|---|
|  | 199 | RationalImpl ai, t; | 
|---|
|  | 200 |  | 
|---|
|  | 201 | // find terms until denom gets too big | 
|---|
|  | 202 | for ( ;; ) { | 
|---|
|  | 203 | ai = convert( f ); | 
|---|
|  | 204 | if ( ! (m10 * ai + m11 <= md) ) break; | 
|---|
|  | 205 | t = m00 * ai + m01; | 
|---|
|  | 206 | m01 = m00; | 
|---|
|  | 207 | m00 = t; | 
|---|
|  | 208 | t = m10 * ai + m11; | 
|---|
|  | 209 | m11 = m10; | 
|---|
|  | 210 | m10 = t; | 
|---|
|  | 211 | double temp = convert( ai ); | 
|---|
|  | 212 | if ( f == temp ) break;                                                       // prevent division by zero | 
|---|
|  | 213 | f = 1 / (f - temp); | 
|---|
|  | 214 | if ( f > (double)0x7FFFFFFF ) break;                          // representation failure | 
|---|
|  | 215 | } // for | 
|---|
|  | 216 | return (Rational(RationalImpl)){ m00, m10 }; | 
|---|
|  | 217 | } // narrow | 
|---|
| [53ba273] | 218 |  | 
|---|
|  | 219 | // Local Variables: // | 
|---|
|  | 220 | // tab-width: 4 // | 
|---|
|  | 221 | // End: // | 
|---|