[53ba273] | 1 | // -*- Mode: C -*-
|
---|
| 2 | //
|
---|
| 3 | // Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
|
---|
| 4 | //
|
---|
| 5 | // The contents of this file are covered under the licence agreement in the
|
---|
| 6 | // file "LICENCE" distributed with Cforall.
|
---|
| 7 | //
|
---|
| 8 | // rational.c --
|
---|
| 9 | //
|
---|
| 10 | // Author : Peter A. Buhr
|
---|
| 11 | // Created On : Wed Apr 6 17:54:28 2016
|
---|
| 12 | // Last Modified By : Peter A. Buhr
|
---|
[d1ab5331] | 13 | // Last Modified On : Wed May 4 14:16:14 2016
|
---|
| 14 | // Update Count : 25
|
---|
[53ba273] | 15 | //
|
---|
| 16 |
|
---|
| 17 | #include "rational"
|
---|
[3d9b5da] | 18 | #include "fstream"
|
---|
| 19 | #include "stdlib"
|
---|
[6e991d6] | 20 | #include "math" // floor
|
---|
[53ba273] | 21 |
|
---|
[630a82a] | 22 |
|
---|
| 23 | // constants
|
---|
| 24 |
|
---|
[53ba273] | 25 | struct Rational 0 = {0, 1};
|
---|
| 26 | struct Rational 1 = {1, 1};
|
---|
| 27 |
|
---|
| 28 |
|
---|
[45161b4d] | 29 | // helper routines
|
---|
[630a82a] | 30 |
|
---|
| 31 | // Calculate greatest common denominator of two numbers, the first of which may be negative. Used to reduce rationals.
|
---|
[45161b4d] | 32 | // alternative: https://en.wikipedia.org/wiki/Binary_GCD_algorithm
|
---|
[630a82a] | 33 | static long int gcd( long int a, long int b ) {
|
---|
[53ba273] | 34 | for ( ;; ) { // Euclid's algorithm
|
---|
| 35 | long int r = a % b;
|
---|
| 36 | if ( r == 0 ) break;
|
---|
| 37 | a = b;
|
---|
| 38 | b = r;
|
---|
| 39 | } // for
|
---|
| 40 | return b;
|
---|
| 41 | } // gcd
|
---|
| 42 |
|
---|
[630a82a] | 43 | static long int simplify( long int *n, long int *d ) {
|
---|
[53ba273] | 44 | if ( *d == 0 ) {
|
---|
| 45 | serr | "Invalid rational number construction: denominator cannot be equal to 0." | endl;
|
---|
| 46 | exit( EXIT_FAILURE );
|
---|
| 47 | } // exit
|
---|
| 48 | if ( *d < 0 ) { *d = -*d; *n = -*n; } // move sign to numerator
|
---|
| 49 | return gcd( abs( *n ), *d ); // simplify
|
---|
| 50 | } // Rationalnumber::simplify
|
---|
| 51 |
|
---|
[630a82a] | 52 |
|
---|
| 53 | // constructors
|
---|
| 54 |
|
---|
[d1ab5331] | 55 | void ?{}( Rational * r ) {
|
---|
| 56 | r{ 0, 1 };
|
---|
[53ba273] | 57 | } // rational
|
---|
| 58 |
|
---|
[d1ab5331] | 59 | void ?{}( Rational * r, long int n ) {
|
---|
| 60 | r{ n, 1 };
|
---|
[53ba273] | 61 | } // rational
|
---|
| 62 |
|
---|
[d1ab5331] | 63 | void ?{}( Rational * r, long int n, long int d ) {
|
---|
[53ba273] | 64 | long int t = simplify( &n, &d ); // simplify
|
---|
[d1ab5331] | 65 | r->numerator = n / t;
|
---|
| 66 | r->denominator = d / t;
|
---|
[53ba273] | 67 | } // rational
|
---|
| 68 |
|
---|
[630a82a] | 69 |
|
---|
| 70 | // getter/setter for numerator/denominator
|
---|
| 71 |
|
---|
[53ba273] | 72 | long int numerator( Rational r ) {
|
---|
| 73 | return r.numerator;
|
---|
| 74 | } // numerator
|
---|
| 75 |
|
---|
| 76 | long int numerator( Rational r, long int n ) {
|
---|
| 77 | long int prev = r.numerator;
|
---|
| 78 | long int t = gcd( abs( n ), r.denominator ); // simplify
|
---|
| 79 | r.numerator = n / t;
|
---|
| 80 | r.denominator = r.denominator / t;
|
---|
| 81 | return prev;
|
---|
| 82 | } // numerator
|
---|
| 83 |
|
---|
[630a82a] | 84 | long int denominator( Rational r ) {
|
---|
| 85 | return r.denominator;
|
---|
| 86 | } // denominator
|
---|
| 87 |
|
---|
[53ba273] | 88 | long int denominator( Rational r, long int d ) {
|
---|
| 89 | long int prev = r.denominator;
|
---|
| 90 | long int t = simplify( &r.numerator, &d ); // simplify
|
---|
| 91 | r.numerator = r.numerator / t;
|
---|
| 92 | r.denominator = d / t;
|
---|
| 93 | return prev;
|
---|
| 94 | } // denominator
|
---|
| 95 |
|
---|
[630a82a] | 96 |
|
---|
| 97 | // comparison
|
---|
| 98 |
|
---|
[53ba273] | 99 | int ?==?( Rational l, Rational r ) {
|
---|
| 100 | return l.numerator * r.denominator == l.denominator * r.numerator;
|
---|
| 101 | } // ?==?
|
---|
| 102 |
|
---|
| 103 | int ?!=?( Rational l, Rational r ) {
|
---|
| 104 | return ! ( l == r );
|
---|
| 105 | } // ?!=?
|
---|
| 106 |
|
---|
| 107 | int ?<?( Rational l, Rational r ) {
|
---|
| 108 | return l.numerator * r.denominator < l.denominator * r.numerator;
|
---|
| 109 | } // ?<?
|
---|
| 110 |
|
---|
| 111 | int ?<=?( Rational l, Rational r ) {
|
---|
| 112 | return l < r || l == r;
|
---|
| 113 | } // ?<=?
|
---|
| 114 |
|
---|
| 115 | int ?>?( Rational l, Rational r ) {
|
---|
| 116 | return ! ( l <= r );
|
---|
| 117 | } // ?>?
|
---|
| 118 |
|
---|
| 119 | int ?>=?( Rational l, Rational r ) {
|
---|
| 120 | return ! ( l < r );
|
---|
| 121 | } // ?>=?
|
---|
| 122 |
|
---|
[630a82a] | 123 |
|
---|
| 124 | // arithmetic
|
---|
| 125 |
|
---|
[53ba273] | 126 | Rational -?( Rational r ) {
|
---|
| 127 | Rational t = { -r.numerator, r.denominator };
|
---|
| 128 | return t;
|
---|
| 129 | } // -?
|
---|
| 130 |
|
---|
| 131 | Rational ?+?( Rational l, Rational r ) {
|
---|
| 132 | if ( l.denominator == r.denominator ) { // special case
|
---|
| 133 | Rational t = { l.numerator + r.numerator, l.denominator };
|
---|
| 134 | return t;
|
---|
| 135 | } else {
|
---|
| 136 | Rational t = { l.numerator * r.denominator + l.denominator * r.numerator, l.denominator * r.denominator };
|
---|
| 137 | return t;
|
---|
| 138 | } // if
|
---|
| 139 | } // ?+?
|
---|
| 140 |
|
---|
| 141 | Rational ?-?( Rational l, Rational r ) {
|
---|
| 142 | if ( l.denominator == r.denominator ) { // special case
|
---|
| 143 | Rational t = { l.numerator - r.numerator, l.denominator };
|
---|
| 144 | return t;
|
---|
| 145 | } else {
|
---|
| 146 | Rational t = { l.numerator * r.denominator - l.denominator * r.numerator, l.denominator * r.denominator };
|
---|
| 147 | return t;
|
---|
| 148 | } // if
|
---|
| 149 | } // ?-?
|
---|
| 150 |
|
---|
| 151 | Rational ?*?( Rational l, Rational r ) {
|
---|
| 152 | Rational t = { l.numerator * r.numerator, l.denominator * r.denominator };
|
---|
| 153 | return t;
|
---|
| 154 | } // ?*?
|
---|
| 155 |
|
---|
| 156 | Rational ?/?( Rational l, Rational r ) {
|
---|
| 157 | if ( r.numerator < 0 ) {
|
---|
| 158 | r.numerator = -r.numerator;
|
---|
| 159 | r.denominator = -r.denominator;
|
---|
| 160 | } // if
|
---|
| 161 | Rational t = { l.numerator * r.denominator, l.denominator * r.numerator };
|
---|
| 162 | return t;
|
---|
| 163 | } // ?/?
|
---|
| 164 |
|
---|
[630a82a] | 165 |
|
---|
| 166 | // conversion
|
---|
| 167 |
|
---|
[53ba273] | 168 | double widen( Rational r ) {
|
---|
| 169 | return (double)r.numerator / (double)r.denominator;
|
---|
| 170 | } // widen
|
---|
| 171 |
|
---|
| 172 | // https://rosettacode.org/wiki/Convert_decimal_number_to_rational#C
|
---|
| 173 | Rational narrow( double f, long int md ) {
|
---|
| 174 | if ( md <= 1 ) { // maximum fractional digits too small?
|
---|
[d1ab5331] | 175 | return (Rational){ f, 1}; // truncate fraction
|
---|
[53ba273] | 176 | } // if
|
---|
| 177 |
|
---|
| 178 | // continued fraction coefficients
|
---|
| 179 | long int a, h[3] = { 0, 1, 0 }, k[3] = { 1, 0, 0 };
|
---|
| 180 | long int x, d, n = 1;
|
---|
| 181 | int i, neg = 0;
|
---|
| 182 |
|
---|
| 183 | if ( f < 0 ) { neg = 1; f = -f; }
|
---|
| 184 | while ( f != floor( f ) ) { n <<= 1; f *= 2; }
|
---|
| 185 | d = f;
|
---|
| 186 |
|
---|
| 187 | // continued fraction and check denominator each step
|
---|
| 188 | for (i = 0; i < 64; i++) {
|
---|
| 189 | a = n ? d / n : 0;
|
---|
| 190 | if (i && !a) break;
|
---|
| 191 | x = d; d = n; n = x % n;
|
---|
| 192 | x = a;
|
---|
| 193 | if (k[1] * a + k[0] >= md) {
|
---|
| 194 | x = (md - k[0]) / k[1];
|
---|
| 195 | if ( ! (x * 2 >= a || k[1] >= md) ) break;
|
---|
| 196 | i = 65;
|
---|
| 197 | } // if
|
---|
| 198 | h[2] = x * h[1] + h[0]; h[0] = h[1]; h[1] = h[2];
|
---|
| 199 | k[2] = x * k[1] + k[0]; k[0] = k[1]; k[1] = k[2];
|
---|
| 200 | } // for
|
---|
[d1ab5331] | 201 | return (Rational){ neg ? -h[1] : h[1], k[1] };
|
---|
[53ba273] | 202 | } // narrow
|
---|
| 203 |
|
---|
[630a82a] | 204 |
|
---|
| 205 | // I/O
|
---|
| 206 |
|
---|
[3d9b5da] | 207 | forall( dtype istype | istream( istype ) )
|
---|
| 208 | istype * ?|?( istype *is, Rational *r ) {
|
---|
[53ba273] | 209 | long int t;
|
---|
| 210 | is | &(r->numerator) | &(r->denominator);
|
---|
| 211 | t = simplify( &(r->numerator), &(r->denominator) );
|
---|
| 212 | r->numerator /= t;
|
---|
| 213 | r->denominator /= t;
|
---|
| 214 | return is;
|
---|
| 215 | } // ?|?
|
---|
| 216 |
|
---|
[3d9b5da] | 217 | forall( dtype ostype | ostream( ostype ) )
|
---|
| 218 | ostype * ?|?( ostype *os, Rational r ) {
|
---|
[53ba273] | 219 | return os | r.numerator | '/' | r.denominator;
|
---|
| 220 | } // ?|?
|
---|
| 221 |
|
---|
| 222 | // Local Variables: //
|
---|
| 223 | // tab-width: 4 //
|
---|
| 224 | // End: //
|
---|