[53ba273] | 1 | // |
---|
| 2 | // Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo |
---|
| 3 | // |
---|
| 4 | // The contents of this file are covered under the licence agreement in the |
---|
| 5 | // file "LICENCE" distributed with Cforall. |
---|
| 6 | // |
---|
| 7 | // limits.c -- |
---|
| 8 | // |
---|
| 9 | // Author : Peter A. Buhr |
---|
| 10 | // Created On : Wed Apr 6 18:06:52 2016 |
---|
| 11 | // Last Modified By : Peter A. Buhr |
---|
[5b639ee] | 12 | // Last Modified On : Mon Sep 12 10:34:48 2016 |
---|
| 13 | // Update Count : 17 |
---|
[53ba273] | 14 | // |
---|
| 15 | |
---|
[3d9b5da] | 16 | #include "limits" |
---|
[53ba273] | 17 | |
---|
| 18 | // Integral Constants |
---|
| 19 | |
---|
| 20 | const short int MIN = -32768; |
---|
| 21 | const int MIN = -2147483648; |
---|
[6e4b913] | 22 | #if __WORDSIZE == 64 |
---|
[53ba273] | 23 | const long int MIN = -9223372036854775807L - 1L; |
---|
[6e4b913] | 24 | #else |
---|
| 25 | const long int MIN = (int)MIN; |
---|
| 26 | #endif // M64 |
---|
[53ba273] | 27 | const long long int MIN = -9223372036854775807LL - 1LL; |
---|
| 28 | |
---|
| 29 | const short int MAX = 32767; |
---|
| 30 | const unsigned short int MAX = 65535; |
---|
| 31 | const int MAX = 2147483647; |
---|
| 32 | const unsigned int MAX = 4294967295_U; |
---|
[6e4b913] | 33 | #if __WORDSIZE == 64 |
---|
[53ba273] | 34 | const long int MAX = 9223372036854775807_L; |
---|
[6e4b913] | 35 | #else |
---|
| 36 | const long int MAX = (int)MAX; |
---|
| 37 | #endif // M64 |
---|
[53ba273] | 38 | const unsigned long int MAX = 4294967295_U; |
---|
| 39 | const long long int MAX = 9223372036854775807_LL; |
---|
| 40 | const unsigned long long int MAX = 18446744073709551615_ULL; |
---|
| 41 | |
---|
| 42 | // Floating-Point Constants |
---|
| 43 | |
---|
| 44 | const float PI = 3.141592_F; // pi |
---|
| 45 | const float PI_2 = 1.570796_F; // pi / 2 |
---|
| 46 | const float PI_4 = 0.7853981_F; // pi / 4 |
---|
| 47 | const float _1_PI = 0.3183098_F; // 1 / pi |
---|
| 48 | const float _2_PI = 0.6366197_F; // 2 / pi |
---|
| 49 | const float _2_SQRT_PI = 1.128379_F; // 2 / sqrt(pi) |
---|
| 50 | |
---|
| 51 | const double PI = 3.14159265358979323846_D; // pi |
---|
| 52 | const double PI_2 = 1.57079632679489661923_D; // pi / 2 |
---|
| 53 | const double PI_4 = 0.78539816339744830962_D; // pi / 4 |
---|
| 54 | const double _1_PI = 0.31830988618379067154_D; // 1 / pi |
---|
| 55 | const double _2_PI = 0.63661977236758134308_D; // 2 / pi |
---|
| 56 | const double _2_SQRT_PI = 1.12837916709551257390_D; // 2 / sqrt(pi) |
---|
| 57 | |
---|
| 58 | const long double PI = 3.1415926535897932384626433832795029_DL; // pi |
---|
| 59 | const long double PI_2 = 1.5707963267948966192313216916397514_DL; // pi / 2 |
---|
| 60 | const long double PI_4 = 0.7853981633974483096156608458198757_DL; // pi / 4 |
---|
| 61 | const long double _1_PI = 0.3183098861837906715377675267450287_DL; // 1 / pi |
---|
| 62 | const long double _2_PI = 0.6366197723675813430755350534900574_DL; // 2 / pi |
---|
| 63 | const long double _2_SQRT_PI = 1.1283791670955125738961589031215452_DL; // 2 / sqrt(pi) |
---|
| 64 | |
---|
[5b639ee] | 65 | const double _Complex PI = 3.14159265358979323846_D+0.0_iD; // pi |
---|
| 66 | const double _Complex PI_2 = 1.57079632679489661923_D+0.0_iD; // pi / 2 |
---|
| 67 | const double _Complex PI_4 = 0.78539816339744830962_D+0.0_iD; // pi / 4 |
---|
| 68 | const double _Complex _1_PI = 0.31830988618379067154_D+0.0_iD; // 1 / pi |
---|
| 69 | const double _Complex _2_PI = 0.63661977236758134308_D+0.0_iD; // 2 / pi |
---|
| 70 | const double _Complex _2_SQRT_PI = 1.12837916709551257390_D+0.0_iD; // 2 / sqrt(pi) |
---|
[53ba273] | 71 | |
---|
[5b639ee] | 72 | const long double _Complex PI = 3.1415926535897932384626433832795029_L+0.0iL; // pi |
---|
| 73 | const long double _Complex PI_2 = 1.5707963267948966192313216916397514_L+0.0iL; // pi / 2 |
---|
| 74 | const long double _Complex PI_4 = 0.7853981633974483096156608458198757_L+0.0iL; // pi / 4 |
---|
| 75 | const long double _Complex _1_PI = 0.3183098861837906715377675267450287_L+0.0iL; // 1 / pi |
---|
| 76 | const long double _Complex _2_PI = 0.6366197723675813430755350534900574_L+0.0iL; // 2 / pi |
---|
| 77 | const long double _Complex _2_SQRT_PI = 1.1283791670955125738961589031215452_L+0.0iL; // 2 / sqrt(pi) |
---|
[53ba273] | 78 | |
---|
| 79 | const float E = 2.718281; // e |
---|
| 80 | const float LOG2_E = 1.442695; // log_2(e) |
---|
| 81 | const float LOG10_E = 0.4342944; // log_10(e) |
---|
| 82 | const float LN_2 = 0.6931471; // log_e(2) |
---|
| 83 | const float LN_10 = 2.302585; // log_e(10) |
---|
| 84 | const float SQRT_2 = 1.414213; // sqrt(2) |
---|
| 85 | const float _1_SQRT_2 = 0.7071067; // 1 / sqrt(2) |
---|
| 86 | |
---|
| 87 | const double E = 2.7182818284590452354_D; // e |
---|
| 88 | const double LOG2_E = 1.4426950408889634074_D; // log_2(e) |
---|
| 89 | const double LOG10_E = 0.43429448190325182765_D; // log_10(e) |
---|
| 90 | const double LN_2 = 0.69314718055994530942_D; // log_e(2) |
---|
| 91 | const double LN_10 = 2.30258509299404568402_D; // log_e(10) |
---|
| 92 | const double SQRT_2 = 1.41421356237309504880_D; // sqrt(2) |
---|
| 93 | const double _1_SQRT_2 = 0.70710678118654752440_D; // 1 / sqrt(2) |
---|
| 94 | |
---|
| 95 | const long double E = 2.7182818284590452353602874713526625_DL; // e |
---|
| 96 | const long double LOG2_E = 1.4426950408889634073599246810018921_DL; // log_2(e) |
---|
| 97 | const long double LOG10_E = 0.4342944819032518276511289189166051_DL; // log_10(e) |
---|
| 98 | const long double LN_2 = 0.6931471805599453094172321214581766_DL; // log_e(2) |
---|
| 99 | const long double LN_10 = 2.3025850929940456840179914546843642_DL; // log_e(10) |
---|
| 100 | const long double SQRT_2 = 1.4142135623730950488016887242096981_DL; // sqrt(2) |
---|
| 101 | const long double _1_SQRT_2 = 0.7071067811865475244008443621048490_DL; // 1/sqrt(2) |
---|
| 102 | |
---|
[5b639ee] | 103 | const double _Complex E = 2.7182818284590452354_D+0.0_iD; // e |
---|
| 104 | const double _Complex LOG2_E = 1.4426950408889634074_D+0.0_iD; // log_2(e) |
---|
| 105 | const double _Complex LOG10_E = 0.43429448190325182765_D+0.0_iD; // log_10(e) |
---|
| 106 | const double _Complex LN_2 = 0.69314718055994530942_D+0.0_iD; // log_e(2) |
---|
| 107 | const double _Complex LN_10 = 2.30258509299404568402_D+0.0_iD; // log_e(10) |
---|
| 108 | const double _Complex SQRT_2 = 1.41421356237309504880_D+0.0_iD; // sqrt(2) |
---|
| 109 | const double _Complex _1_SQRT_2 = 0.70710678118654752440_D+0.0_iD; // 1 / sqrt(2) |
---|
| 110 | |
---|
| 111 | const long double _Complex E = 2.7182818284590452353602874713526625_L+0.0_iL; // e |
---|
| 112 | const long double _Complex LOG2_E = 1.4426950408889634073599246810018921_L+0.0_iL; // log_2(e) |
---|
| 113 | const long double _Complex LOG10_E = 0.4342944819032518276511289189166051_L+0.0_iL; // log_10(e) |
---|
| 114 | const long double _Complex LN_2 = 0.6931471805599453094172321214581766_L+0.0_iL; // log_e(2) |
---|
| 115 | const long double _Complex LN_10 = 2.3025850929940456840179914546843642_L+0.0_iL; // log_e(10) |
---|
| 116 | const long double _Complex SQRT_2 = 1.4142135623730950488016887242096981_L+0.0_iL; // sqrt(2) |
---|
| 117 | const long double _Complex _1_SQRT_2 = 0.7071067811865475244008443621048490_L+0.0_iL; // 1 / sqrt(2) |
---|
[53ba273] | 118 | |
---|
| 119 | // Local Variables: // |
---|
| 120 | // mode: c // |
---|
| 121 | // tab-width: 4 // |
---|
| 122 | // End: // |
---|