source: src/libcfa/concurrency/monitor.c@ c1a9c86

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors deferred_resn demangler enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum resolv-new with_gc
Last change on this file since c1a9c86 was c1a9c86, checked in by Thierry Delisle <tdelisle@…>, 8 years ago

Used fast_int in more data structure and started using tuple assign

  • Property mode set to 100644
File size: 28.7 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// monitor_desc.c --
8//
9// Author : Thierry Delisle
10// Created On : Thd Feb 23 12:27:26 2017
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Mon Jul 31 14:59:05 2017
13// Update Count : 3
14//
15
16#include "monitor"
17
18#include <stdlib>
19
20#include "libhdr.h"
21#include "kernel_private.h"
22
23#include "bits/algorithms.h"
24
25//-----------------------------------------------------------------------------
26// Forward declarations
27static inline void set_owner ( monitor_desc * this, thread_desc * owner );
28static inline void set_owner ( monitor_desc * storage [], __lock_size_t count, thread_desc * owner );
29static inline void set_mask ( monitor_desc * storage [], __lock_size_t count, const __waitfor_mask_t & mask );
30static inline void reset_mask( monitor_desc * this );
31
32static inline thread_desc * next_thread( monitor_desc * this );
33static inline bool is_accepted( monitor_desc * this, const __monitor_group_t & monitors );
34
35static inline void lock_all ( spinlock * locks [], __lock_size_t count );
36static inline void lock_all ( monitor_desc * source [], spinlock * /*out*/ locks [], __lock_size_t count );
37static inline void unlock_all( spinlock * locks [], __lock_size_t count );
38static inline void unlock_all( monitor_desc * locks [], __lock_size_t count );
39
40static inline void save ( monitor_desc * ctx [], __lock_size_t count, spinlock * locks [], unsigned int /*out*/ recursions [], __waitfor_mask_t /*out*/ masks [] );
41static inline void restore( monitor_desc * ctx [], __lock_size_t count, spinlock * locks [], unsigned int /*in */ recursions [], __waitfor_mask_t /*in */ masks [] );
42
43static inline void init ( __lock_size_t count, monitor_desc * monitors [], __condition_node_t & waiter, __condition_criterion_t criteria [] );
44static inline void init_push( __lock_size_t count, monitor_desc * monitors [], __condition_node_t & waiter, __condition_criterion_t criteria [] );
45
46static inline thread_desc * check_condition ( __condition_criterion_t * );
47static inline void brand_condition ( condition & );
48static inline [thread_desc *, int] search_entry_queue( const __waitfor_mask_t &, monitor_desc * monitors [], int count );
49
50forall(dtype T | sized( T ))
51static inline short insert_unique( T * array [], short & size, T * val );
52static inline short count_max ( const __waitfor_mask_t & mask );
53static inline short aggregate ( monitor_desc * storage [], const __waitfor_mask_t & mask );
54
55//-----------------------------------------------------------------------------
56// Useful defines
57#define wait_ctx(thrd, user_info) /* Create the necessary information to use the signaller stack */ \
58 __condition_node_t waiter = { thrd, count, user_info }; /* Create the node specific to this wait operation */ \
59 __condition_criterion_t criteria[count]; /* Create the creteria this wait operation needs to wake up */ \
60 init( count, monitors, waiter, criteria ); /* Link everything together */ \
61
62#define wait_ctx_primed(thrd, user_info) /* Create the necessary information to use the signaller stack */ \
63 __condition_node_t waiter = { thrd, count, user_info }; /* Create the node specific to this wait operation */ \
64 __condition_criterion_t criteria[count]; /* Create the creteria this wait operation needs to wake up */ \
65 init_push( count, monitors, waiter, criteria ); /* Link everything together and push it to the AS-Stack */ \
66
67#define monitor_ctx( mons, cnt ) /* Define that create the necessary struct for internal/external scheduling operations */ \
68 monitor_desc ** monitors = mons; /* Save the targeted monitors */ \
69 unsigned short count = cnt; /* Save the count to a local variable */ \
70 unsigned int recursions[ count ]; /* Save the current recursion levels to restore them later */ \
71 __waitfor_mask_t masks [ count ]; /* Save the current waitfor masks to restore them later */ \
72 spinlock * locks [ count ]; /* We need to pass-in an array of locks to BlockInternal */ \
73
74#define monitor_save save ( monitors, count, locks, recursions, masks )
75#define monitor_restore restore( monitors, count, locks, recursions, masks )
76
77
78//-----------------------------------------------------------------------------
79// Enter/Leave routines
80
81
82extern "C" {
83 // Enter single monitor
84 static void __enter_monitor_desc( monitor_desc * this, const __monitor_group_t & group ) {
85 // Lock the monitor spinlock, lock_yield to reduce contention
86 lock_yield( &this->lock DEBUG_CTX2 );
87 thread_desc * thrd = this_thread;
88
89 LIB_DEBUG_PRINT_SAFE("Kernel : %10p Entering mon %p (%p)\n", thrd, this, this->owner);
90
91 if( !this->owner ) {
92 // No one has the monitor, just take it
93 set_owner( this, thrd );
94
95 LIB_DEBUG_PRINT_SAFE("Kernel : mon is free \n");
96 }
97 else if( this->owner == thrd) {
98 // We already have the monitor, just note how many times we took it
99 this->recursion += 1;
100
101 LIB_DEBUG_PRINT_SAFE("Kernel : mon already owned \n");
102 }
103 else if( is_accepted( this, group) ) {
104 // Some one was waiting for us, enter
105 set_owner( this, thrd );
106
107 // Reset mask
108 reset_mask( this );
109
110 LIB_DEBUG_PRINT_SAFE("Kernel : mon accepts \n");
111 }
112 else {
113 LIB_DEBUG_PRINT_SAFE("Kernel : blocking \n");
114
115 // Some one else has the monitor, wait in line for it
116 append( this->entry_queue, thrd );
117 BlockInternal( &this->lock );
118
119 LIB_DEBUG_PRINT_SAFE("Kernel : %10p Entered mon %p\n", thrd, this);
120
121 // BlockInternal will unlock spinlock, no need to unlock ourselves
122 return;
123 }
124
125 LIB_DEBUG_PRINT_SAFE("Kernel : %10p Entered mon %p\n", thrd, this);
126
127 // Release the lock and leave
128 unlock( &this->lock );
129 return;
130 }
131
132 static void __enter_monitor_dtor( monitor_desc * this, fptr_t func ) {
133 // Lock the monitor spinlock, lock_yield to reduce contention
134 lock_yield( &this->lock DEBUG_CTX2 );
135 thread_desc * thrd = this_thread;
136
137 LIB_DEBUG_PRINT_SAFE("Kernel : %10p Entering dtor for mon %p (%p)\n", thrd, this, this->owner);
138
139
140 if( !this->owner ) {
141 LIB_DEBUG_PRINT_SAFE("Kernel : Destroying free mon %p\n", this);
142
143 // No one has the monitor, just take it
144 set_owner( this, thrd );
145
146 unlock( &this->lock );
147 return;
148 }
149 else if( this->owner == thrd) {
150 // We already have the monitor... but where about to destroy it so the nesting will fail
151 // Abort!
152 abortf("Attempt to destroy monitor %p by thread \"%.256s\" (%p) in nested mutex.");
153 }
154
155 int count = 1;
156 monitor_desc ** monitors = &this;
157 __monitor_group_t group = { &this, 1, func };
158 if( is_accepted( this, group) ) {
159 LIB_DEBUG_PRINT_SAFE("Kernel : mon accepts dtor, block and signal it \n");
160
161 // Wake the thread that is waiting for this
162 __condition_criterion_t * urgent = pop( this->signal_stack );
163 verify( urgent );
164
165 // Reset mask
166 reset_mask( this );
167
168 // Create the node specific to this wait operation
169 wait_ctx_primed( this_thread, 0 )
170
171 // Some one else has the monitor, wait for him to finish and then run
172 BlockInternal( &this->lock, urgent->owner->waiting_thread );
173
174 // Some one was waiting for us, enter
175 set_owner( this, thrd );
176 }
177 else {
178 LIB_DEBUG_PRINT_SAFE("Kernel : blocking \n");
179
180 wait_ctx( this_thread, 0 )
181 this->dtor_node = &waiter;
182
183 // Some one else has the monitor, wait in line for it
184 append( this->entry_queue, thrd );
185 BlockInternal( &this->lock );
186
187 // BlockInternal will unlock spinlock, no need to unlock ourselves
188 return;
189 }
190
191 LIB_DEBUG_PRINT_SAFE("Kernel : Destroying %p\n", this);
192
193 }
194
195 // Leave single monitor
196 void __leave_monitor_desc( monitor_desc * this ) {
197 // Lock the monitor spinlock, lock_yield to reduce contention
198 lock_yield( &this->lock DEBUG_CTX2 );
199
200 LIB_DEBUG_PRINT_SAFE("Kernel : %10p Leaving mon %p (%p)\n", this_thread, this, this->owner);
201
202 verifyf( this_thread == this->owner, "Expected owner to be %p, got %p (r: %i, m: %p)", this_thread, this->owner, this->recursion, this );
203
204 // Leaving a recursion level, decrement the counter
205 this->recursion -= 1;
206
207 // If we haven't left the last level of recursion
208 // it means we don't need to do anything
209 if( this->recursion != 0) {
210 LIB_DEBUG_PRINT_SAFE("Kernel : recursion still %d\n", this->recursion);
211 unlock( &this->lock );
212 return;
213 }
214
215 // Get the next thread, will be null on low contention monitor
216 thread_desc * new_owner = next_thread( this );
217
218 // We can now let other threads in safely
219 unlock( &this->lock );
220
221 //We need to wake-up the thread
222 WakeThread( new_owner );
223 }
224
225 // Leave single monitor for the last time
226 void __leave_dtor_monitor_desc( monitor_desc * this ) {
227 LIB_DEBUG_DO(
228 if( this_thread != this->owner ) {
229 abortf("Destroyed monitor %p has inconsistent owner, expected %p got %p.\n", this, this_thread, this->owner);
230 }
231 if( this->recursion != 1 ) {
232 abortf("Destroyed monitor %p has %d outstanding nested calls.\n", this, this->recursion - 1);
233 }
234 )
235 }
236
237 // Leave the thread monitor
238 // last routine called by a thread.
239 // Should never return
240 void __leave_thread_monitor( thread_desc * thrd ) {
241 monitor_desc * this = &thrd->self_mon;
242
243 // Lock the monitor now
244 lock_yield( &this->lock DEBUG_CTX2 );
245
246 disable_interrupts();
247
248 thrd->self_cor.state = Halted;
249
250 verifyf( thrd == this->owner, "Expected owner to be %p, got %p (r: %i, m: %p)", thrd, this->owner, this->recursion, this );
251
252 // Leaving a recursion level, decrement the counter
253 this->recursion -= 1;
254
255 // If we haven't left the last level of recursion
256 // it must mean there is an error
257 if( this->recursion != 0) { abortf("Thread internal monitor has unbalanced recursion"); }
258
259 // Fetch the next thread, can be null
260 thread_desc * new_owner = next_thread( this );
261
262 // Leave the thread, this will unlock the spinlock
263 // Use leave thread instead of BlockInternal which is
264 // specialized for this case and supports null new_owner
265 LeaveThread( &this->lock, new_owner );
266
267 // Control flow should never reach here!
268 }
269}
270
271// Enter multiple monitor
272// relies on the monitor array being sorted
273static inline void enter( __monitor_group_t monitors ) {
274 for(int i = 0; i < monitors.size; i++) {
275 __enter_monitor_desc( monitors.list[i], monitors );
276 }
277}
278
279// Leave multiple monitor
280// relies on the monitor array being sorted
281static inline void leave(monitor_desc * monitors [], int count) {
282 for(int i = count - 1; i >= 0; i--) {
283 __leave_monitor_desc( monitors[i] );
284 }
285}
286
287// Ctor for monitor guard
288// Sorts monitors before entering
289void ?{}( monitor_guard_t & this, monitor_desc * m [], int count, fptr_t func ) {
290 // Store current array
291 this.m = m;
292 this.count = count;
293
294 // Sort monitors based on address -> TODO use a sort specialized for small numbers
295 __libcfa_small_sort(this.m, count);
296
297 // Save previous thread context
298 this.[prev_mntrs, prev_count, prev_func] = this_thread->monitors.[list, size, func];
299
300 // Update thread context (needed for conditions)
301 this_thread->monitors.[list, size, func] = [m, count, func];
302
303 // LIB_DEBUG_PRINT_SAFE("MGUARD : enter %d\n", count);
304
305 // Enter the monitors in order
306 __monitor_group_t group = {this.m, this.count, func};
307 enter( group );
308
309 // LIB_DEBUG_PRINT_SAFE("MGUARD : entered\n");
310}
311
312
313// Dtor for monitor guard
314void ^?{}( monitor_guard_t & this ) {
315 // LIB_DEBUG_PRINT_SAFE("MGUARD : leaving %d\n", this.count);
316
317 // Leave the monitors in order
318 leave( this.m, this.count );
319
320 // LIB_DEBUG_PRINT_SAFE("MGUARD : left\n");
321
322 // Restore thread context
323 this_thread->monitors.[list, size, func] = this.[prev_mntrs, prev_count, prev_func];
324}
325
326// Ctor for monitor guard
327// Sorts monitors before entering
328void ?{}( monitor_dtor_guard_t & this, monitor_desc * m [], fptr_t func ) {
329 // Store current array
330 this.m = *m;
331
332 // Save previous thread context
333 this.[prev_mntrs, prev_count, prev_func] = this_thread->monitors.[list, size, func];
334
335 // Update thread context (needed for conditions)
336 this_thread->monitors.[list, size, func] = [m, 1, func];
337
338 __enter_monitor_dtor( this.m, func );
339}
340
341// Dtor for monitor guard
342void ^?{}( monitor_dtor_guard_t & this ) {
343 // Leave the monitors in order
344 __leave_dtor_monitor_desc( this.m );
345
346 // Restore thread context
347 this_thread->monitors.[list, size, func] = this.[prev_mntrs, prev_count, prev_func];
348}
349
350//-----------------------------------------------------------------------------
351// Internal scheduling types
352void ?{}(__condition_node_t & this, thread_desc * waiting_thread, unsigned short count, uintptr_t user_info ) {
353 this.waiting_thread = waiting_thread;
354 this.count = count;
355 this.next = NULL;
356 this.user_info = user_info;
357}
358
359void ?{}(__condition_criterion_t & this ) {
360 this.ready = false;
361 this.target = NULL;
362 this.owner = NULL;
363 this.next = NULL;
364}
365
366void ?{}(__condition_criterion_t & this, monitor_desc * target, __condition_node_t & owner ) {
367 this.ready = false;
368 this.target = target;
369 this.owner = &owner;
370 this.next = NULL;
371}
372
373//-----------------------------------------------------------------------------
374// Internal scheduling
375void wait( condition & this, uintptr_t user_info = 0 ) {
376 brand_condition( this );
377
378 // Check that everything is as expected
379 assertf( this.monitors != NULL, "Waiting with no monitors (%p)", this.monitors );
380 verifyf( this.monitor_count != 0, "Waiting with 0 monitors (%i)", this.monitor_count );
381 verifyf( this.monitor_count < 32u, "Excessive monitor count (%i)", this.monitor_count );
382
383 // Create storage for monitor context
384 monitor_ctx( this.monitors, this.monitor_count );
385
386 // Create the node specific to this wait operation
387 wait_ctx( this_thread, user_info );
388
389 // Append the current wait operation to the ones already queued on the condition
390 // We don't need locks for that since conditions must always be waited on inside monitor mutual exclusion
391 append( this.blocked, &waiter );
392
393 // Lock all monitors (aggregates the locks as well)
394 lock_all( monitors, locks, count );
395
396 // Find the next thread(s) to run
397 short thread_count = 0;
398 thread_desc * threads[ count ];
399 __builtin_memset( threads, 0, sizeof( threads ) );
400
401 // Save monitor states
402 monitor_save;
403
404 // Remove any duplicate threads
405 for( int i = 0; i < count; i++) {
406 thread_desc * new_owner = next_thread( monitors[i] );
407 insert_unique( threads, thread_count, new_owner );
408 }
409
410 // Everything is ready to go to sleep
411 BlockInternal( locks, count, threads, thread_count );
412
413 // We are back, restore the owners and recursions
414 monitor_restore;
415}
416
417bool signal( condition & this ) {
418 if( is_empty( this ) ) { return false; }
419
420 //Check that everything is as expected
421 verify( this.monitors );
422 verify( this.monitor_count != 0 );
423
424 //Some more checking in debug
425 LIB_DEBUG_DO(
426 thread_desc * this_thrd = this_thread;
427 if ( this.monitor_count != this_thrd->monitors.size ) {
428 abortf( "Signal on condition %p made with different number of monitor(s), expected %i got %i", &this, this.monitor_count, this_thrd->monitors.size );
429 }
430
431 for(int i = 0; i < this.monitor_count; i++) {
432 if ( this.monitors[i] != this_thrd->monitors.list[i] ) {
433 abortf( "Signal on condition %p made with different monitor, expected %p got %i", &this, this.monitors[i], this_thrd->monitors.list[i] );
434 }
435 }
436 );
437
438 unsigned short count = this.monitor_count;
439
440 // Lock all monitors
441 lock_all( this.monitors, NULL, count );
442
443 //Pop the head of the waiting queue
444 __condition_node_t * node = pop_head( this.blocked );
445
446 //Add the thread to the proper AS stack
447 for(int i = 0; i < count; i++) {
448 __condition_criterion_t * crit = &node->criteria[i];
449 assert( !crit->ready );
450 push( crit->target->signal_stack, crit );
451 }
452
453 //Release
454 unlock_all( this.monitors, count );
455
456 return true;
457}
458
459bool signal_block( condition & this ) {
460 if( !this.blocked.head ) { return false; }
461
462 //Check that everything is as expected
463 verifyf( this.monitors != NULL, "Waiting with no monitors (%p)", this.monitors );
464 verifyf( this.monitor_count != 0, "Waiting with 0 monitors (%i)", this.monitor_count );
465
466 // Create storage for monitor context
467 monitor_ctx( this.monitors, this.monitor_count );
468
469 // Lock all monitors (aggregates the locks them as well)
470 lock_all( monitors, locks, count );
471
472 // Create the node specific to this wait operation
473 wait_ctx_primed( this_thread, 0 )
474
475 //save contexts
476 monitor_save;
477
478 //Find the thread to run
479 thread_desc * signallee = pop_head( this.blocked )->waiting_thread;
480 set_owner( monitors, count, signallee );
481
482 LIB_DEBUG_PRINT_BUFFER_DECL( "Kernel : signal_block condition %p (s: %p)\n", &this, signallee );
483
484 //Everything is ready to go to sleep
485 BlockInternal( locks, count, &signallee, 1 );
486
487
488 // WE WOKE UP
489
490
491 LIB_DEBUG_PRINT_BUFFER_LOCAL( "Kernel : signal_block returned\n" );
492
493 //We are back, restore the masks and recursions
494 monitor_restore;
495
496 return true;
497}
498
499// Access the user_info of the thread waiting at the front of the queue
500uintptr_t front( condition & this ) {
501 verifyf( !is_empty(this),
502 "Attempt to access user data on an empty condition.\n"
503 "Possible cause is not checking if the condition is empty before reading stored data."
504 );
505 return this.blocked.head->user_info;
506}
507
508//-----------------------------------------------------------------------------
509// External scheduling
510// cases to handle :
511// - target already there :
512// block and wake
513// - dtor already there
514// put thread on signaller stack
515// - non-blocking
516// return else
517// - timeout
518// return timeout
519// - block
520// setup mask
521// block
522void __waitfor_internal( const __waitfor_mask_t & mask, int duration ) {
523 // This statment doesn't have a contiguous list of monitors...
524 // Create one!
525 short max = count_max( mask );
526 monitor_desc * mon_storage[max];
527 __builtin_memset( mon_storage, 0, sizeof( mon_storage ) );
528 short actual_count = aggregate( mon_storage, mask );
529
530 LIB_DEBUG_PRINT_BUFFER_DECL( "Kernel : waitfor %d (s: %d, m: %d)\n", actual_count, mask.size, (short)max);
531
532 if(actual_count == 0) return;
533
534 LIB_DEBUG_PRINT_BUFFER_LOCAL( "Kernel : waitfor internal proceeding\n");
535
536 // Create storage for monitor context
537 monitor_ctx( mon_storage, actual_count );
538
539 // Lock all monitors (aggregates the locks as well)
540 lock_all( monitors, locks, count );
541
542 {
543 // Check if the entry queue
544 thread_desc * next; int index;
545 [next, index] = search_entry_queue( mask, monitors, count );
546
547 if( next ) {
548 *mask.accepted = index;
549 if( mask.clauses[index].is_dtor ) {
550 LIB_DEBUG_PRINT_BUFFER_LOCAL( "Kernel : dtor already there\n");
551 verifyf( mask.clauses[index].size == 1 , "ERROR: Accepted dtor has more than 1 mutex parameter." );
552
553 monitor_desc * mon2dtor = mask.clauses[index].list[0];
554 verifyf( mon2dtor->dtor_node, "ERROR: Accepted monitor has no dtor_node." );
555
556 __condition_criterion_t * dtor_crit = mon2dtor->dtor_node->criteria;
557 push( mon2dtor->signal_stack, dtor_crit );
558
559 unlock_all( locks, count );
560 }
561 else {
562 LIB_DEBUG_PRINT_BUFFER_LOCAL( "Kernel : thread present, baton-passing\n");
563
564 // Create the node specific to this wait operation
565 wait_ctx_primed( this_thread, 0 );
566
567 // Save monitor states
568 monitor_save;
569
570 LIB_DEBUG_PRINT_BUFFER_LOCAL( "Kernel : baton of %d monitors : ", count );
571 #ifdef __CFA_DEBUG_PRINT__
572 for( int i = 0; i < count; i++) {
573 LIB_DEBUG_PRINT_BUFFER_LOCAL( "%p %p ", monitors[i], monitors[i]->signal_stack.top );
574 }
575 #endif
576 LIB_DEBUG_PRINT_BUFFER_LOCAL( "\n");
577
578 // Set the owners to be the next thread
579 set_owner( monitors, count, next );
580
581 // Everything is ready to go to sleep
582 BlockInternal( locks, count, &next, 1 );
583
584 // We are back, restore the owners and recursions
585 monitor_restore;
586
587 LIB_DEBUG_PRINT_BUFFER_LOCAL( "Kernel : thread present, returned\n");
588 }
589
590 LIB_DEBUG_PRINT_BUFFER_LOCAL( "Kernel : accepted %d\n", *mask.accepted);
591
592 return;
593 }
594 }
595
596
597 if( duration == 0 ) {
598 LIB_DEBUG_PRINT_BUFFER_LOCAL( "Kernel : non-blocking, exiting\n");
599
600 unlock_all( locks, count );
601
602 LIB_DEBUG_PRINT_BUFFER_LOCAL( "Kernel : accepted %d\n", *mask.accepted);
603 return;
604 }
605
606
607 verifyf( duration < 0, "Timeout on waitfor statments not supported yet.");
608
609 LIB_DEBUG_PRINT_BUFFER_LOCAL( "Kernel : blocking waitfor\n");
610
611 // Create the node specific to this wait operation
612 wait_ctx_primed( this_thread, 0 );
613
614 monitor_save;
615 set_mask( monitors, count, mask );
616
617 for(int i = 0; i < count; i++) {
618 verify( monitors[i]->owner == this_thread );
619 }
620
621 //Everything is ready to go to sleep
622 BlockInternal( locks, count );
623
624
625 // WE WOKE UP
626
627
628 //We are back, restore the masks and recursions
629 monitor_restore;
630
631 LIB_DEBUG_PRINT_BUFFER_LOCAL( "Kernel : exiting\n");
632
633 LIB_DEBUG_PRINT_BUFFER_LOCAL( "Kernel : accepted %d\n", *mask.accepted);
634}
635
636//-----------------------------------------------------------------------------
637// Utilities
638
639static inline void set_owner( monitor_desc * this, thread_desc * owner ) {
640 // LIB_DEBUG_PRINT_SAFE("Kernal : Setting owner of %p to %p ( was %p)\n", this, owner, this->owner );
641
642 //Pass the monitor appropriately
643 this->owner = owner;
644
645 //We are passing the monitor to someone else, which means recursion level is not 0
646 this->recursion = owner ? 1 : 0;
647}
648
649static inline void set_owner( monitor_desc * monitors [], __lock_size_t count, thread_desc * owner ) {
650 monitors[0]->owner = owner;
651 monitors[0]->recursion = 1;
652 for( __lock_size_t i = 1; i < count; i++ ) {
653 monitors[i]->owner = owner;
654 monitors[i]->recursion = 0;
655 }
656}
657
658static inline void set_mask( monitor_desc * storage [], __lock_size_t count, const __waitfor_mask_t & mask ) {
659 for( __lock_size_t i = 0; i < count; i++) {
660 storage[i]->mask = mask;
661 }
662}
663
664static inline void reset_mask( monitor_desc * this ) {
665 this->mask.accepted = NULL;
666 this->mask.clauses = NULL;
667 this->mask.size = 0;
668}
669
670static inline thread_desc * next_thread( monitor_desc * this ) {
671 //Check the signaller stack
672 LIB_DEBUG_PRINT_SAFE("Kernel : mon %p AS-stack top %p\n", this, this->signal_stack.top);
673 __condition_criterion_t * urgent = pop( this->signal_stack );
674 if( urgent ) {
675 //The signaller stack is not empty,
676 //regardless of if we are ready to baton pass,
677 //we need to set the monitor as in use
678 set_owner( this, urgent->owner->waiting_thread );
679
680 return check_condition( urgent );
681 }
682
683 // No signaller thread
684 // Get the next thread in the entry_queue
685 thread_desc * new_owner = pop_head( this->entry_queue );
686 set_owner( this, new_owner );
687
688 return new_owner;
689}
690
691static inline bool is_accepted( monitor_desc * this, const __monitor_group_t & group ) {
692 __acceptable_t * it = this->mask.clauses; // Optim
693 int count = this->mask.size;
694
695 // Check if there are any acceptable functions
696 if( !it ) return false;
697
698 // If this isn't the first monitor to test this, there is no reason to repeat the test.
699 if( this != group[0] ) return group[0]->mask.accepted >= 0;
700
701 // For all acceptable functions check if this is the current function.
702 for( short i = 0; i < count; i++, it++ ) {
703 if( *it == group ) {
704 *this->mask.accepted = i;
705 return true;
706 }
707 }
708
709 // No function matched
710 return false;
711}
712
713static inline void init( __lock_size_t count, monitor_desc * monitors [], __condition_node_t & waiter, __condition_criterion_t criteria [] ) {
714 for( __lock_size_t i = 0; i < count; i++) {
715 (criteria[i]){ monitors[i], waiter };
716 }
717
718 waiter.criteria = criteria;
719}
720
721static inline void init_push( __lock_size_t count, monitor_desc * monitors [], __condition_node_t & waiter, __condition_criterion_t criteria [] ) {
722 for( __lock_size_t i = 0; i < count; i++) {
723 (criteria[i]){ monitors[i], waiter };
724 LIB_DEBUG_PRINT_SAFE( "Kernel : target %p = %p\n", criteria[i].target, &criteria[i] );
725 push( criteria[i].target->signal_stack, &criteria[i] );
726 }
727
728 waiter.criteria = criteria;
729}
730
731static inline void lock_all( spinlock * locks [], __lock_size_t count ) {
732 for( __lock_size_t i = 0; i < count; i++ ) {
733 lock_yield( locks[i] DEBUG_CTX2 );
734 }
735}
736
737static inline void lock_all( monitor_desc * source [], spinlock * /*out*/ locks [], __lock_size_t count ) {
738 for( __lock_size_t i = 0; i < count; i++ ) {
739 spinlock * l = &source[i]->lock;
740 lock_yield( l DEBUG_CTX2 );
741 if(locks) locks[i] = l;
742 }
743}
744
745static inline void unlock_all( spinlock * locks [], __lock_size_t count ) {
746 for( __lock_size_t i = 0; i < count; i++ ) {
747 unlock( locks[i] );
748 }
749}
750
751static inline void unlock_all( monitor_desc * locks [], __lock_size_t count ) {
752 for( __lock_size_t i = 0; i < count; i++ ) {
753 unlock( &locks[i]->lock );
754 }
755}
756
757static inline void save(
758 monitor_desc * ctx [],
759 __lock_size_t count,
760 __attribute((unused)) spinlock * locks [],
761 unsigned int /*out*/ recursions [],
762 __waitfor_mask_t /*out*/ masks []
763) {
764 for( __lock_size_t i = 0; i < count; i++ ) {
765 recursions[i] = ctx[i]->recursion;
766 masks[i] = ctx[i]->mask;
767 }
768}
769
770static inline void restore(
771 monitor_desc * ctx [],
772 __lock_size_t count,
773 spinlock * locks [],
774 unsigned int /*out*/ recursions [],
775 __waitfor_mask_t /*out*/ masks []
776) {
777 lock_all( locks, count );
778 for( __lock_size_t i = 0; i < count; i++ ) {
779 ctx[i]->recursion = recursions[i];
780 ctx[i]->mask = masks[i];
781 }
782 unlock_all( locks, count );
783}
784
785// Function has 2 different behavior
786// 1 - Marks a monitors as being ready to run
787// 2 - Checks if all the monitors are ready to run
788// if so return the thread to run
789static inline thread_desc * check_condition( __condition_criterion_t * target ) {
790 __condition_node_t * node = target->owner;
791 unsigned short count = node->count;
792 __condition_criterion_t * criteria = node->criteria;
793
794 bool ready2run = true;
795
796 for( int i = 0; i < count; i++ ) {
797
798 // LIB_DEBUG_PRINT_SAFE( "Checking %p for %p\n", &criteria[i], target );
799 if( &criteria[i] == target ) {
800 criteria[i].ready = true;
801 // LIB_DEBUG_PRINT_SAFE( "True\n" );
802 }
803
804 ready2run = criteria[i].ready && ready2run;
805 }
806
807 LIB_DEBUG_PRINT_SAFE( "Kernel : Runing %i (%p)\n", ready2run, ready2run ? node->waiting_thread : NULL );
808 return ready2run ? node->waiting_thread : NULL;
809}
810
811static inline void brand_condition( condition & this ) {
812 thread_desc * thrd = this_thread;
813 if( !this.monitors ) {
814 // LIB_DEBUG_PRINT_SAFE("Branding\n");
815 assertf( thrd->monitors.list != NULL, "No current monitor to brand condition %p", thrd->monitors.list );
816 this.monitor_count = thrd->monitors.size;
817
818 this.monitors = malloc( this.monitor_count * sizeof( *this.monitors ) );
819 for( int i = 0; i < this.monitor_count; i++ ) {
820 this.monitors[i] = thrd->monitors.list[i];
821 }
822 }
823}
824
825static inline [thread_desc *, int] search_entry_queue( const __waitfor_mask_t & mask, monitor_desc * monitors [], int count ) {
826
827 __thread_queue_t & entry_queue = monitors[0]->entry_queue;
828
829 // For each thread in the entry-queue
830 for( thread_desc ** thrd_it = &entry_queue.head;
831 *thrd_it;
832 thrd_it = &(*thrd_it)->next
833 ) {
834 // For each acceptable check if it matches
835 int i = 0;
836 __acceptable_t * end = mask.clauses + mask.size;
837 for( __acceptable_t * it = mask.clauses; it != end; it++, i++ ) {
838 // Check if we have a match
839 if( *it == (*thrd_it)->monitors ) {
840
841 // If we have a match return it
842 // after removeing it from the entry queue
843 return [remove( entry_queue, thrd_it ), i];
844 }
845 }
846 }
847
848 return [0, -1];
849}
850
851forall(dtype T | sized( T ))
852static inline short insert_unique( T * array [], short & size, T * val ) {
853 if( !val ) return size;
854
855 for(int i = 0; i <= size; i++) {
856 if( array[i] == val ) return size;
857 }
858
859 array[size] = val;
860 size = size + 1;
861 return size;
862}
863
864static inline short count_max( const __waitfor_mask_t & mask ) {
865 short max = 0;
866 for( int i = 0; i < mask.size; i++ ) {
867 max += mask.clauses[i].size;
868 }
869 return max;
870}
871
872static inline short aggregate( monitor_desc * storage [], const __waitfor_mask_t & mask ) {
873 short size = 0;
874 for( int i = 0; i < mask.size; i++ ) {
875 __libcfa_small_sort( mask.clauses[i].list, mask.clauses[i].size );
876 for( int j = 0; j < mask.clauses[i].size; j++) {
877 insert_unique( storage, size, mask.clauses[i].list[j] );
878 }
879 }
880 // TODO insertion sort instead of this
881 __libcfa_small_sort( storage, size );
882 return size;
883}
884
885void ?{}( __condition_blocked_queue_t & this ) {
886 this.head = NULL;
887 this.tail = &this.head;
888}
889
890void append( __condition_blocked_queue_t & this, __condition_node_t * c ) {
891 verify(this.tail != NULL);
892 *this.tail = c;
893 this.tail = &c->next;
894}
895
896__condition_node_t * pop_head( __condition_blocked_queue_t & this ) {
897 __condition_node_t * head = this.head;
898 if( head ) {
899 this.head = head->next;
900 if( !head->next ) {
901 this.tail = &this.head;
902 }
903 head->next = NULL;
904 }
905 return head;
906}
907
908// Local Variables: //
909// mode: c //
910// tab-width: 4 //
911// End: //
Note: See TracBrowser for help on using the repository browser.