source: src/libcfa/concurrency/kernel.c @ e93f1d2

ADTaaron-thesisarm-ehast-experimentalcleanup-dtorsdeferred_resndemanglerenumforall-pointer-decayjacob/cs343-translationjenkins-sandboxnew-astnew-ast-unique-exprnew-envno_listpersistent-indexerpthread-emulationqualifiedEnumwith_gc
Last change on this file since e93f1d2 was e93f1d2, checked in by Rob Schluntz <rschlunt@…>, 6 years ago

Merge branch 'master' of plg.uwaterloo.ca:/u/cforall/software/cfa/cfa-cc

  • Property mode set to 100644
File size: 21.5 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// kernel.c --
8//
9// Author           : Thierry Delisle
10// Created On       : Tue Jan 17 12:27:26 2017
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Mon Apr  9 16:11:46 2018
13// Update Count     : 24
14//
15
16//C Includes
17#include <stddef.h>
18extern "C" {
19#include <stdio.h>
20#include <fenv.h>
21#include <sys/resource.h>
22#include <signal.h>
23#include <unistd.h>
24}
25
26//CFA Includes
27#include "time"
28#include "kernel_private.h"
29#include "preemption.h"
30#include "startup.h"
31
32//Private includes
33#define __CFA_INVOKE_PRIVATE__
34#include "invoke.h"
35
36//Start and stop routine for the kernel, declared first to make sure they run first
37void kernel_startup(void)  __attribute__(( constructor( STARTUP_PRIORITY_KERNEL ) ));
38void kernel_shutdown(void) __attribute__(( destructor ( STARTUP_PRIORITY_KERNEL ) ));
39
40//-----------------------------------------------------------------------------
41// Kernel storage
42KERNEL_STORAGE(cluster,           mainCluster);
43KERNEL_STORAGE(processor,         mainProcessor);
44KERNEL_STORAGE(processorCtx_t,    mainProcessorCtx);
45KERNEL_STORAGE(thread_desc,       mainThread);
46KERNEL_STORAGE(machine_context_t, mainThreadCtx);
47
48cluster *     mainCluster;
49processor *   mainProcessor;
50thread_desc * mainThread;
51
52//-----------------------------------------------------------------------------
53// Global state
54
55// volatile thread_local bool preemption_in_progress = 0;
56// volatile thread_local bool preemption_enabled = false;
57// volatile thread_local unsigned short disable_preempt_count = 1;
58
59thread_local struct KernelThreadData kernelThreadData = {
60        NULL,
61        NULL,
62        NULL,
63        { 1, false, false }
64};
65
66//-----------------------------------------------------------------------------
67// Main thread construction
68struct current_stack_info_t {
69        machine_context_t ctx;
70        unsigned int size;              // size of stack
71        void *base;                             // base of stack
72        void *storage;                  // pointer to stack
73        void *limit;                    // stack grows towards stack limit
74        void *context;                  // address of cfa_context_t
75        void *top;                              // address of top of storage
76};
77
78void ?{}( current_stack_info_t & this ) {
79        CtxGet( this.ctx );
80        this.base = this.ctx.FP;
81        this.storage = this.ctx.SP;
82
83        rlimit r;
84        getrlimit( RLIMIT_STACK, &r);
85        this.size = r.rlim_cur;
86
87        this.limit = (void *)(((intptr_t)this.base) - this.size);
88        this.context = &storage_mainThreadCtx;
89        this.top = this.base;
90}
91
92void ?{}( coStack_t & this, current_stack_info_t * info) with( this ) {
93        size      = info->size;
94        storage   = info->storage;
95        limit     = info->limit;
96        base      = info->base;
97        context   = info->context;
98        top       = info->top;
99        userStack = true;
100}
101
102void ?{}( coroutine_desc & this, current_stack_info_t * info) with( this ) {
103        stack{ info };
104        name = "Main Thread";
105        errno_ = 0;
106        state = Start;
107        starter = NULL;
108}
109
110void ?{}( thread_desc & this, current_stack_info_t * info) with( this ) {
111        self_cor{ info };
112        curr_cor = &self_cor;
113        self_mon.owner = &this;
114        self_mon.recursion = 1;
115        self_mon_p = &self_mon;
116        next = NULL;
117        __cfaabi_dbg_debug_do(
118                dbg_next = NULL;
119                dbg_prev = NULL;
120                __cfaabi_dbg_thread_register(&this);
121        )
122
123        monitors{ &self_mon_p, 1, (fptr_t)0 };
124}
125
126//-----------------------------------------------------------------------------
127// Processor coroutine
128void ?{}(processorCtx_t & this) {}
129
130// Construct the processor context of the main processor
131void ?{}(processorCtx_t & this, processor * proc) {
132        (this.__cor){ "Processor" };
133        this.__cor.starter = NULL;
134        this.proc = proc;
135}
136
137// Construct the processor context of non-main processors
138void ?{}(processorCtx_t & this, processor * proc, current_stack_info_t * info) {
139        (this.__cor){ info };
140        this.proc = proc;
141}
142
143void ?{}(processor & this) {
144        this{ mainCluster };
145}
146
147void ?{}(processor & this, cluster * cltr) with( this ) {
148        this.cltr = cltr;
149        terminated{ 0 };
150        do_terminate = false;
151        preemption_alarm = NULL;
152        pending_preemption = false;
153        runner.proc = &this;
154
155        start( &this );
156}
157
158void ?{}(processor & this, cluster * cltr, processorCtx_t & runner) with( this ) {
159        this.cltr = cltr;
160        terminated{ 0 };
161        do_terminate = false;
162        preemption_alarm = NULL;
163        pending_preemption = false;
164        kernel_thread = pthread_self();
165        runner.proc = &this;
166
167        __cfaabi_dbg_print_safe("Kernel : constructing main processor context %p\n", &runner);
168        runner{ &this };
169}
170
171void ^?{}(processor & this) with( this ){
172        if( ! do_terminate ) {
173                __cfaabi_dbg_print_safe("Kernel : core %p signaling termination\n", &this);
174                terminate(&this);
175                verify(this.do_terminate);
176                verify(TL_GET( this_processor ) != &this);
177                P( terminated );
178                verify(TL_GET( this_processor ) != &this);
179                pthread_join( kernel_thread, NULL );
180        }
181}
182
183void ?{}(cluster & this) with( this ) {
184        ready_queue{};
185        ready_queue_lock{};
186
187        preemption_rate = default_preemption();
188}
189
190void ^?{}(cluster & this) {
191
192}
193
194//=============================================================================================
195// Kernel Scheduling logic
196//=============================================================================================
197//Main of the processor contexts
198void main(processorCtx_t & runner) {
199        processor * this = runner.proc;
200        verify(this);
201
202        __cfaabi_dbg_print_safe("Kernel : core %p starting\n", this);
203
204        {
205                // Setup preemption data
206                preemption_scope scope = { this };
207
208                __cfaabi_dbg_print_safe("Kernel : core %p started\n", this);
209
210                thread_desc * readyThread = NULL;
211                for( unsigned int spin_count = 0; ! this->do_terminate; spin_count++ )
212                {
213                        readyThread = nextThread( this->cltr );
214
215                        if(readyThread)
216                        {
217                                verify( ! TL_GET( preemption_state ).enabled );
218
219                                runThread(this, readyThread);
220
221                                verify( ! TL_GET( preemption_state ).enabled );
222
223                                //Some actions need to be taken from the kernel
224                                finishRunning(this);
225
226                                spin_count = 0;
227                        }
228                        else
229                        {
230                                spin(this, &spin_count);
231                        }
232                }
233
234                __cfaabi_dbg_print_safe("Kernel : core %p stopping\n", this);
235        }
236
237        V( this->terminated );
238
239        __cfaabi_dbg_print_safe("Kernel : core %p terminated\n", this);
240}
241
242// runThread runs a thread by context switching
243// from the processor coroutine to the target thread
244void runThread(processor * this, thread_desc * dst) {
245        assert(dst->curr_cor);
246        coroutine_desc * proc_cor = get_coroutine(this->runner);
247        coroutine_desc * thrd_cor = dst->curr_cor;
248
249        //Reset the terminating actions here
250        this->finish.action_code = No_Action;
251
252        //Update global state
253        TL_SET( this_thread, dst );
254
255        // Context Switch to the thread
256        ThreadCtxSwitch(proc_cor, thrd_cor);
257        // when ThreadCtxSwitch returns we are back in the processor coroutine
258}
259
260void returnToKernel() {
261        coroutine_desc * proc_cor = get_coroutine(TL_GET( this_processor )->runner);
262        coroutine_desc * thrd_cor = TL_GET( this_thread )->curr_cor = TL_GET( this_coroutine );
263        ThreadCtxSwitch(thrd_cor, proc_cor);
264}
265
266// Once a thread has finished running, some of
267// its final actions must be executed from the kernel
268void finishRunning(processor * this) with( this->finish ) {
269        if( action_code == Release ) {
270                verify( ! TL_GET( preemption_state ).enabled );
271                unlock( *lock );
272        }
273        else if( action_code == Schedule ) {
274                ScheduleThread( thrd );
275        }
276        else if( action_code == Release_Schedule ) {
277                verify( ! TL_GET( preemption_state ).enabled );
278                unlock( *lock );
279                ScheduleThread( thrd );
280        }
281        else if( action_code == Release_Multi ) {
282                verify( ! TL_GET( preemption_state ).enabled );
283                for(int i = 0; i < lock_count; i++) {
284                        unlock( *locks[i] );
285                }
286        }
287        else if( action_code == Release_Multi_Schedule ) {
288                for(int i = 0; i < lock_count; i++) {
289                        unlock( *locks[i] );
290                }
291                for(int i = 0; i < thrd_count; i++) {
292                        ScheduleThread( thrds[i] );
293                }
294        }
295        else {
296                assert(action_code == No_Action);
297        }
298}
299
300// Handles spinning logic
301// TODO : find some strategy to put cores to sleep after some time
302void spin(processor * this, unsigned int * spin_count) {
303        (*spin_count)++;
304}
305
306// Context invoker for processors
307// This is the entry point for processors (kernel threads)
308// It effectively constructs a coroutine by stealing the pthread stack
309void * CtxInvokeProcessor(void * arg) {
310        processor * proc = (processor *) arg;
311        TL_SET( this_processor, proc );
312        TL_SET( this_coroutine, NULL );
313        TL_SET( this_thread, NULL );
314        TL_GET( preemption_state ).enabled = false;
315        TL_GET( preemption_state ).disable_count = 1;
316        // SKULLDUGGERY: We want to create a context for the processor coroutine
317        // which is needed for the 2-step context switch. However, there is no reason
318        // to waste the perfectly valid stack create by pthread.
319        current_stack_info_t info;
320        machine_context_t ctx;
321        info.context = &ctx;
322        (proc->runner){ proc, &info };
323
324        __cfaabi_dbg_print_safe("Coroutine : created stack %p\n", get_coroutine(proc->runner)->stack.base);
325
326        //Set global state
327        TL_SET( this_coroutine, get_coroutine(proc->runner) );
328        TL_SET( this_thread, NULL );
329
330        //We now have a proper context from which to schedule threads
331        __cfaabi_dbg_print_safe("Kernel : core %p created (%p, %p)\n", proc, &proc->runner, &ctx);
332
333        // SKULLDUGGERY: Since the coroutine doesn't have its own stack, we can't
334        // resume it to start it like it normally would, it will just context switch
335        // back to here. Instead directly call the main since we already are on the
336        // appropriate stack.
337        get_coroutine(proc->runner)->state = Active;
338        main( proc->runner );
339        get_coroutine(proc->runner)->state = Halted;
340
341        // Main routine of the core returned, the core is now fully terminated
342        __cfaabi_dbg_print_safe("Kernel : core %p main ended (%p)\n", proc, &proc->runner);
343
344        return NULL;
345}
346
347void start(processor * this) {
348        __cfaabi_dbg_print_safe("Kernel : Starting core %p\n", this);
349
350        pthread_create( &this->kernel_thread, NULL, CtxInvokeProcessor, (void*)this );
351
352        __cfaabi_dbg_print_safe("Kernel : core %p started\n", this);
353}
354
355void kernel_first_resume(processor * this) {
356        coroutine_desc * src = TL_GET( this_coroutine );
357        coroutine_desc * dst = get_coroutine(this->runner);
358
359        verify( ! TL_GET( preemption_state ).enabled );
360
361        create_stack(&dst->stack, dst->stack.size);
362        CtxStart(&this->runner, CtxInvokeCoroutine);
363
364        verify( ! TL_GET( preemption_state ).enabled );
365
366        dst->last = src;
367        dst->starter = dst->starter ? dst->starter : src;
368
369        // set state of current coroutine to inactive
370        src->state = src->state == Halted ? Halted : Inactive;
371
372        // set new coroutine that task is executing
373        TL_SET( this_coroutine, dst );
374
375        // SKULLDUGGERY normally interrupts are enable before leaving a coroutine ctxswitch.
376        // Therefore, when first creating a coroutine, interrupts are enable before calling the main.
377        // This is consistent with thread creation. However, when creating the main processor coroutine,
378        // we wan't interrupts to be disabled. Therefore, we double-disable interrupts here so they will
379        // stay disabled.
380        disable_interrupts();
381
382        // context switch to specified coroutine
383        assert( src->stack.context );
384        CtxSwitch( src->stack.context, dst->stack.context );
385        // when CtxSwitch returns we are back in the src coroutine
386
387        // set state of new coroutine to active
388        src->state = Active;
389
390        verify( ! TL_GET( preemption_state ).enabled );
391}
392
393//-----------------------------------------------------------------------------
394// Scheduler routines
395void ScheduleThread( thread_desc * thrd ) {
396        // if( ! thrd ) return;
397        verify( thrd );
398        verify( thrd->self_cor.state != Halted );
399
400        verify( ! TL_GET( preemption_state ).enabled );
401
402        verifyf( thrd->next == NULL, "Expected null got %p", thrd->next );
403
404        with( *TL_GET( this_processor )->cltr ) {
405                lock  ( ready_queue_lock __cfaabi_dbg_ctx2 );
406                append( ready_queue, thrd );
407                unlock( ready_queue_lock );
408        }
409
410        verify( ! TL_GET( preemption_state ).enabled );
411}
412
413thread_desc * nextThread(cluster * this) with( *this ) {
414        verify( ! TL_GET( preemption_state ).enabled );
415        lock( ready_queue_lock __cfaabi_dbg_ctx2 );
416        thread_desc * head = pop_head( ready_queue );
417        unlock( ready_queue_lock );
418        verify( ! TL_GET( preemption_state ).enabled );
419        return head;
420}
421
422void BlockInternal() {
423        disable_interrupts();
424        verify( ! TL_GET( preemption_state ).enabled );
425        returnToKernel();
426        verify( ! TL_GET( preemption_state ).enabled );
427        enable_interrupts( __cfaabi_dbg_ctx );
428}
429
430void BlockInternal( __spinlock_t * lock ) {
431        disable_interrupts();
432        TL_GET( this_processor )->finish.action_code = Release;
433        TL_GET( this_processor )->finish.lock        = lock;
434
435        verify( ! TL_GET( preemption_state ).enabled );
436        returnToKernel();
437        verify( ! TL_GET( preemption_state ).enabled );
438
439        enable_interrupts( __cfaabi_dbg_ctx );
440}
441
442void BlockInternal( thread_desc * thrd ) {
443        disable_interrupts();
444        TL_GET( this_processor )->finish.action_code = Schedule;
445        TL_GET( this_processor )->finish.thrd        = thrd;
446
447        verify( ! TL_GET( preemption_state ).enabled );
448        returnToKernel();
449        verify( ! TL_GET( preemption_state ).enabled );
450
451        enable_interrupts( __cfaabi_dbg_ctx );
452}
453
454void BlockInternal( __spinlock_t * lock, thread_desc * thrd ) {
455        assert(thrd);
456        disable_interrupts();
457        TL_GET( this_processor )->finish.action_code = Release_Schedule;
458        TL_GET( this_processor )->finish.lock        = lock;
459        TL_GET( this_processor )->finish.thrd        = thrd;
460
461        verify( ! TL_GET( preemption_state ).enabled );
462        returnToKernel();
463        verify( ! TL_GET( preemption_state ).enabled );
464
465        enable_interrupts( __cfaabi_dbg_ctx );
466}
467
468void BlockInternal(__spinlock_t * locks [], unsigned short count) {
469        disable_interrupts();
470        TL_GET( this_processor )->finish.action_code = Release_Multi;
471        TL_GET( this_processor )->finish.locks       = locks;
472        TL_GET( this_processor )->finish.lock_count  = count;
473
474        verify( ! TL_GET( preemption_state ).enabled );
475        returnToKernel();
476        verify( ! TL_GET( preemption_state ).enabled );
477
478        enable_interrupts( __cfaabi_dbg_ctx );
479}
480
481void BlockInternal(__spinlock_t * locks [], unsigned short lock_count, thread_desc * thrds [], unsigned short thrd_count) {
482        disable_interrupts();
483        TL_GET( this_processor )->finish.action_code = Release_Multi_Schedule;
484        TL_GET( this_processor )->finish.locks       = locks;
485        TL_GET( this_processor )->finish.lock_count  = lock_count;
486        TL_GET( this_processor )->finish.thrds       = thrds;
487        TL_GET( this_processor )->finish.thrd_count  = thrd_count;
488
489        verify( ! TL_GET( preemption_state ).enabled );
490        returnToKernel();
491        verify( ! TL_GET( preemption_state ).enabled );
492
493        enable_interrupts( __cfaabi_dbg_ctx );
494}
495
496void LeaveThread(__spinlock_t * lock, thread_desc * thrd) {
497        verify( ! TL_GET( preemption_state ).enabled );
498        TL_GET( this_processor )->finish.action_code = thrd ? Release_Schedule : Release;
499        TL_GET( this_processor )->finish.lock        = lock;
500        TL_GET( this_processor )->finish.thrd        = thrd;
501
502        returnToKernel();
503}
504
505//=============================================================================================
506// Kernel Setup logic
507//=============================================================================================
508//-----------------------------------------------------------------------------
509// Kernel boot procedures
510void kernel_startup(void) {
511        verify( ! TL_GET( preemption_state ).enabled );
512        __cfaabi_dbg_print_safe("Kernel : Starting\n");
513
514        // Start by initializing the main thread
515        // SKULLDUGGERY: the mainThread steals the process main thread
516        // which will then be scheduled by the mainProcessor normally
517        mainThread = (thread_desc *)&storage_mainThread;
518        current_stack_info_t info;
519        (*mainThread){ &info };
520
521        __cfaabi_dbg_print_safe("Kernel : Main thread ready\n");
522
523        // Initialize the main cluster
524        mainCluster = (cluster *)&storage_mainCluster;
525        (*mainCluster){};
526
527        __cfaabi_dbg_print_safe("Kernel : main cluster ready\n");
528
529        // Initialize the main processor and the main processor ctx
530        // (the coroutine that contains the processing control flow)
531        mainProcessor = (processor *)&storage_mainProcessor;
532        (*mainProcessor){ mainCluster, *(processorCtx_t *)&storage_mainProcessorCtx };
533
534        //initialize the global state variables
535        TL_SET( this_processor, mainProcessor );
536        TL_SET( this_thread, mainThread );
537        TL_SET( this_coroutine, &mainThread->self_cor );
538
539        // Enable preemption
540        kernel_start_preemption();
541
542        // Add the main thread to the ready queue
543        // once resume is called on mainProcessor->runner the mainThread needs to be scheduled like any normal thread
544        ScheduleThread(mainThread);
545
546        // SKULLDUGGERY: Force a context switch to the main processor to set the main thread's context to the current UNIX
547        // context. Hence, the main thread does not begin through CtxInvokeThread, like all other threads. The trick here is that
548        // mainThread is on the ready queue when this call is made.
549        kernel_first_resume( TL_GET( this_processor ) );
550
551
552
553        // THE SYSTEM IS NOW COMPLETELY RUNNING
554        __cfaabi_dbg_print_safe("Kernel : Started\n--------------------------------------------------\n\n");
555
556        verify( ! TL_GET( preemption_state ).enabled );
557        enable_interrupts( __cfaabi_dbg_ctx );
558        verify( TL_GET( preemption_state ).enabled );
559}
560
561void kernel_shutdown(void) {
562        __cfaabi_dbg_print_safe("\n--------------------------------------------------\nKernel : Shutting down\n");
563
564        verify( TL_GET( preemption_state ).enabled );
565        disable_interrupts();
566        verify( ! TL_GET( preemption_state ).enabled );
567
568        // SKULLDUGGERY: Notify the mainProcessor it needs to terminates.
569        // When its coroutine terminates, it return control to the mainThread
570        // which is currently here
571        mainProcessor->do_terminate = true;
572        returnToKernel();
573
574        // THE SYSTEM IS NOW COMPLETELY STOPPED
575
576        // Disable preemption
577        kernel_stop_preemption();
578
579        // Destroy the main processor and its context in reverse order of construction
580        // These were manually constructed so we need manually destroy them
581        ^(mainProcessor->runner){};
582        ^(mainProcessor){};
583
584        // Final step, destroy the main thread since it is no longer needed
585        // Since we provided a stack to this taxk it will not destroy anything
586        ^(mainThread){};
587
588        __cfaabi_dbg_print_safe("Kernel : Shutdown complete\n");
589}
590
591//=============================================================================================
592// Unexpected Terminating logic
593//=============================================================================================
594
595
596static __spinlock_t kernel_abort_lock;
597static __spinlock_t kernel_debug_lock;
598static bool kernel_abort_called = false;
599
600void * kernel_abort    (void) __attribute__ ((__nothrow__)) {
601        // abort cannot be recursively entered by the same or different processors because all signal handlers return when
602        // the globalAbort flag is true.
603        lock( kernel_abort_lock __cfaabi_dbg_ctx2 );
604
605        // first task to abort ?
606        if ( ! kernel_abort_called ) {                  // not first task to abort ?
607                kernel_abort_called = true;
608                unlock( kernel_abort_lock );
609        }
610        else {
611                unlock( kernel_abort_lock );
612
613                sigset_t mask;
614                sigemptyset( &mask );
615                sigaddset( &mask, SIGALRM );                    // block SIGALRM signals
616                sigaddset( &mask, SIGUSR1 );                    // block SIGUSR1 signals
617                sigsuspend( &mask );                            // block the processor to prevent further damage during abort
618                _exit( EXIT_FAILURE );                          // if processor unblocks before it is killed, terminate it
619        }
620
621        return TL_GET( this_thread );
622}
623
624void kernel_abort_msg( void * kernel_data, char * abort_text, int abort_text_size ) {
625        thread_desc * thrd = kernel_data;
626
627        int len = snprintf( abort_text, abort_text_size, "Error occurred while executing task %.256s (%p)", thrd->self_cor.name, thrd );
628        __cfaabi_dbg_bits_write( abort_text, len );
629
630        if ( get_coroutine(thrd) != TL_GET( this_coroutine ) ) {
631                len = snprintf( abort_text, abort_text_size, " in coroutine %.256s (%p).\n", TL_GET( this_coroutine )->name, TL_GET( this_coroutine ) );
632                __cfaabi_dbg_bits_write( abort_text, len );
633        }
634        else {
635                __cfaabi_dbg_bits_write( ".\n", 2 );
636        }
637}
638
639int kernel_abort_lastframe( void ) __attribute__ ((__nothrow__)) {
640        return get_coroutine(TL_GET( this_thread )) == get_coroutine(mainThread) ? 4 : 2;
641}
642
643extern "C" {
644        void __cfaabi_dbg_bits_acquire() {
645                lock( kernel_debug_lock __cfaabi_dbg_ctx2 );
646        }
647
648        void __cfaabi_dbg_bits_release() {
649                unlock( kernel_debug_lock );
650        }
651}
652
653//=============================================================================================
654// Kernel Utilities
655//=============================================================================================
656//-----------------------------------------------------------------------------
657// Locks
658void  ?{}( semaphore & this, int count = 1 ) {
659        (this.lock){};
660        this.count = count;
661        (this.waiting){};
662}
663void ^?{}(semaphore & this) {}
664
665void P(semaphore & this) with( this ){
666        lock( lock __cfaabi_dbg_ctx2 );
667        count -= 1;
668        if ( count < 0 ) {
669                // queue current task
670                append( waiting, (thread_desc *)TL_GET( this_thread ) );
671
672                // atomically release spin lock and block
673                BlockInternal( &lock );
674        }
675        else {
676            unlock( lock );
677        }
678}
679
680void V(semaphore & this) with( this ) {
681        thread_desc * thrd = NULL;
682        lock( lock __cfaabi_dbg_ctx2 );
683        count += 1;
684        if ( count <= 0 ) {
685                // remove task at head of waiting list
686                thrd = pop_head( waiting );
687        }
688
689        unlock( lock );
690
691        // make new owner
692        WakeThread( thrd );
693}
694
695//-----------------------------------------------------------------------------
696// Debug
697__cfaabi_dbg_debug_do(
698        struct {
699                thread_desc * tail;
700        } __cfaabi_dbg_thread_list = { NULL };
701
702        void __cfaabi_dbg_thread_register( thread_desc * thrd ) {
703                if( !__cfaabi_dbg_thread_list.tail ) {
704                        __cfaabi_dbg_thread_list.tail = thrd;
705                        return;
706                }
707                __cfaabi_dbg_thread_list.tail->dbg_next = thrd;
708                thrd->dbg_prev = __cfaabi_dbg_thread_list.tail;
709                __cfaabi_dbg_thread_list.tail = thrd;
710        }
711
712        void __cfaabi_dbg_thread_unregister( thread_desc * thrd ) {
713                thread_desc * prev = thrd->dbg_prev;
714                thread_desc * next = thrd->dbg_next;
715
716                if( next ) { next->dbg_prev = prev; }
717                else       {
718                        assert( __cfaabi_dbg_thread_list.tail == thrd );
719                        __cfaabi_dbg_thread_list.tail = prev;
720                }
721
722                if( prev ) { prev->dbg_next = next; }
723
724                thrd->dbg_prev = NULL;
725                thrd->dbg_next = NULL;
726        }
727)
728// Local Variables: //
729// mode: c //
730// tab-width: 4 //
731// End: //
Note: See TracBrowser for help on using the repository browser.