source: src/libcfa/concurrency/kernel.c@ e2f1eeb

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors deferred_resn demangler enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum resolv-new with_gc
Last change on this file since e2f1eeb was 0c78741, checked in by Thierry Delisle <tdelisle@…>, 8 years ago

Implementation of internal scheduling in CFA

  • Property mode set to 100644
File size: 16.0 KB
Line 
1// -*- Mode: CFA -*-
2//
3// Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
4//
5// The contents of this file are covered under the licence agreement in the
6// file "LICENCE" distributed with Cforall.
7//
8// kernel.c --
9//
10// Author : Thierry Delisle
11// Created On : Tue Jan 17 12:27:26 2017
12// Last Modified By : Thierry Delisle
13// Last Modified On : --
14// Update Count : 0
15//
16
17#include "startup.h"
18
19//Start and stop routine for the kernel, declared first to make sure they run first
20void kernel_startup(void) __attribute__(( constructor( STARTUP_PRIORITY_KERNEL ) ));
21void kernel_shutdown(void) __attribute__(( destructor ( STARTUP_PRIORITY_KERNEL ) ));
22
23//Header
24#include "kernel_private.h"
25
26//C Includes
27#include <stddef.h>
28extern "C" {
29#include <stdio.h>
30#include <fenv.h>
31#include <sys/resource.h>
32#include <signal.h>
33#include <unistd.h>
34}
35
36//CFA Includes
37#include "libhdr.h"
38
39//Private includes
40#define __CFA_INVOKE_PRIVATE__
41#include "invoke.h"
42
43//-----------------------------------------------------------------------------
44// Kernel storage
45#define KERNEL_STORAGE(T,X) static char X##_storage[sizeof(T)]
46
47KERNEL_STORAGE(processorCtx_t, systemProcessorCtx);
48KERNEL_STORAGE(cluster, systemCluster);
49KERNEL_STORAGE(processor, systemProcessor);
50KERNEL_STORAGE(thread_desc, mainThread);
51KERNEL_STORAGE(machine_context_t, mainThread_context);
52
53cluster * systemCluster;
54processor * systemProcessor;
55thread_desc * mainThread;
56
57//-----------------------------------------------------------------------------
58// Global state
59
60thread_local processor * this_processor;
61
62coroutine_desc * this_coroutine(void) {
63 return this_processor->current_coroutine;
64}
65
66thread_desc * this_thread(void) {
67 return this_processor->current_thread;
68}
69
70//-----------------------------------------------------------------------------
71// Main thread construction
72struct current_stack_info_t {
73 machine_context_t ctx;
74 unsigned int size; // size of stack
75 void *base; // base of stack
76 void *storage; // pointer to stack
77 void *limit; // stack grows towards stack limit
78 void *context; // address of cfa_context_t
79 void *top; // address of top of storage
80};
81
82void ?{}( current_stack_info_t * this ) {
83 CtxGet( &this->ctx );
84 this->base = this->ctx.FP;
85 this->storage = this->ctx.SP;
86
87 rlimit r;
88 getrlimit( RLIMIT_STACK, &r);
89 this->size = r.rlim_cur;
90
91 this->limit = (void *)(((intptr_t)this->base) - this->size);
92 this->context = &mainThread_context_storage;
93 this->top = this->base;
94}
95
96void ?{}( coStack_t * this, current_stack_info_t * info) {
97 this->size = info->size;
98 this->storage = info->storage;
99 this->limit = info->limit;
100 this->base = info->base;
101 this->context = info->context;
102 this->top = info->top;
103 this->userStack = true;
104}
105
106void ?{}( coroutine_desc * this, current_stack_info_t * info) {
107 (&this->stack){ info };
108 this->name = "Main Thread";
109 this->errno_ = 0;
110 this->state = Start;
111}
112
113void ?{}( thread_desc * this, current_stack_info_t * info) {
114 (&this->cor){ info };
115}
116
117//-----------------------------------------------------------------------------
118// Processor coroutine
119void ?{}(processorCtx_t * this, processor * proc) {
120 (&this->__cor){};
121 this->proc = proc;
122 proc->runner = this;
123}
124
125void ?{}(processorCtx_t * this, processor * proc, current_stack_info_t * info) {
126 (&this->__cor){ info };
127 this->proc = proc;
128 proc->runner = this;
129}
130
131void ?{}(processor * this) {
132 this{ systemCluster };
133}
134
135void ?{}(processor * this, cluster * cltr) {
136 this->cltr = cltr;
137 this->current_coroutine = NULL;
138 this->current_thread = NULL;
139 (&this->terminated){};
140 this->is_terminated = false;
141
142 start( this );
143}
144
145void ?{}(processor * this, cluster * cltr, processorCtx_t * runner) {
146 this->cltr = cltr;
147 this->current_coroutine = NULL;
148 this->current_thread = NULL;
149 (&this->terminated){};
150 this->is_terminated = false;
151
152 this->runner = runner;
153 LIB_DEBUG_PRINT_SAFE("Kernel : constructing processor context %p\n", runner);
154 runner{ this };
155}
156
157void ^?{}(processor * this) {
158 if( ! this->is_terminated ) {
159 LIB_DEBUG_PRINT_SAFE("Kernel : core %p signaling termination\n", this);
160 this->is_terminated = true;
161 wait( &this->terminated );
162 }
163}
164
165void ?{}(cluster * this) {
166 ( &this->ready_queue ){};
167 ( &this->lock ){};
168}
169
170void ^?{}(cluster * this) {
171
172}
173
174//=============================================================================================
175// Kernel Scheduling logic
176//=============================================================================================
177//Main of the processor contexts
178void main(processorCtx_t * runner) {
179 processor * this = runner->proc;
180 LIB_DEBUG_PRINT_SAFE("Kernel : core %p starting\n", this);
181
182 thread_desc * readyThread = NULL;
183 for( unsigned int spin_count = 0; ! this->is_terminated; spin_count++ )
184 {
185 readyThread = nextThread( this->cltr );
186
187 if(readyThread)
188 {
189 runThread(this, readyThread);
190
191 //Some actions need to be taken from the kernel
192 finishRunning(this);
193
194 spin_count = 0;
195 }
196 else
197 {
198 spin(this, &spin_count);
199 }
200 }
201
202 LIB_DEBUG_PRINT_SAFE("Kernel : core %p unlocking thread\n", this);
203 signal( &this->terminated );
204 LIB_DEBUG_PRINT_SAFE("Kernel : core %p terminated\n", this);
205}
206
207// runThread runs a thread by context switching
208// from the processor coroutine to the target thread
209void runThread(processor * this, thread_desc * dst) {
210 coroutine_desc * proc_cor = get_coroutine(this->runner);
211 coroutine_desc * thrd_cor = get_coroutine(dst);
212
213 //Reset the terminating actions here
214 this->finish.action_code = No_Action;
215
216 //Update global state
217 this->current_thread = dst;
218
219 // Context Switch to the thread
220 ThreadCtxSwitch(proc_cor, thrd_cor);
221 // when ThreadCtxSwitch returns we are back in the processor coroutine
222}
223
224// Once a thread has finished running, some of
225// its final actions must be executed from the kernel
226void finishRunning(processor * this) {
227 if( this->finish.action_code == Release ) {
228 unlock( this->finish.lock );
229 }
230 else if( this->finish.action_code == Schedule ) {
231 ScheduleThread( this->finish.thrd );
232 }
233 else if( this->finish.action_code == Release_Schedule ) {
234 unlock( this->finish.lock );
235 ScheduleThread( this->finish.thrd );
236 }
237 else if( this->finish.action_code == Release_Multi ) {
238 for(int i = 0; i < this->finish.lock_count; i++) {
239 unlock( this->finish.locks[i] );
240 }
241 }
242 else if( this->finish.action_code == Release_Multi_Schedule ) {
243 for(int i = 0; i < this->finish.lock_count; i++) {
244 unlock( this->finish.locks[i] );
245 }
246 for(int i = 0; i < this->finish.thrd_count; i++) {
247 ScheduleThread( this->finish.thrds[i] );
248 }
249 }
250 else {
251 assert(this->finish.action_code == No_Action);
252 }
253}
254
255// Handles spinning logic
256// TODO : find some strategy to put cores to sleep after some time
257void spin(processor * this, unsigned int * spin_count) {
258 (*spin_count)++;
259}
260
261// Context invoker for processors
262// This is the entry point for processors (kernel threads)
263// It effectively constructs a coroutine by stealing the pthread stack
264void * CtxInvokeProcessor(void * arg) {
265 processor * proc = (processor *) arg;
266 this_processor = proc;
267 // SKULLDUGGERY: We want to create a context for the processor coroutine
268 // which is needed for the 2-step context switch. However, there is no reason
269 // to waste the perfectly valid stack create by pthread.
270 current_stack_info_t info;
271 machine_context_t ctx;
272 info.context = &ctx;
273 processorCtx_t proc_cor_storage = { proc, &info };
274
275 LIB_DEBUG_PRINT_SAFE("Coroutine : created stack %p\n", proc_cor_storage.__cor.stack.base);
276
277 //Set global state
278 proc->current_coroutine = &proc->runner->__cor;
279 proc->current_thread = NULL;
280
281 //We now have a proper context from which to schedule threads
282 LIB_DEBUG_PRINT_SAFE("Kernel : core %p created (%p, %p)\n", proc, proc->runner, &ctx);
283
284 // SKULLDUGGERY: Since the coroutine doesn't have its own stack, we can't
285 // resume it to start it like it normally would, it will just context switch
286 // back to here. Instead directly call the main since we already are on the
287 // appropriate stack.
288 proc_cor_storage.__cor.state = Active;
289 main( &proc_cor_storage );
290 proc_cor_storage.__cor.state = Halted;
291
292 // Main routine of the core returned, the core is now fully terminated
293 LIB_DEBUG_PRINT_SAFE("Kernel : core %p main ended (%p)\n", proc, proc->runner);
294
295 return NULL;
296}
297
298void start(processor * this) {
299 LIB_DEBUG_PRINT_SAFE("Kernel : Starting core %p\n", this);
300
301 // pthread_attr_t attributes;
302 // pthread_attr_init( &attributes );
303
304 pthread_create( &this->kernel_thread, NULL, CtxInvokeProcessor, (void*)this );
305
306 // pthread_attr_destroy( &attributes );
307
308 LIB_DEBUG_PRINT_SAFE("Kernel : core %p started\n", this);
309}
310
311//-----------------------------------------------------------------------------
312// Scheduler routines
313void ScheduleThread( thread_desc * thrd ) {
314 if( !thrd ) return;
315
316 assertf( thrd->next == NULL, "Expected null got %p", thrd->next );
317
318 lock( &systemProcessor->cltr->lock );
319 append( &systemProcessor->cltr->ready_queue, thrd );
320 unlock( &systemProcessor->cltr->lock );
321}
322
323thread_desc * nextThread(cluster * this) {
324 lock( &this->lock );
325 thread_desc * head = pop_head( &this->ready_queue );
326 unlock( &this->lock );
327 return head;
328}
329
330void ScheduleInternal() {
331 suspend();
332}
333
334void ScheduleInternal( spinlock * lock ) {
335 this_processor->finish.action_code = Release;
336 this_processor->finish.lock = lock;
337 suspend();
338}
339
340void ScheduleInternal( thread_desc * thrd ) {
341 this_processor->finish.action_code = Schedule;
342 this_processor->finish.thrd = thrd;
343 suspend();
344}
345
346void ScheduleInternal( spinlock * lock, thread_desc * thrd ) {
347 this_processor->finish.action_code = Release_Schedule;
348 this_processor->finish.lock = lock;
349 this_processor->finish.thrd = thrd;
350 suspend();
351}
352
353void ScheduleInternal(spinlock ** locks, unsigned short count) {
354 this_processor->finish.action_code = Release_Multi;
355 this_processor->finish.locks = locks;
356 this_processor->finish.lock_count = count;
357 suspend();
358}
359
360void ScheduleInternal(spinlock ** locks, unsigned short lock_count, thread_desc ** thrds, unsigned short thrd_count) {
361 this_processor->finish.action_code = Release_Multi_Schedule;
362 this_processor->finish.locks = locks;
363 this_processor->finish.lock_count = lock_count;
364 this_processor->finish.thrds = thrds;
365 this_processor->finish.thrd_count = thrd_count;
366 suspend();
367}
368
369//-----------------------------------------------------------------------------
370// Kernel boot procedures
371void kernel_startup(void) {
372 LIB_DEBUG_PRINT_SAFE("Kernel : Starting\n");
373
374 // Start by initializing the main thread
375 // SKULLDUGGERY: the mainThread steals the process main thread
376 // which will then be scheduled by the systemProcessor normally
377 mainThread = (thread_desc *)&mainThread_storage;
378 current_stack_info_t info;
379 mainThread{ &info };
380
381 // Initialize the system cluster
382 systemCluster = (cluster *)&systemCluster_storage;
383 systemCluster{};
384
385 // Initialize the system processor and the system processor ctx
386 // (the coroutine that contains the processing control flow)
387 systemProcessor = (processor *)&systemProcessor_storage;
388 systemProcessor{ systemCluster, (processorCtx_t *)&systemProcessorCtx_storage };
389
390 // Add the main thread to the ready queue
391 // once resume is called on systemProcessor->ctx the mainThread needs to be scheduled like any normal thread
392 ScheduleThread(mainThread);
393
394 //initialize the global state variables
395 this_processor = systemProcessor;
396 this_processor->current_thread = mainThread;
397 this_processor->current_coroutine = &mainThread->cor;
398
399 // SKULLDUGGERY: Force a context switch to the system processor to set the main thread's context to the current UNIX
400 // context. Hence, the main thread does not begin through CtxInvokeThread, like all other threads. The trick here is that
401 // mainThread is on the ready queue when this call is made.
402 resume(systemProcessor->runner);
403
404
405
406 // THE SYSTEM IS NOW COMPLETELY RUNNING
407 LIB_DEBUG_PRINT_SAFE("Kernel : Started\n--------------------------------------------------\n\n");
408}
409
410void kernel_shutdown(void) {
411 LIB_DEBUG_PRINT_SAFE("\n--------------------------------------------------\nKernel : Shutting down\n");
412
413 // SKULLDUGGERY: Notify the systemProcessor it needs to terminates.
414 // When its coroutine terminates, it return control to the mainThread
415 // which is currently here
416 systemProcessor->is_terminated = true;
417 suspend();
418
419 // THE SYSTEM IS NOW COMPLETELY STOPPED
420
421 // Destroy the system processor and its context in reverse order of construction
422 // These were manually constructed so we need manually destroy them
423 ^(systemProcessor->runner){};
424 ^(systemProcessor){};
425
426 // Final step, destroy the main thread since it is no longer needed
427 // Since we provided a stack to this taxk it will not destroy anything
428 ^(mainThread){};
429
430 LIB_DEBUG_PRINT_SAFE("Kernel : Shutdown complete\n");
431}
432
433static spinlock kernel_abort_lock;
434static spinlock kernel_debug_lock;
435static bool kernel_abort_called = false;
436
437void * kernel_abort (void) __attribute__ ((__nothrow__)) {
438 // abort cannot be recursively entered by the same or different processors because all signal handlers return when
439 // the globalAbort flag is true.
440 lock( &kernel_abort_lock );
441
442 // first task to abort ?
443 if ( !kernel_abort_called ) { // not first task to abort ?
444 kernel_abort_called = true;
445 unlock( &kernel_abort_lock );
446 }
447 else {
448 unlock( &kernel_abort_lock );
449
450 sigset_t mask;
451 sigemptyset( &mask );
452 sigaddset( &mask, SIGALRM ); // block SIGALRM signals
453 sigaddset( &mask, SIGUSR1 ); // block SIGUSR1 signals
454 sigsuspend( &mask ); // block the processor to prevent further damage during abort
455 _exit( EXIT_FAILURE ); // if processor unblocks before it is killed, terminate it
456 }
457
458 return this_thread();
459}
460
461void kernel_abort_msg( void * kernel_data, char * abort_text, int abort_text_size ) {
462 thread_desc * thrd = kernel_data;
463
464 int len = snprintf( abort_text, abort_text_size, "Error occurred while executing task %.256s (%p)", thrd->cor.name, thrd );
465 __lib_debug_write( STDERR_FILENO, abort_text, len );
466
467 if ( thrd != this_coroutine() ) {
468 len = snprintf( abort_text, abort_text_size, " in coroutine %.256s (%p).\n", this_coroutine()->name, this_coroutine() );
469 __lib_debug_write( STDERR_FILENO, abort_text, len );
470 }
471 else {
472 __lib_debug_write( STDERR_FILENO, ".\n", 2 );
473 }
474}
475
476extern "C" {
477 void __lib_debug_acquire() {
478 lock(&kernel_debug_lock);
479 }
480
481 void __lib_debug_release() {
482 unlock(&kernel_debug_lock);
483 }
484}
485
486//-----------------------------------------------------------------------------
487// Locks
488void ?{}( spinlock * this ) {
489 this->lock = 0;
490}
491void ^?{}( spinlock * this ) {
492
493}
494
495void lock( spinlock * this ) {
496 for ( unsigned int i = 1;; i += 1 ) {
497 if ( this->lock == 0 && __sync_lock_test_and_set_4( &this->lock, 1 ) == 0 ) break;
498 }
499}
500
501void unlock( spinlock * this ) {
502 __sync_lock_release_4( &this->lock );
503}
504
505void ?{}( signal_once * this ) {
506 this->cond = false;
507}
508void ^?{}( signal_once * this ) {
509
510}
511
512void wait( signal_once * this ) {
513 lock( &this->lock );
514 if( !this->cond ) {
515 append( &this->blocked, this_thread() );
516 ScheduleInternal( &this->lock );
517 lock( &this->lock );
518 }
519 unlock( &this->lock );
520}
521
522void signal( signal_once * this ) {
523 lock( &this->lock );
524 {
525 this->cond = true;
526
527 thread_desc * it;
528 while( it = pop_head( &this->blocked) ) {
529 ScheduleThread( it );
530 }
531 }
532 unlock( &this->lock );
533}
534
535//-----------------------------------------------------------------------------
536// Queues
537void ?{}( __thread_queue_t * this ) {
538 this->head = NULL;
539 this->tail = &this->head;
540}
541
542void append( __thread_queue_t * this, thread_desc * t ) {
543 assert(this->tail != NULL);
544 *this->tail = t;
545 this->tail = &t->next;
546}
547
548thread_desc * pop_head( __thread_queue_t * this ) {
549 thread_desc * head = this->head;
550 if( head ) {
551 this->head = head->next;
552 if( !head->next ) {
553 this->tail = &this->head;
554 }
555 head->next = NULL;
556 }
557 return head;
558}
559
560void ?{}( __condition_stack_t * this ) {
561 this->top = NULL;
562}
563
564void push( __condition_stack_t * this, __condition_criterion_t * t ) {
565 assert( !t->next );
566 t->next = this->top;
567 this->top = t;
568}
569
570__condition_criterion_t * pop( __condition_stack_t * this ) {
571 __condition_criterion_t * top = this->top;
572 if( top ) {
573 this->top = top->next;
574 top->next = NULL;
575 }
576 return top;
577}
578// Local Variables: //
579// mode: c //
580// tab-width: 4 //
581// End: //
Note: See TracBrowser for help on using the repository browser.