source: src/libcfa/concurrency/kernel.c@ a43c561

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors deferred_resn demangler enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum with_gc
Last change on this file since a43c561 was ea8b2f7, checked in by Thierry Delisle <tdelisle@…>, 7 years ago

Immetidate fix for halting processors, drifting still an issue

  • Property mode set to 100644
File size: 24.7 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// kernel.c --
8//
9// Author : Thierry Delisle
10// Created On : Tue Jan 17 12:27:26 2017
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Mon Apr 9 16:11:46 2018
13// Update Count : 24
14//
15
16//C Includes
17#include <stddef.h>
18#include <errno.h>
19#include <string.h>
20extern "C" {
21#include <stdio.h>
22#include <fenv.h>
23#include <sys/resource.h>
24#include <signal.h>
25#include <unistd.h>
26}
27
28//CFA Includes
29#include "time"
30#include "kernel_private.h"
31#include "preemption.h"
32#include "startup.h"
33
34//Private includes
35#define __CFA_INVOKE_PRIVATE__
36#include "invoke.h"
37
38//Start and stop routine for the kernel, declared first to make sure they run first
39void kernel_startup(void) __attribute__(( constructor( STARTUP_PRIORITY_KERNEL ) ));
40void kernel_shutdown(void) __attribute__(( destructor ( STARTUP_PRIORITY_KERNEL ) ));
41
42//-----------------------------------------------------------------------------
43// Kernel storage
44KERNEL_STORAGE(cluster, mainCluster);
45KERNEL_STORAGE(processor, mainProcessor);
46KERNEL_STORAGE(thread_desc, mainThread);
47KERNEL_STORAGE(machine_context_t, mainThreadCtx);
48
49cluster * mainCluster;
50processor * mainProcessor;
51thread_desc * mainThread;
52
53extern "C" {
54struct { __dllist_t(cluster) list; __spinlock_t lock; } __cfa_dbg_global_clusters;
55}
56
57//-----------------------------------------------------------------------------
58// Global state
59thread_local struct KernelThreadData kernelTLS = {
60 NULL,
61 NULL,
62 NULL,
63 { 1, false, false }
64};
65
66//-----------------------------------------------------------------------------
67// Struct to steal stack
68struct current_stack_info_t {
69 machine_context_t ctx;
70 unsigned int size; // size of stack
71 void *base; // base of stack
72 void *storage; // pointer to stack
73 void *limit; // stack grows towards stack limit
74 void *context; // address of cfa_context_t
75 void *top; // address of top of storage
76};
77
78void ?{}( current_stack_info_t & this ) {
79 CtxGet( this.ctx );
80 this.base = this.ctx.FP;
81 this.storage = this.ctx.SP;
82
83 rlimit r;
84 getrlimit( RLIMIT_STACK, &r);
85 this.size = r.rlim_cur;
86
87 this.limit = (void *)(((intptr_t)this.base) - this.size);
88 this.context = &storage_mainThreadCtx;
89 this.top = this.base;
90}
91
92//-----------------------------------------------------------------------------
93// Main thread construction
94void ?{}( coStack_t & this, current_stack_info_t * info) with( this ) {
95 size = info->size;
96 storage = info->storage;
97 limit = info->limit;
98 base = info->base;
99 context = info->context;
100 top = info->top;
101 userStack = true;
102}
103
104void ?{}( coroutine_desc & this, current_stack_info_t * info) with( this ) {
105 stack{ info };
106 name = "Main Thread";
107 errno_ = 0;
108 state = Start;
109 starter = NULL;
110}
111
112void ?{}( thread_desc & this, current_stack_info_t * info) with( this ) {
113 self_cor{ info };
114 curr_cor = &self_cor;
115 curr_cluster = mainCluster;
116 self_mon.owner = &this;
117 self_mon.recursion = 1;
118 self_mon_p = &self_mon;
119 next = NULL;
120
121 node.next = NULL;
122 node.prev = NULL;
123 doregister(curr_cluster, this);
124
125 monitors{ &self_mon_p, 1, (fptr_t)0 };
126}
127
128//-----------------------------------------------------------------------------
129// Processor coroutine
130void ?{}(processorCtx_t & this) {
131
132}
133
134// Construct the processor context of non-main processors
135void ?{}(processorCtx_t & this, processor * proc, current_stack_info_t * info) {
136 (this.__cor){ info };
137 this.proc = proc;
138}
139
140void ?{}(processor & this, const char * name, cluster & cltr) with( this ) {
141 this.name = name;
142 this.cltr = &cltr;
143 terminated{ 0 };
144 do_terminate = false;
145 preemption_alarm = NULL;
146 pending_preemption = false;
147 runner.proc = &this;
148
149 sem_init(&idleLock, 0, 0);
150
151 start( &this );
152}
153
154void ^?{}(processor & this) with( this ){
155 if( ! __atomic_load_n(&do_terminate, __ATOMIC_ACQUIRE) ) {
156 __cfaabi_dbg_print_safe("Kernel : core %p signaling termination\n", &this);
157 terminate(&this);
158 verify( __atomic_load_n(&do_terminate, __ATOMIC_SEQ_CST) );
159 verify( kernelTLS.this_processor != &this);
160 P( terminated );
161 verify( kernelTLS.this_processor != &this);
162 pthread_join( kernel_thread, NULL );
163 }
164
165 sem_destroy(&idleLock);
166}
167
168void ?{}(cluster & this, const char * name, Duration preemption_rate) with( this ) {
169 this.name = name;
170 this.preemption_rate = preemption_rate;
171 ready_queue{};
172 ready_queue_lock{};
173
174 procs{ __get };
175 idles{ __get };
176 threads{ __get };
177
178 doregister(this);
179}
180
181void ^?{}(cluster & this) {
182 unregister(this);
183}
184
185//=============================================================================================
186// Kernel Scheduling logic
187//=============================================================================================
188//Main of the processor contexts
189void main(processorCtx_t & runner) {
190 processor * this = runner.proc;
191 verify(this);
192
193 __cfaabi_dbg_print_safe("Kernel : core %p starting\n", this);
194
195 doregister(this->cltr, this);
196
197 {
198 // Setup preemption data
199 preemption_scope scope = { this };
200
201 __cfaabi_dbg_print_safe("Kernel : core %p started\n", this);
202
203 thread_desc * readyThread = NULL;
204 for( unsigned int spin_count = 0; ! __atomic_load_n(&this->do_terminate, __ATOMIC_SEQ_CST); spin_count++ )
205 {
206 readyThread = nextThread( this->cltr );
207
208 if(readyThread)
209 {
210 verify( ! kernelTLS.preemption_state.enabled );
211
212 runThread(this, readyThread);
213
214 verify( ! kernelTLS.preemption_state.enabled );
215
216 //Some actions need to be taken from the kernel
217 finishRunning(this);
218
219 spin_count = 0;
220 }
221 else
222 {
223 // spin(this, &spin_count);
224 halt(this);
225 }
226 }
227
228 __cfaabi_dbg_print_safe("Kernel : core %p stopping\n", this);
229 }
230
231 unregister(this->cltr, this);
232
233 V( this->terminated );
234
235 __cfaabi_dbg_print_safe("Kernel : core %p terminated\n", this);
236}
237
238// KERNEL ONLY
239// runThread runs a thread by context switching
240// from the processor coroutine to the target thread
241void runThread(processor * this, thread_desc * dst) {
242 assert(dst->curr_cor);
243 coroutine_desc * proc_cor = get_coroutine(this->runner);
244 coroutine_desc * thrd_cor = dst->curr_cor;
245
246 // Reset the terminating actions here
247 this->finish.action_code = No_Action;
248
249 // Update global state
250 kernelTLS.this_thread = dst;
251
252 // Context Switch to the thread
253 ThreadCtxSwitch(proc_cor, thrd_cor);
254 // when ThreadCtxSwitch returns we are back in the processor coroutine
255}
256
257// KERNEL_ONLY
258void returnToKernel() {
259 coroutine_desc * proc_cor = get_coroutine(kernelTLS.this_processor->runner);
260 coroutine_desc * thrd_cor = kernelTLS.this_thread->curr_cor = kernelTLS.this_coroutine;
261 ThreadCtxSwitch(thrd_cor, proc_cor);
262}
263
264// KERNEL_ONLY
265// Once a thread has finished running, some of
266// its final actions must be executed from the kernel
267void finishRunning(processor * this) with( this->finish ) {
268 verify( ! kernelTLS.preemption_state.enabled );
269 choose( action_code ) {
270 case No_Action:
271 break;
272 case Release:
273 unlock( *lock );
274 case Schedule:
275 ScheduleThread( thrd );
276 case Release_Schedule:
277 unlock( *lock );
278 ScheduleThread( thrd );
279 case Release_Multi:
280 for(int i = 0; i < lock_count; i++) {
281 unlock( *locks[i] );
282 }
283 case Release_Multi_Schedule:
284 for(int i = 0; i < lock_count; i++) {
285 unlock( *locks[i] );
286 }
287 for(int i = 0; i < thrd_count; i++) {
288 ScheduleThread( thrds[i] );
289 }
290 case Callback:
291 callback();
292 default:
293 abort("KERNEL ERROR: Unexpected action to run after thread");
294 }
295}
296
297// Handles spinning logic
298// TODO : find some strategy to put cores to sleep after some time
299void spin(processor * this, unsigned int * spin_count) {
300 // (*spin_count)++;
301 halt(this);
302}
303
304// KERNEL_ONLY
305// Context invoker for processors
306// This is the entry point for processors (kernel threads)
307// It effectively constructs a coroutine by stealing the pthread stack
308void * CtxInvokeProcessor(void * arg) {
309 processor * proc = (processor *) arg;
310 kernelTLS.this_processor = proc;
311 kernelTLS.this_coroutine = NULL;
312 kernelTLS.this_thread = NULL;
313 kernelTLS.preemption_state.[enabled, disable_count] = [false, 1];
314 // SKULLDUGGERY: We want to create a context for the processor coroutine
315 // which is needed for the 2-step context switch. However, there is no reason
316 // to waste the perfectly valid stack create by pthread.
317 current_stack_info_t info;
318 machine_context_t ctx;
319 info.context = &ctx;
320 (proc->runner){ proc, &info };
321
322 __cfaabi_dbg_print_safe("Coroutine : created stack %p\n", get_coroutine(proc->runner)->stack.base);
323
324 //Set global state
325 kernelTLS.this_coroutine = get_coroutine(proc->runner);
326 kernelTLS.this_thread = NULL;
327
328 //We now have a proper context from which to schedule threads
329 __cfaabi_dbg_print_safe("Kernel : core %p created (%p, %p)\n", proc, &proc->runner, &ctx);
330
331 // SKULLDUGGERY: Since the coroutine doesn't have its own stack, we can't
332 // resume it to start it like it normally would, it will just context switch
333 // back to here. Instead directly call the main since we already are on the
334 // appropriate stack.
335 get_coroutine(proc->runner)->state = Active;
336 main( proc->runner );
337 get_coroutine(proc->runner)->state = Halted;
338
339 // Main routine of the core returned, the core is now fully terminated
340 __cfaabi_dbg_print_safe("Kernel : core %p main ended (%p)\n", proc, &proc->runner);
341
342 return NULL;
343}
344
345void start(processor * this) {
346 __cfaabi_dbg_print_safe("Kernel : Starting core %p\n", this);
347
348 pthread_create( &this->kernel_thread, NULL, CtxInvokeProcessor, (void*)this );
349
350 __cfaabi_dbg_print_safe("Kernel : core %p started\n", this);
351}
352
353// KERNEL_ONLY
354void kernel_first_resume(processor * this) {
355 coroutine_desc * src = kernelTLS.this_coroutine;
356 coroutine_desc * dst = get_coroutine(this->runner);
357
358 verify( ! kernelTLS.preemption_state.enabled );
359
360 create_stack(&dst->stack, dst->stack.size);
361 CtxStart(&this->runner, CtxInvokeCoroutine);
362
363 verify( ! kernelTLS.preemption_state.enabled );
364
365 dst->last = src;
366 dst->starter = dst->starter ? dst->starter : src;
367
368 // set state of current coroutine to inactive
369 src->state = src->state == Halted ? Halted : Inactive;
370
371 // set new coroutine that task is executing
372 kernelTLS.this_coroutine = dst;
373
374 // SKULLDUGGERY normally interrupts are enable before leaving a coroutine ctxswitch.
375 // Therefore, when first creating a coroutine, interrupts are enable before calling the main.
376 // This is consistent with thread creation. However, when creating the main processor coroutine,
377 // we wan't interrupts to be disabled. Therefore, we double-disable interrupts here so they will
378 // stay disabled.
379 disable_interrupts();
380
381 // context switch to specified coroutine
382 assert( src->stack.context );
383 CtxSwitch( src->stack.context, dst->stack.context );
384 // when CtxSwitch returns we are back in the src coroutine
385
386 // set state of new coroutine to active
387 src->state = Active;
388
389 verify( ! kernelTLS.preemption_state.enabled );
390}
391
392//-----------------------------------------------------------------------------
393// Scheduler routines
394
395// KERNEL ONLY
396void ScheduleThread( thread_desc * thrd ) {
397 verify( thrd );
398 verify( thrd->self_cor.state != Halted );
399
400 verify( ! kernelTLS.preemption_state.enabled );
401
402 verifyf( thrd->next == NULL, "Expected null got %p", thrd->next );
403
404 with( *thrd->curr_cluster ) {
405 lock ( ready_queue_lock __cfaabi_dbg_ctx2 );
406 bool was_empty = !(ready_queue != 0);
407 append( ready_queue, thrd );
408 unlock( ready_queue_lock );
409
410 if( was_empty ) {
411 lock (proc_list_lock __cfaabi_dbg_ctx2);
412 if(idles) {
413 wake(idles.head);
414 }
415 unlock (proc_list_lock);
416 }
417 }
418
419 verify( ! kernelTLS.preemption_state.enabled );
420}
421
422// KERNEL ONLY
423thread_desc * nextThread(cluster * this) with( *this ) {
424 verify( ! kernelTLS.preemption_state.enabled );
425 lock( ready_queue_lock __cfaabi_dbg_ctx2 );
426 thread_desc * head = pop_head( ready_queue );
427 unlock( ready_queue_lock );
428 verify( ! kernelTLS.preemption_state.enabled );
429 return head;
430}
431
432void BlockInternal() {
433 disable_interrupts();
434 verify( ! kernelTLS.preemption_state.enabled );
435 returnToKernel();
436 verify( ! kernelTLS.preemption_state.enabled );
437 enable_interrupts( __cfaabi_dbg_ctx );
438}
439
440void BlockInternal( __spinlock_t * lock ) {
441 disable_interrupts();
442 with( *kernelTLS.this_processor ) {
443 finish.action_code = Release;
444 finish.lock = lock;
445 }
446
447 verify( ! kernelTLS.preemption_state.enabled );
448 returnToKernel();
449 verify( ! kernelTLS.preemption_state.enabled );
450
451 enable_interrupts( __cfaabi_dbg_ctx );
452}
453
454void BlockInternal( thread_desc * thrd ) {
455 disable_interrupts();
456 with( * kernelTLS.this_processor ) {
457 finish.action_code = Schedule;
458 finish.thrd = thrd;
459 }
460
461 verify( ! kernelTLS.preemption_state.enabled );
462 returnToKernel();
463 verify( ! kernelTLS.preemption_state.enabled );
464
465 enable_interrupts( __cfaabi_dbg_ctx );
466}
467
468void BlockInternal( __spinlock_t * lock, thread_desc * thrd ) {
469 assert(thrd);
470 disable_interrupts();
471 with( * kernelTLS.this_processor ) {
472 finish.action_code = Release_Schedule;
473 finish.lock = lock;
474 finish.thrd = thrd;
475 }
476
477 verify( ! kernelTLS.preemption_state.enabled );
478 returnToKernel();
479 verify( ! kernelTLS.preemption_state.enabled );
480
481 enable_interrupts( __cfaabi_dbg_ctx );
482}
483
484void BlockInternal(__spinlock_t * locks [], unsigned short count) {
485 disable_interrupts();
486 with( * kernelTLS.this_processor ) {
487 finish.action_code = Release_Multi;
488 finish.locks = locks;
489 finish.lock_count = count;
490 }
491
492 verify( ! kernelTLS.preemption_state.enabled );
493 returnToKernel();
494 verify( ! kernelTLS.preemption_state.enabled );
495
496 enable_interrupts( __cfaabi_dbg_ctx );
497}
498
499void BlockInternal(__spinlock_t * locks [], unsigned short lock_count, thread_desc * thrds [], unsigned short thrd_count) {
500 disable_interrupts();
501 with( *kernelTLS.this_processor ) {
502 finish.action_code = Release_Multi_Schedule;
503 finish.locks = locks;
504 finish.lock_count = lock_count;
505 finish.thrds = thrds;
506 finish.thrd_count = thrd_count;
507 }
508
509 verify( ! kernelTLS.preemption_state.enabled );
510 returnToKernel();
511 verify( ! kernelTLS.preemption_state.enabled );
512
513 enable_interrupts( __cfaabi_dbg_ctx );
514}
515
516void BlockInternal(__finish_callback_fptr_t callback) {
517 disable_interrupts();
518 with( *kernelTLS.this_processor ) {
519 finish.action_code = Callback;
520 finish.callback = callback;
521 }
522
523 verify( ! kernelTLS.preemption_state.enabled );
524 returnToKernel();
525 verify( ! kernelTLS.preemption_state.enabled );
526
527 enable_interrupts( __cfaabi_dbg_ctx );
528}
529
530// KERNEL ONLY
531void LeaveThread(__spinlock_t * lock, thread_desc * thrd) {
532 verify( ! kernelTLS.preemption_state.enabled );
533 with( * kernelTLS.this_processor ) {
534 finish.action_code = thrd ? Release_Schedule : Release;
535 finish.lock = lock;
536 finish.thrd = thrd;
537 }
538
539 returnToKernel();
540}
541
542//=============================================================================================
543// Kernel Setup logic
544//=============================================================================================
545//-----------------------------------------------------------------------------
546// Kernel boot procedures
547void kernel_startup(void) {
548 verify( ! kernelTLS.preemption_state.enabled );
549 __cfaabi_dbg_print_safe("Kernel : Starting\n");
550
551 __cfa_dbg_global_clusters.list{ __get };
552 __cfa_dbg_global_clusters.lock{};
553
554 // Initialize the main cluster
555 mainCluster = (cluster *)&storage_mainCluster;
556 (*mainCluster){"Main Cluster"};
557
558 __cfaabi_dbg_print_safe("Kernel : Main cluster ready\n");
559
560 // Start by initializing the main thread
561 // SKULLDUGGERY: the mainThread steals the process main thread
562 // which will then be scheduled by the mainProcessor normally
563 mainThread = (thread_desc *)&storage_mainThread;
564 current_stack_info_t info;
565 (*mainThread){ &info };
566
567 __cfaabi_dbg_print_safe("Kernel : Main thread ready\n");
568
569
570
571 // Construct the processor context of the main processor
572 void ?{}(processorCtx_t & this, processor * proc) {
573 (this.__cor){ "Processor" };
574 this.__cor.starter = NULL;
575 this.proc = proc;
576 }
577
578 void ?{}(processor & this) with( this ) {
579 name = "Main Processor";
580 cltr = mainCluster;
581 terminated{ 0 };
582 do_terminate = false;
583 preemption_alarm = NULL;
584 pending_preemption = false;
585 kernel_thread = pthread_self();
586
587 runner{ &this };
588 __cfaabi_dbg_print_safe("Kernel : constructed main processor context %p\n", &runner);
589 }
590
591 // Initialize the main processor and the main processor ctx
592 // (the coroutine that contains the processing control flow)
593 mainProcessor = (processor *)&storage_mainProcessor;
594 (*mainProcessor){};
595
596 //initialize the global state variables
597 kernelTLS.this_processor = mainProcessor;
598 kernelTLS.this_thread = mainThread;
599 kernelTLS.this_coroutine = &mainThread->self_cor;
600
601 // Enable preemption
602 kernel_start_preemption();
603
604 // Add the main thread to the ready queue
605 // once resume is called on mainProcessor->runner the mainThread needs to be scheduled like any normal thread
606 ScheduleThread(mainThread);
607
608 // SKULLDUGGERY: Force a context switch to the main processor to set the main thread's context to the current UNIX
609 // context. Hence, the main thread does not begin through CtxInvokeThread, like all other threads. The trick here is that
610 // mainThread is on the ready queue when this call is made.
611 kernel_first_resume( kernelTLS.this_processor );
612
613
614
615 // THE SYSTEM IS NOW COMPLETELY RUNNING
616 __cfaabi_dbg_print_safe("Kernel : Started\n--------------------------------------------------\n\n");
617
618 verify( ! kernelTLS.preemption_state.enabled );
619 enable_interrupts( __cfaabi_dbg_ctx );
620 verify( TL_GET( preemption_state.enabled ) );
621}
622
623void kernel_shutdown(void) {
624 __cfaabi_dbg_print_safe("\n--------------------------------------------------\nKernel : Shutting down\n");
625
626 verify( TL_GET( preemption_state.enabled ) );
627 disable_interrupts();
628 verify( ! kernelTLS.preemption_state.enabled );
629
630 // SKULLDUGGERY: Notify the mainProcessor it needs to terminates.
631 // When its coroutine terminates, it return control to the mainThread
632 // which is currently here
633 __atomic_store_n(&mainProcessor->do_terminate, true, __ATOMIC_RELEASE);
634 returnToKernel();
635 mainThread->self_cor.state = Halted;
636
637 // THE SYSTEM IS NOW COMPLETELY STOPPED
638
639 // Disable preemption
640 kernel_stop_preemption();
641
642 // Destroy the main processor and its context in reverse order of construction
643 // These were manually constructed so we need manually destroy them
644 ^(mainProcessor->runner){};
645 ^(mainProcessor){};
646
647 // Final step, destroy the main thread since it is no longer needed
648 // Since we provided a stack to this taxk it will not destroy anything
649 ^(mainThread){};
650
651 ^(__cfa_dbg_global_clusters.list){};
652 ^(__cfa_dbg_global_clusters.lock){};
653
654 __cfaabi_dbg_print_safe("Kernel : Shutdown complete\n");
655}
656
657//=============================================================================================
658// Kernel Quiescing
659//=============================================================================================
660
661void halt(processor * this) with( *this ) {
662 verify( ! __atomic_load_n(&do_terminate, __ATOMIC_SEQ_CST) );
663
664 with( *cltr ) {
665 lock (proc_list_lock __cfaabi_dbg_ctx2);
666 remove (procs, *this);
667 push_front(idles, *this);
668 unlock (proc_list_lock);
669 }
670
671 __cfaabi_dbg_print_safe("Kernel : Processor %p ready to sleep\n", this);
672
673 // #ifdef __CFA_WITH_VERIFY__
674 // int sval = 0;
675 // sem_getvalue(&this->idleLock, &sval);
676 // verifyf(sval < 200, "Binary semaphore reached value %d : \n", sval);
677 // #endif
678
679 verify( ! __atomic_load_n(&do_terminate, __ATOMIC_SEQ_CST) );
680 int __attribute__((unused)) ret = sem_wait(&idleLock);
681 // verifyf(ret >= 0 || errno == EINTR, "Sem_wait returned %d (errno %d : %s\n", ret, errno, strerror(errno));
682
683 // wait( idleLock );
684
685 __cfaabi_dbg_print_safe("Kernel : Processor %p woke up and ready to run\n", this);
686
687 with( *cltr ) {
688 lock (proc_list_lock __cfaabi_dbg_ctx2);
689 remove (idles, *this);
690 push_front(procs, *this);
691 unlock (proc_list_lock);
692 }
693}
694
695void wake(processor * this) {
696 __cfaabi_dbg_print_safe("Kernel : Waking up processor %p\n", this);
697 int __attribute__((unused)) ret = sem_post(&this->idleLock);
698 // verifyf(ret >= 0 || errno == EINTR, "Sem_post returned %d (errno %d : %s\n", ret, errno, strerror(errno));
699
700 // #ifdef __CFA_WITH_VERIFY__
701 // int sval = 0;
702 // sem_getvalue(&this->idleLock, &sval);
703 // verifyf(sval < 200, "Binary semaphore reached value %d\n", sval);
704 // #endif
705
706 // post( this->idleLock );
707}
708
709//=============================================================================================
710// Unexpected Terminating logic
711//=============================================================================================
712
713
714static __spinlock_t kernel_abort_lock;
715static bool kernel_abort_called = false;
716
717void * kernel_abort(void) __attribute__ ((__nothrow__)) {
718 // abort cannot be recursively entered by the same or different processors because all signal handlers return when
719 // the globalAbort flag is true.
720 lock( kernel_abort_lock __cfaabi_dbg_ctx2 );
721
722 // first task to abort ?
723 if ( kernel_abort_called ) { // not first task to abort ?
724 unlock( kernel_abort_lock );
725
726 sigset_t mask;
727 sigemptyset( &mask );
728 sigaddset( &mask, SIGALRM ); // block SIGALRM signals
729 sigsuspend( &mask ); // block the processor to prevent further damage during abort
730 _exit( EXIT_FAILURE ); // if processor unblocks before it is killed, terminate it
731 }
732 else {
733 kernel_abort_called = true;
734 unlock( kernel_abort_lock );
735 }
736
737 return kernelTLS.this_thread;
738}
739
740void kernel_abort_msg( void * kernel_data, char * abort_text, int abort_text_size ) {
741 thread_desc * thrd = kernel_data;
742
743 if(thrd) {
744 int len = snprintf( abort_text, abort_text_size, "Error occurred while executing thread %.256s (%p)", thrd->self_cor.name, thrd );
745 __cfaabi_dbg_bits_write( abort_text, len );
746
747 if ( get_coroutine(thrd) != kernelTLS.this_coroutine ) {
748 len = snprintf( abort_text, abort_text_size, " in coroutine %.256s (%p).\n", kernelTLS.this_coroutine->name, kernelTLS.this_coroutine );
749 __cfaabi_dbg_bits_write( abort_text, len );
750 }
751 else {
752 __cfaabi_dbg_bits_write( ".\n", 2 );
753 }
754 }
755 else {
756 int len = snprintf( abort_text, abort_text_size, "Error occurred outside of any thread.\n" );
757 __cfaabi_dbg_bits_write( abort_text, len );
758 }
759}
760
761int kernel_abort_lastframe( void ) __attribute__ ((__nothrow__)) {
762 return get_coroutine(kernelTLS.this_thread) == get_coroutine(mainThread) ? 4 : 2;
763}
764
765static __spinlock_t kernel_debug_lock;
766
767extern "C" {
768 void __cfaabi_dbg_bits_acquire() {
769 lock( kernel_debug_lock __cfaabi_dbg_ctx2 );
770 }
771
772 void __cfaabi_dbg_bits_release() {
773 unlock( kernel_debug_lock );
774 }
775}
776
777//=============================================================================================
778// Kernel Utilities
779//=============================================================================================
780//-----------------------------------------------------------------------------
781// Locks
782void ?{}( semaphore & this, int count = 1 ) {
783 (this.lock){};
784 this.count = count;
785 (this.waiting){};
786}
787void ^?{}(semaphore & this) {}
788
789void P(semaphore & this) with( this ){
790 lock( lock __cfaabi_dbg_ctx2 );
791 count -= 1;
792 if ( count < 0 ) {
793 // queue current task
794 append( waiting, kernelTLS.this_thread );
795
796 // atomically release spin lock and block
797 BlockInternal( &lock );
798 }
799 else {
800 unlock( lock );
801 }
802}
803
804void V(semaphore & this) with( this ) {
805 thread_desc * thrd = NULL;
806 lock( lock __cfaabi_dbg_ctx2 );
807 count += 1;
808 if ( count <= 0 ) {
809 // remove task at head of waiting list
810 thrd = pop_head( waiting );
811 }
812
813 unlock( lock );
814
815 // make new owner
816 WakeThread( thrd );
817}
818
819//-----------------------------------------------------------------------------
820// Global Queues
821void doregister( cluster & cltr ) {
822 lock ( __cfa_dbg_global_clusters.lock __cfaabi_dbg_ctx2);
823 push_front( __cfa_dbg_global_clusters.list, cltr );
824 unlock ( __cfa_dbg_global_clusters.lock );
825}
826
827void unregister( cluster & cltr ) {
828 lock ( __cfa_dbg_global_clusters.lock __cfaabi_dbg_ctx2);
829 remove( __cfa_dbg_global_clusters.list, cltr );
830 unlock( __cfa_dbg_global_clusters.lock );
831}
832
833void doregister( cluster * cltr, thread_desc & thrd ) {
834 lock (cltr->thread_list_lock __cfaabi_dbg_ctx2);
835 push_front(cltr->threads, thrd);
836 unlock (cltr->thread_list_lock);
837}
838
839void unregister( cluster * cltr, thread_desc & thrd ) {
840 lock (cltr->thread_list_lock __cfaabi_dbg_ctx2);
841 remove(cltr->threads, thrd );
842 unlock(cltr->thread_list_lock);
843}
844
845void doregister( cluster * cltr, processor * proc ) {
846 lock (cltr->proc_list_lock __cfaabi_dbg_ctx2);
847 push_front(cltr->procs, *proc);
848 unlock (cltr->proc_list_lock);
849}
850
851void unregister( cluster * cltr, processor * proc ) {
852 lock (cltr->proc_list_lock __cfaabi_dbg_ctx2);
853 remove(cltr->procs, *proc );
854 unlock(cltr->proc_list_lock);
855}
856
857//-----------------------------------------------------------------------------
858// Debug
859__cfaabi_dbg_debug_do(
860 void __cfaabi_dbg_record(__spinlock_t & this, const char * prev_name) {
861 this.prev_name = prev_name;
862 this.prev_thrd = kernelTLS.this_thread;
863 }
864)
865// Local Variables: //
866// mode: c //
867// tab-width: 4 //
868// End: //
Note: See TracBrowser for help on using the repository browser.