source: src/libcfa/concurrency/kernel.c@ 695e00d

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors deferred_resn demangler enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum resolv-new with_gc
Last change on this file since 695e00d was 6b224a52, checked in by Thierry Delisle <tdelisle@…>, 8 years ago

Merge branch 'master' of plg.uwaterloo.ca:software/cfa/cfa-cc

  • Property mode set to 100644
File size: 19.3 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// kernel.c --
8//
9// Author : Thierry Delisle
10// Created On : Tue Jan 17 12:27:26 2017
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Fri Jul 21 22:33:18 2017
13// Update Count : 2
14//
15
16#include "libhdr.h"
17
18//C Includes
19#include <stddef.h>
20extern "C" {
21#include <stdio.h>
22#include <fenv.h>
23#include <sys/resource.h>
24#include <signal.h>
25#include <unistd.h>
26}
27
28//CFA Includes
29#include "kernel_private.h"
30#include "preemption.h"
31#include "startup.h"
32
33//Private includes
34#define __CFA_INVOKE_PRIVATE__
35#include "invoke.h"
36
37//Start and stop routine for the kernel, declared first to make sure they run first
38void kernel_startup(void) __attribute__(( constructor( STARTUP_PRIORITY_KERNEL ) ));
39void kernel_shutdown(void) __attribute__(( destructor ( STARTUP_PRIORITY_KERNEL ) ));
40
41//-----------------------------------------------------------------------------
42// Kernel storage
43KERNEL_STORAGE(cluster, mainCluster);
44KERNEL_STORAGE(processor, mainProcessor);
45KERNEL_STORAGE(processorCtx_t, mainProcessorCtx);
46KERNEL_STORAGE(thread_desc, mainThread);
47KERNEL_STORAGE(machine_context_t, mainThreadCtx);
48
49cluster * mainCluster;
50processor * mainProcessor;
51thread_desc * mainThread;
52
53//-----------------------------------------------------------------------------
54// Global state
55
56thread_local coroutine_desc * volatile this_coroutine;
57thread_local thread_desc * volatile this_thread;
58thread_local processor * volatile this_processor;
59
60volatile thread_local bool preemption_in_progress = 0;
61volatile thread_local unsigned short disable_preempt_count = 1;
62
63//-----------------------------------------------------------------------------
64// Main thread construction
65struct current_stack_info_t {
66 machine_context_t ctx;
67 unsigned int size; // size of stack
68 void *base; // base of stack
69 void *storage; // pointer to stack
70 void *limit; // stack grows towards stack limit
71 void *context; // address of cfa_context_t
72 void *top; // address of top of storage
73};
74
75void ?{}( current_stack_info_t & this ) {
76 CtxGet( this.ctx );
77 this.base = this.ctx.FP;
78 this.storage = this.ctx.SP;
79
80 rlimit r;
81 getrlimit( RLIMIT_STACK, &r);
82 this.size = r.rlim_cur;
83
84 this.limit = (void *)(((intptr_t)this.base) - this.size);
85 this.context = &storage_mainThreadCtx;
86 this.top = this.base;
87}
88
89void ?{}( coStack_t & this, current_stack_info_t * info) {
90 this.size = info->size;
91 this.storage = info->storage;
92 this.limit = info->limit;
93 this.base = info->base;
94 this.context = info->context;
95 this.top = info->top;
96 this.userStack = true;
97}
98
99void ?{}( coroutine_desc & this, current_stack_info_t * info) {
100 (this.stack){ info };
101 this.name = "Main Thread";
102 this.errno_ = 0;
103 this.state = Start;
104}
105
106void ?{}( thread_desc & this, current_stack_info_t * info) {
107 (this.cor){ info };
108}
109
110//-----------------------------------------------------------------------------
111// Processor coroutine
112void ?{}(processorCtx_t & this, processor * proc) {
113 (this.__cor){ "Processor" };
114 this.proc = proc;
115 proc->runner = &this;
116}
117
118void ?{}(processorCtx_t & this, processor * proc, current_stack_info_t * info) {
119 (this.__cor){ info };
120 this.proc = proc;
121 proc->runner = &this;
122}
123
124void ?{}(processor & this) {
125 this{ mainCluster };
126}
127
128void ?{}(processor & this, cluster * cltr) {
129 this.cltr = cltr;
130 (this.terminated){ 0 };
131 this.do_terminate = false;
132 this.preemption_alarm = NULL;
133 this.pending_preemption = false;
134
135 start( &this );
136}
137
138void ?{}(processor & this, cluster * cltr, processorCtx_t & runner) {
139 this.cltr = cltr;
140 (this.terminated){ 0 };
141 this.do_terminate = false;
142 this.preemption_alarm = NULL;
143 this.pending_preemption = false;
144 this.kernel_thread = pthread_self();
145
146 this.runner = &runner;
147 LIB_DEBUG_PRINT_SAFE("Kernel : constructing main processor context %p\n", &runner);
148 runner{ &this };
149}
150
151void ^?{}(processor & this) {
152 if( ! this.do_terminate ) {
153 LIB_DEBUG_PRINT_SAFE("Kernel : core %p signaling termination\n", &this);
154 this.do_terminate = true;
155 P( &this.terminated );
156 pthread_join( this.kernel_thread, NULL );
157 }
158}
159
160void ?{}(cluster & this) {
161 ( this.ready_queue ){};
162 ( this.ready_queue_lock ){};
163
164 this.preemption = default_preemption();
165}
166
167void ^?{}(cluster & this) {
168
169}
170
171//=============================================================================================
172// Kernel Scheduling logic
173//=============================================================================================
174//Main of the processor contexts
175void main(processorCtx_t & runner) {
176 processor * this = runner.proc;
177
178 LIB_DEBUG_PRINT_SAFE("Kernel : core %p starting\n", this);
179
180 {
181 // Setup preemption data
182 preemption_scope scope = { this };
183
184 LIB_DEBUG_PRINT_SAFE("Kernel : core %p started\n", this);
185
186 thread_desc * readyThread = NULL;
187 for( unsigned int spin_count = 0; ! this->do_terminate; spin_count++ )
188 {
189 readyThread = nextThread( this->cltr );
190
191 if(readyThread)
192 {
193 verify( disable_preempt_count > 0 );
194
195 runThread(this, readyThread);
196
197 verify( disable_preempt_count > 0 );
198
199 //Some actions need to be taken from the kernel
200 finishRunning(this);
201
202 spin_count = 0;
203 }
204 else
205 {
206 spin(this, &spin_count);
207 }
208 }
209
210 LIB_DEBUG_PRINT_SAFE("Kernel : core %p stopping\n", this);
211 }
212
213 V( &this->terminated );
214
215 LIB_DEBUG_PRINT_SAFE("Kernel : core %p terminated\n", this);
216}
217
218// runThread runs a thread by context switching
219// from the processor coroutine to the target thread
220void runThread(processor * this, thread_desc * dst) {
221 coroutine_desc * proc_cor = get_coroutine(*this->runner);
222 coroutine_desc * thrd_cor = get_coroutine(dst);
223
224 //Reset the terminating actions here
225 this->finish.action_code = No_Action;
226
227 //Update global state
228 this_thread = dst;
229
230 // Context Switch to the thread
231 ThreadCtxSwitch(proc_cor, thrd_cor);
232 // when ThreadCtxSwitch returns we are back in the processor coroutine
233}
234
235// Once a thread has finished running, some of
236// its final actions must be executed from the kernel
237void finishRunning(processor * this) {
238 if( this->finish.action_code == Release ) {
239 unlock( this->finish.lock );
240 }
241 else if( this->finish.action_code == Schedule ) {
242 ScheduleThread( this->finish.thrd );
243 }
244 else if( this->finish.action_code == Release_Schedule ) {
245 unlock( this->finish.lock );
246 ScheduleThread( this->finish.thrd );
247 }
248 else if( this->finish.action_code == Release_Multi ) {
249 for(int i = 0; i < this->finish.lock_count; i++) {
250 unlock( this->finish.locks[i] );
251 }
252 }
253 else if( this->finish.action_code == Release_Multi_Schedule ) {
254 for(int i = 0; i < this->finish.lock_count; i++) {
255 unlock( this->finish.locks[i] );
256 }
257 for(int i = 0; i < this->finish.thrd_count; i++) {
258 ScheduleThread( this->finish.thrds[i] );
259 }
260 }
261 else {
262 assert(this->finish.action_code == No_Action);
263 }
264}
265
266// Handles spinning logic
267// TODO : find some strategy to put cores to sleep after some time
268void spin(processor * this, unsigned int * spin_count) {
269 (*spin_count)++;
270}
271
272// Context invoker for processors
273// This is the entry point for processors (kernel threads)
274// It effectively constructs a coroutine by stealing the pthread stack
275void * CtxInvokeProcessor(void * arg) {
276 processor * proc = (processor *) arg;
277 this_processor = proc;
278 this_coroutine = NULL;
279 this_thread = NULL;
280 disable_preempt_count = 1;
281 // SKULLDUGGERY: We want to create a context for the processor coroutine
282 // which is needed for the 2-step context switch. However, there is no reason
283 // to waste the perfectly valid stack create by pthread.
284 current_stack_info_t info;
285 machine_context_t ctx;
286 info.context = &ctx;
287 processorCtx_t proc_cor_storage = { proc, &info };
288
289 LIB_DEBUG_PRINT_SAFE("Coroutine : created stack %p\n", proc_cor_storage.__cor.stack.base);
290
291 //Set global state
292 this_coroutine = &proc->runner->__cor;
293 this_thread = NULL;
294
295 //We now have a proper context from which to schedule threads
296 LIB_DEBUG_PRINT_SAFE("Kernel : core %p created (%p, %p)\n", proc, proc->runner, &ctx);
297
298 // SKULLDUGGERY: Since the coroutine doesn't have its own stack, we can't
299 // resume it to start it like it normally would, it will just context switch
300 // back to here. Instead directly call the main since we already are on the
301 // appropriate stack.
302 proc_cor_storage.__cor.state = Active;
303 main( proc_cor_storage );
304 proc_cor_storage.__cor.state = Halted;
305
306 // Main routine of the core returned, the core is now fully terminated
307 LIB_DEBUG_PRINT_SAFE("Kernel : core %p main ended (%p)\n", proc, proc->runner);
308
309 return NULL;
310}
311
312void start(processor * this) {
313 LIB_DEBUG_PRINT_SAFE("Kernel : Starting core %p\n", this);
314
315 pthread_create( &this->kernel_thread, NULL, CtxInvokeProcessor, (void*)this );
316
317 LIB_DEBUG_PRINT_SAFE("Kernel : core %p started\n", this);
318}
319
320//-----------------------------------------------------------------------------
321// Scheduler routines
322void ScheduleThread( thread_desc * thrd ) {
323 // if( !thrd ) return;
324 verify( thrd );
325 verify( thrd->cor.state != Halted );
326
327 verify( disable_preempt_count > 0 );
328
329 verifyf( thrd->next == NULL, "Expected null got %p", thrd->next );
330
331 lock( &this_processor->cltr->ready_queue_lock DEBUG_CTX2 );
332 append( &this_processor->cltr->ready_queue, thrd );
333 unlock( &this_processor->cltr->ready_queue_lock );
334
335 verify( disable_preempt_count > 0 );
336}
337
338thread_desc * nextThread(cluster * this) {
339 verify( disable_preempt_count > 0 );
340 lock( &this->ready_queue_lock DEBUG_CTX2 );
341 thread_desc * head = pop_head( &this->ready_queue );
342 unlock( &this->ready_queue_lock );
343 verify( disable_preempt_count > 0 );
344 return head;
345}
346
347void BlockInternal() {
348 disable_interrupts();
349 verify( disable_preempt_count > 0 );
350 suspend();
351 verify( disable_preempt_count > 0 );
352 enable_interrupts( DEBUG_CTX );
353}
354
355void BlockInternal( spinlock * lock ) {
356 disable_interrupts();
357 this_processor->finish.action_code = Release;
358 this_processor->finish.lock = lock;
359
360 verify( disable_preempt_count > 0 );
361 suspend();
362 verify( disable_preempt_count > 0 );
363
364 enable_interrupts( DEBUG_CTX );
365}
366
367void BlockInternal( thread_desc * thrd ) {
368 assert(thrd);
369 disable_interrupts();
370 assert( thrd->cor.state != Halted );
371 this_processor->finish.action_code = Schedule;
372 this_processor->finish.thrd = thrd;
373
374 verify( disable_preempt_count > 0 );
375 suspend();
376 verify( disable_preempt_count > 0 );
377
378 enable_interrupts( DEBUG_CTX );
379}
380
381void BlockInternal( spinlock * lock, thread_desc * thrd ) {
382 assert(thrd);
383 disable_interrupts();
384 this_processor->finish.action_code = Release_Schedule;
385 this_processor->finish.lock = lock;
386 this_processor->finish.thrd = thrd;
387
388 verify( disable_preempt_count > 0 );
389 suspend();
390 verify( disable_preempt_count > 0 );
391
392 enable_interrupts( DEBUG_CTX );
393}
394
395void BlockInternal(spinlock ** locks, unsigned short count) {
396 disable_interrupts();
397 this_processor->finish.action_code = Release_Multi;
398 this_processor->finish.locks = locks;
399 this_processor->finish.lock_count = count;
400
401 verify( disable_preempt_count > 0 );
402 suspend();
403 verify( disable_preempt_count > 0 );
404
405 enable_interrupts( DEBUG_CTX );
406}
407
408void BlockInternal(spinlock ** locks, unsigned short lock_count, thread_desc ** thrds, unsigned short thrd_count) {
409 disable_interrupts();
410 this_processor->finish.action_code = Release_Multi_Schedule;
411 this_processor->finish.locks = locks;
412 this_processor->finish.lock_count = lock_count;
413 this_processor->finish.thrds = thrds;
414 this_processor->finish.thrd_count = thrd_count;
415
416 verify( disable_preempt_count > 0 );
417 suspend();
418 verify( disable_preempt_count > 0 );
419
420 enable_interrupts( DEBUG_CTX );
421}
422
423void LeaveThread(spinlock * lock, thread_desc * thrd) {
424 verify( disable_preempt_count > 0 );
425 this_processor->finish.action_code = thrd ? Release_Schedule : Release;
426 this_processor->finish.lock = lock;
427 this_processor->finish.thrd = thrd;
428
429 suspend();
430}
431
432//=============================================================================================
433// Kernel Setup logic
434//=============================================================================================
435//-----------------------------------------------------------------------------
436// Kernel boot procedures
437void kernel_startup(void) {
438 LIB_DEBUG_PRINT_SAFE("Kernel : Starting\n");
439
440 // Start by initializing the main thread
441 // SKULLDUGGERY: the mainThread steals the process main thread
442 // which will then be scheduled by the mainProcessor normally
443 mainThread = (thread_desc *)&storage_mainThread;
444 current_stack_info_t info;
445 (*mainThread){ &info };
446
447 LIB_DEBUG_PRINT_SAFE("Kernel : Main thread ready\n");
448
449 // Initialize the main cluster
450 mainCluster = (cluster *)&storage_mainCluster;
451 (*mainCluster){};
452
453 LIB_DEBUG_PRINT_SAFE("Kernel : main cluster ready\n");
454
455 // Initialize the main processor and the main processor ctx
456 // (the coroutine that contains the processing control flow)
457 mainProcessor = (processor *)&storage_mainProcessor;
458 (*mainProcessor){ mainCluster, *(processorCtx_t *)&storage_mainProcessorCtx };
459
460 //initialize the global state variables
461 this_processor = mainProcessor;
462 this_thread = mainThread;
463 this_coroutine = &mainThread->cor;
464
465 // Enable preemption
466 kernel_start_preemption();
467
468 // Add the main thread to the ready queue
469 // once resume is called on mainProcessor->runner the mainThread needs to be scheduled like any normal thread
470 ScheduleThread(mainThread);
471
472 // SKULLDUGGERY: Force a context switch to the main processor to set the main thread's context to the current UNIX
473 // context. Hence, the main thread does not begin through CtxInvokeThread, like all other threads. The trick here is that
474 // mainThread is on the ready queue when this call is made.
475 resume( *mainProcessor->runner );
476
477
478
479 // THE SYSTEM IS NOW COMPLETELY RUNNING
480 LIB_DEBUG_PRINT_SAFE("Kernel : Started\n--------------------------------------------------\n\n");
481
482 enable_interrupts( DEBUG_CTX );
483}
484
485void kernel_shutdown(void) {
486 LIB_DEBUG_PRINT_SAFE("\n--------------------------------------------------\nKernel : Shutting down\n");
487
488 disable_interrupts();
489
490 // SKULLDUGGERY: Notify the mainProcessor it needs to terminates.
491 // When its coroutine terminates, it return control to the mainThread
492 // which is currently here
493 mainProcessor->do_terminate = true;
494 suspend();
495
496 // THE SYSTEM IS NOW COMPLETELY STOPPED
497
498 // Disable preemption
499 kernel_stop_preemption();
500
501 // Destroy the main processor and its context in reverse order of construction
502 // These were manually constructed so we need manually destroy them
503 ^(*mainProcessor->runner){};
504 ^(mainProcessor){};
505
506 // Final step, destroy the main thread since it is no longer needed
507 // Since we provided a stack to this taxk it will not destroy anything
508 ^(mainThread){};
509
510 LIB_DEBUG_PRINT_SAFE("Kernel : Shutdown complete\n");
511}
512
513static spinlock kernel_abort_lock;
514static spinlock kernel_debug_lock;
515static bool kernel_abort_called = false;
516
517void * kernel_abort (void) __attribute__ ((__nothrow__)) {
518 // abort cannot be recursively entered by the same or different processors because all signal handlers return when
519 // the globalAbort flag is true.
520 lock( &kernel_abort_lock DEBUG_CTX2 );
521
522 // first task to abort ?
523 if ( !kernel_abort_called ) { // not first task to abort ?
524 kernel_abort_called = true;
525 unlock( &kernel_abort_lock );
526 }
527 else {
528 unlock( &kernel_abort_lock );
529
530 sigset_t mask;
531 sigemptyset( &mask );
532 sigaddset( &mask, SIGALRM ); // block SIGALRM signals
533 sigaddset( &mask, SIGUSR1 ); // block SIGUSR1 signals
534 sigsuspend( &mask ); // block the processor to prevent further damage during abort
535 _exit( EXIT_FAILURE ); // if processor unblocks before it is killed, terminate it
536 }
537
538 return this_thread;
539}
540
541void kernel_abort_msg( void * kernel_data, char * abort_text, int abort_text_size ) {
542 thread_desc * thrd = kernel_data;
543
544 int len = snprintf( abort_text, abort_text_size, "Error occurred while executing task %.256s (%p)", thrd->cor.name, thrd );
545 __lib_debug_write( STDERR_FILENO, abort_text, len );
546
547 if ( thrd != this_coroutine ) {
548 len = snprintf( abort_text, abort_text_size, " in coroutine %.256s (%p).\n", this_coroutine->name, this_coroutine );
549 __lib_debug_write( STDERR_FILENO, abort_text, len );
550 }
551 else {
552 __lib_debug_write( STDERR_FILENO, ".\n", 2 );
553 }
554}
555
556extern "C" {
557 void __lib_debug_acquire() {
558 lock( &kernel_debug_lock DEBUG_CTX2 );
559 }
560
561 void __lib_debug_release() {
562 unlock( &kernel_debug_lock );
563 }
564}
565
566//=============================================================================================
567// Kernel Utilities
568//=============================================================================================
569//-----------------------------------------------------------------------------
570// Locks
571void ?{}( spinlock & this ) {
572 this.lock = 0;
573}
574void ^?{}( spinlock & this ) {
575
576}
577
578bool try_lock( spinlock * this DEBUG_CTX_PARAM2 ) {
579 return this->lock == 0 && __sync_lock_test_and_set_4( &this->lock, 1 ) == 0;
580}
581
582void lock( spinlock * this DEBUG_CTX_PARAM2 ) {
583 for ( unsigned int i = 1;; i += 1 ) {
584 if ( this->lock == 0 && __sync_lock_test_and_set_4( &this->lock, 1 ) == 0 ) { break; }
585 }
586 LIB_DEBUG_DO(
587 this->prev_name = caller;
588 this->prev_thrd = this_thread;
589 )
590}
591
592void lock_yield( spinlock * this DEBUG_CTX_PARAM2 ) {
593 for ( unsigned int i = 1;; i += 1 ) {
594 if ( this->lock == 0 && __sync_lock_test_and_set_4( &this->lock, 1 ) == 0 ) { break; }
595 yield();
596 }
597 LIB_DEBUG_DO(
598 this->prev_name = caller;
599 this->prev_thrd = this_thread;
600 )
601}
602
603
604void unlock( spinlock * this ) {
605 __sync_lock_release_4( &this->lock );
606}
607
608void ?{}( semaphore & this, int count = 1 ) {
609 (this.lock){};
610 this.count = count;
611 (this.waiting){};
612}
613void ^?{}(semaphore & this) {}
614
615void P(semaphore * this) {
616 lock( &this->lock DEBUG_CTX2 );
617 this->count -= 1;
618 if ( this->count < 0 ) {
619 // queue current task
620 append( &this->waiting, (thread_desc *)this_thread );
621
622 // atomically release spin lock and block
623 BlockInternal( &this->lock );
624 }
625 else {
626 unlock( &this->lock );
627 }
628}
629
630void V(semaphore * this) {
631 thread_desc * thrd = NULL;
632 lock( &this->lock DEBUG_CTX2 );
633 this->count += 1;
634 if ( this->count <= 0 ) {
635 // remove task at head of waiting list
636 thrd = pop_head( &this->waiting );
637 }
638
639 unlock( &this->lock );
640
641 // make new owner
642 WakeThread( thrd );
643}
644
645//-----------------------------------------------------------------------------
646// Queues
647void ?{}( __thread_queue_t & this ) {
648 this.head = NULL;
649 this.tail = &this.head;
650}
651
652void append( __thread_queue_t * this, thread_desc * t ) {
653 verify(this->tail != NULL);
654 *this->tail = t;
655 this->tail = &t->next;
656}
657
658thread_desc * pop_head( __thread_queue_t * this ) {
659 thread_desc * head = this->head;
660 if( head ) {
661 this->head = head->next;
662 if( !head->next ) {
663 this->tail = &this->head;
664 }
665 head->next = NULL;
666 }
667 return head;
668}
669
670thread_desc * remove( __thread_queue_t * this, thread_desc ** it ) {
671 thread_desc * thrd = *it;
672 verify( thrd );
673
674 (*it) = thrd->next;
675
676 if( this->tail == &thrd->next ) {
677 this->tail = it;
678 }
679
680 thrd->next = NULL;
681
682 verify( (this->head == NULL) == (&this->head == this->tail) );
683 verify( *this->tail == NULL );
684 return thrd;
685}
686
687void ?{}( __condition_stack_t & this ) {
688 this.top = NULL;
689}
690
691void push( __condition_stack_t * this, __condition_criterion_t * t ) {
692 verify( !t->next );
693 t->next = this->top;
694 this->top = t;
695}
696
697__condition_criterion_t * pop( __condition_stack_t * this ) {
698 __condition_criterion_t * top = this->top;
699 if( top ) {
700 this->top = top->next;
701 top->next = NULL;
702 }
703 return top;
704}
705
706// Local Variables: //
707// mode: c //
708// tab-width: 4 //
709// End: //
Note: See TracBrowser for help on using the repository browser.