source: src/libcfa/concurrency/kernel.c@ 58e822a

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors deferred_resn demangler enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum with_gc
Last change on this file since 58e822a was a1a17a74, checked in by Thierry Delisle <tdelisle@…>, 7 years ago

Moved thread list to cluster, all concurrency object should be accessible through gdb

  • Property mode set to 100644
File size: 22.9 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// kernel.c --
8//
9// Author : Thierry Delisle
10// Created On : Tue Jan 17 12:27:26 2017
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Mon Apr 9 16:11:46 2018
13// Update Count : 24
14//
15
16//C Includes
17#include <stddef.h>
18extern "C" {
19#include <stdio.h>
20#include <fenv.h>
21#include <sys/resource.h>
22#include <signal.h>
23#include <unistd.h>
24}
25
26//CFA Includes
27#include "time"
28#include "kernel_private.h"
29#include "preemption.h"
30#include "startup.h"
31
32//Private includes
33#define __CFA_INVOKE_PRIVATE__
34#include "invoke.h"
35
36//Start and stop routine for the kernel, declared first to make sure they run first
37void kernel_startup(void) __attribute__(( constructor( STARTUP_PRIORITY_KERNEL ) ));
38void kernel_shutdown(void) __attribute__(( destructor ( STARTUP_PRIORITY_KERNEL ) ));
39
40//-----------------------------------------------------------------------------
41// Kernel storage
42KERNEL_STORAGE(cluster, mainCluster);
43KERNEL_STORAGE(processor, mainProcessor);
44KERNEL_STORAGE(thread_desc, mainThread);
45KERNEL_STORAGE(machine_context_t, mainThreadCtx);
46
47cluster * mainCluster;
48processor * mainProcessor;
49thread_desc * mainThread;
50
51struct { __dllist_t(cluster ) list; __spinlock_t lock; } global_clusters;
52
53//-----------------------------------------------------------------------------
54// Global state
55thread_local struct KernelThreadData kernelTLS = {
56 NULL,
57 NULL,
58 NULL,
59 { 1, false, false }
60};
61
62//-----------------------------------------------------------------------------
63// Struct to steal stack
64struct current_stack_info_t {
65 machine_context_t ctx;
66 unsigned int size; // size of stack
67 void *base; // base of stack
68 void *storage; // pointer to stack
69 void *limit; // stack grows towards stack limit
70 void *context; // address of cfa_context_t
71 void *top; // address of top of storage
72};
73
74void ?{}( current_stack_info_t & this ) {
75 CtxGet( this.ctx );
76 this.base = this.ctx.FP;
77 this.storage = this.ctx.SP;
78
79 rlimit r;
80 getrlimit( RLIMIT_STACK, &r);
81 this.size = r.rlim_cur;
82
83 this.limit = (void *)(((intptr_t)this.base) - this.size);
84 this.context = &storage_mainThreadCtx;
85 this.top = this.base;
86}
87
88//-----------------------------------------------------------------------------
89// Main thread construction
90void ?{}( coStack_t & this, current_stack_info_t * info) with( this ) {
91 size = info->size;
92 storage = info->storage;
93 limit = info->limit;
94 base = info->base;
95 context = info->context;
96 top = info->top;
97 userStack = true;
98}
99
100void ?{}( coroutine_desc & this, current_stack_info_t * info) with( this ) {
101 stack{ info };
102 name = "Main Thread";
103 errno_ = 0;
104 state = Start;
105 starter = NULL;
106}
107
108void ?{}( thread_desc & this, current_stack_info_t * info) with( this ) {
109 self_cor{ info };
110 curr_cor = &self_cor;
111 curr_cluster = mainCluster;
112 self_mon.owner = &this;
113 self_mon.recursion = 1;
114 self_mon_p = &self_mon;
115 next = NULL;
116
117 node.next = NULL;
118 node.prev = NULL;
119 doregister(curr_cluster, this);
120
121 monitors{ &self_mon_p, 1, (fptr_t)0 };
122}
123
124//-----------------------------------------------------------------------------
125// Processor coroutine
126void ?{}(processorCtx_t & this) {
127
128}
129
130// Construct the processor context of non-main processors
131void ?{}(processorCtx_t & this, processor * proc, current_stack_info_t * info) {
132 (this.__cor){ info };
133 this.proc = proc;
134}
135
136void ?{}(processor & this, const char * name, cluster & cltr) with( this ) {
137 this.name = name;
138 this.cltr = &cltr;
139 terminated{ 0 };
140 do_terminate = false;
141 preemption_alarm = NULL;
142 pending_preemption = false;
143 runner.proc = &this;
144
145 start( &this );
146}
147
148void ^?{}(processor & this) with( this ){
149 if( ! do_terminate ) {
150 __cfaabi_dbg_print_safe("Kernel : core %p signaling termination\n", &this);
151 terminate(&this);
152 verify(this.do_terminate);
153 verify( kernelTLS.this_processor != &this);
154 P( terminated );
155 verify( kernelTLS.this_processor != &this);
156 pthread_join( kernel_thread, NULL );
157 }
158}
159
160void ?{}(cluster & this, const char * name, Duration preemption_rate) with( this ) {
161 this.name = name;
162 this.preemption_rate = preemption_rate;
163 ready_queue{};
164 ready_queue_lock{};
165
166 procs{ __get };
167 idles{ __get };
168 threads{ __get };
169
170 doregister(this);
171}
172
173void ^?{}(cluster & this) {
174 unregister(this);
175}
176
177//=============================================================================================
178// Kernel Scheduling logic
179//=============================================================================================
180//Main of the processor contexts
181void main(processorCtx_t & runner) {
182 processor * this = runner.proc;
183 verify(this);
184
185 __cfaabi_dbg_print_safe("Kernel : core %p starting\n", this);
186
187 doregister(this->cltr, this);
188
189 {
190 // Setup preemption data
191 preemption_scope scope = { this };
192
193 __cfaabi_dbg_print_safe("Kernel : core %p started\n", this);
194
195 thread_desc * readyThread = NULL;
196 for( unsigned int spin_count = 0; ! this->do_terminate; spin_count++ )
197 {
198 readyThread = nextThread( this->cltr );
199
200 if(readyThread)
201 {
202 verify( ! kernelTLS.preemption_state.enabled );
203
204 runThread(this, readyThread);
205
206 verify( ! kernelTLS.preemption_state.enabled );
207
208 //Some actions need to be taken from the kernel
209 finishRunning(this);
210
211 spin_count = 0;
212 }
213 else
214 {
215 spin(this, &spin_count);
216 }
217 }
218
219 __cfaabi_dbg_print_safe("Kernel : core %p stopping\n", this);
220 }
221
222 unregister(this->cltr, this);
223
224 V( this->terminated );
225
226 __cfaabi_dbg_print_safe("Kernel : core %p terminated\n", this);
227}
228
229// KERNEL ONLY
230// runThread runs a thread by context switching
231// from the processor coroutine to the target thread
232void runThread(processor * this, thread_desc * dst) {
233 assert(dst->curr_cor);
234 coroutine_desc * proc_cor = get_coroutine(this->runner);
235 coroutine_desc * thrd_cor = dst->curr_cor;
236
237 // Reset the terminating actions here
238 this->finish.action_code = No_Action;
239
240 // Update global state
241 kernelTLS.this_thread = dst;
242
243 // Context Switch to the thread
244 ThreadCtxSwitch(proc_cor, thrd_cor);
245 // when ThreadCtxSwitch returns we are back in the processor coroutine
246}
247
248// KERNEL_ONLY
249void returnToKernel() {
250 coroutine_desc * proc_cor = get_coroutine(kernelTLS.this_processor->runner);
251 coroutine_desc * thrd_cor = kernelTLS.this_thread->curr_cor = kernelTLS.this_coroutine;
252 ThreadCtxSwitch(thrd_cor, proc_cor);
253}
254
255// KERNEL_ONLY
256// Once a thread has finished running, some of
257// its final actions must be executed from the kernel
258void finishRunning(processor * this) with( this->finish ) {
259 if( action_code == Release ) {
260 verify( ! kernelTLS.preemption_state.enabled );
261 unlock( *lock );
262 }
263 else if( action_code == Schedule ) {
264 ScheduleThread( thrd );
265 }
266 else if( action_code == Release_Schedule ) {
267 verify( ! kernelTLS.preemption_state.enabled );
268 unlock( *lock );
269 ScheduleThread( thrd );
270 }
271 else if( action_code == Release_Multi ) {
272 verify( ! kernelTLS.preemption_state.enabled );
273 for(int i = 0; i < lock_count; i++) {
274 unlock( *locks[i] );
275 }
276 }
277 else if( action_code == Release_Multi_Schedule ) {
278 for(int i = 0; i < lock_count; i++) {
279 unlock( *locks[i] );
280 }
281 for(int i = 0; i < thrd_count; i++) {
282 ScheduleThread( thrds[i] );
283 }
284 }
285 else {
286 assert(action_code == No_Action);
287 }
288}
289
290// Handles spinning logic
291// TODO : find some strategy to put cores to sleep after some time
292void spin(processor * this, unsigned int * spin_count) {
293 (*spin_count)++;
294}
295
296// KERNEL_ONLY
297// Context invoker for processors
298// This is the entry point for processors (kernel threads)
299// It effectively constructs a coroutine by stealing the pthread stack
300void * CtxInvokeProcessor(void * arg) {
301 processor * proc = (processor *) arg;
302 kernelTLS.this_processor = proc;
303 kernelTLS.this_coroutine = NULL;
304 kernelTLS.this_thread = NULL;
305 kernelTLS.preemption_state.[enabled, disable_count] = [false, 1];
306 // SKULLDUGGERY: We want to create a context for the processor coroutine
307 // which is needed for the 2-step context switch. However, there is no reason
308 // to waste the perfectly valid stack create by pthread.
309 current_stack_info_t info;
310 machine_context_t ctx;
311 info.context = &ctx;
312 (proc->runner){ proc, &info };
313
314 __cfaabi_dbg_print_safe("Coroutine : created stack %p\n", get_coroutine(proc->runner)->stack.base);
315
316 //Set global state
317 kernelTLS.this_coroutine = get_coroutine(proc->runner);
318 kernelTLS.this_thread = NULL;
319
320 //We now have a proper context from which to schedule threads
321 __cfaabi_dbg_print_safe("Kernel : core %p created (%p, %p)\n", proc, &proc->runner, &ctx);
322
323 // SKULLDUGGERY: Since the coroutine doesn't have its own stack, we can't
324 // resume it to start it like it normally would, it will just context switch
325 // back to here. Instead directly call the main since we already are on the
326 // appropriate stack.
327 get_coroutine(proc->runner)->state = Active;
328 main( proc->runner );
329 get_coroutine(proc->runner)->state = Halted;
330
331 // Main routine of the core returned, the core is now fully terminated
332 __cfaabi_dbg_print_safe("Kernel : core %p main ended (%p)\n", proc, &proc->runner);
333
334 return NULL;
335}
336
337void start(processor * this) {
338 __cfaabi_dbg_print_safe("Kernel : Starting core %p\n", this);
339
340 pthread_create( &this->kernel_thread, NULL, CtxInvokeProcessor, (void*)this );
341
342 __cfaabi_dbg_print_safe("Kernel : core %p started\n", this);
343}
344
345// KERNEL_ONLY
346void kernel_first_resume(processor * this) {
347 coroutine_desc * src = kernelTLS.this_coroutine;
348 coroutine_desc * dst = get_coroutine(this->runner);
349
350 verify( ! kernelTLS.preemption_state.enabled );
351
352 create_stack(&dst->stack, dst->stack.size);
353 CtxStart(&this->runner, CtxInvokeCoroutine);
354
355 verify( ! kernelTLS.preemption_state.enabled );
356
357 dst->last = src;
358 dst->starter = dst->starter ? dst->starter : src;
359
360 // set state of current coroutine to inactive
361 src->state = src->state == Halted ? Halted : Inactive;
362
363 // set new coroutine that task is executing
364 kernelTLS.this_coroutine = dst;
365
366 // SKULLDUGGERY normally interrupts are enable before leaving a coroutine ctxswitch.
367 // Therefore, when first creating a coroutine, interrupts are enable before calling the main.
368 // This is consistent with thread creation. However, when creating the main processor coroutine,
369 // we wan't interrupts to be disabled. Therefore, we double-disable interrupts here so they will
370 // stay disabled.
371 disable_interrupts();
372
373 // context switch to specified coroutine
374 assert( src->stack.context );
375 CtxSwitch( src->stack.context, dst->stack.context );
376 // when CtxSwitch returns we are back in the src coroutine
377
378 // set state of new coroutine to active
379 src->state = Active;
380
381 verify( ! kernelTLS.preemption_state.enabled );
382}
383
384//-----------------------------------------------------------------------------
385// Scheduler routines
386
387// KERNEL ONLY
388void ScheduleThread( thread_desc * thrd ) {
389 verify( thrd );
390 verify( thrd->self_cor.state != Halted );
391
392 verify( ! kernelTLS.preemption_state.enabled );
393
394 verifyf( thrd->next == NULL, "Expected null got %p", thrd->next );
395
396 with( *thrd->curr_cluster ) {
397 lock ( ready_queue_lock __cfaabi_dbg_ctx2 );
398 append( ready_queue, thrd );
399 unlock( ready_queue_lock );
400 }
401
402 verify( ! kernelTLS.preemption_state.enabled );
403}
404
405// KERNEL ONLY
406thread_desc * nextThread(cluster * this) with( *this ) {
407 verify( ! kernelTLS.preemption_state.enabled );
408 lock( ready_queue_lock __cfaabi_dbg_ctx2 );
409 thread_desc * head = pop_head( ready_queue );
410 unlock( ready_queue_lock );
411 verify( ! kernelTLS.preemption_state.enabled );
412 return head;
413}
414
415void BlockInternal() {
416 disable_interrupts();
417 verify( ! kernelTLS.preemption_state.enabled );
418 returnToKernel();
419 verify( ! kernelTLS.preemption_state.enabled );
420 enable_interrupts( __cfaabi_dbg_ctx );
421}
422
423void BlockInternal( __spinlock_t * lock ) {
424 disable_interrupts();
425 with( *kernelTLS.this_processor ) {
426 finish.action_code = Release;
427 finish.lock = lock;
428 }
429
430 verify( ! kernelTLS.preemption_state.enabled );
431 returnToKernel();
432 verify( ! kernelTLS.preemption_state.enabled );
433
434 enable_interrupts( __cfaabi_dbg_ctx );
435}
436
437void BlockInternal( thread_desc * thrd ) {
438 disable_interrupts();
439 with( * kernelTLS.this_processor ) {
440 finish.action_code = Schedule;
441 finish.thrd = thrd;
442 }
443
444 verify( ! kernelTLS.preemption_state.enabled );
445 returnToKernel();
446 verify( ! kernelTLS.preemption_state.enabled );
447
448 enable_interrupts( __cfaabi_dbg_ctx );
449}
450
451void BlockInternal( __spinlock_t * lock, thread_desc * thrd ) {
452 assert(thrd);
453 disable_interrupts();
454 with( * kernelTLS.this_processor ) {
455 finish.action_code = Release_Schedule;
456 finish.lock = lock;
457 finish.thrd = thrd;
458 }
459
460 verify( ! kernelTLS.preemption_state.enabled );
461 returnToKernel();
462 verify( ! kernelTLS.preemption_state.enabled );
463
464 enable_interrupts( __cfaabi_dbg_ctx );
465}
466
467void BlockInternal(__spinlock_t * locks [], unsigned short count) {
468 disable_interrupts();
469 with( * kernelTLS.this_processor ) {
470 finish.action_code = Release_Multi;
471 finish.locks = locks;
472 finish.lock_count = count;
473 }
474
475 verify( ! kernelTLS.preemption_state.enabled );
476 returnToKernel();
477 verify( ! kernelTLS.preemption_state.enabled );
478
479 enable_interrupts( __cfaabi_dbg_ctx );
480}
481
482void BlockInternal(__spinlock_t * locks [], unsigned short lock_count, thread_desc * thrds [], unsigned short thrd_count) {
483 disable_interrupts();
484 with( *kernelTLS.this_processor ) {
485 finish.action_code = Release_Multi_Schedule;
486 finish.locks = locks;
487 finish.lock_count = lock_count;
488 finish.thrds = thrds;
489 finish.thrd_count = thrd_count;
490 }
491
492 verify( ! kernelTLS.preemption_state.enabled );
493 returnToKernel();
494 verify( ! kernelTLS.preemption_state.enabled );
495
496 enable_interrupts( __cfaabi_dbg_ctx );
497}
498
499// KERNEL ONLY
500void LeaveThread(__spinlock_t * lock, thread_desc * thrd) {
501 verify( ! kernelTLS.preemption_state.enabled );
502 with( * kernelTLS.this_processor ) {
503 finish.action_code = thrd ? Release_Schedule : Release;
504 finish.lock = lock;
505 finish.thrd = thrd;
506 }
507
508 returnToKernel();
509}
510
511//=============================================================================================
512// Kernel Setup logic
513//=============================================================================================
514//-----------------------------------------------------------------------------
515// Kernel boot procedures
516void kernel_startup(void) {
517 verify( ! kernelTLS.preemption_state.enabled );
518 __cfaabi_dbg_print_safe("Kernel : Starting\n");
519
520 global_clusters.list{ __get };
521 global_clusters.lock{};
522
523 // Initialize the main cluster
524 mainCluster = (cluster *)&storage_mainCluster;
525 (*mainCluster){"Main Cluster"};
526
527 __cfaabi_dbg_print_safe("Kernel : Main cluster ready\n");
528
529 // Start by initializing the main thread
530 // SKULLDUGGERY: the mainThread steals the process main thread
531 // which will then be scheduled by the mainProcessor normally
532 mainThread = (thread_desc *)&storage_mainThread;
533 current_stack_info_t info;
534 (*mainThread){ &info };
535
536 __cfaabi_dbg_print_safe("Kernel : Main thread ready\n");
537
538
539
540 // Construct the processor context of the main processor
541 void ?{}(processorCtx_t & this, processor * proc) {
542 (this.__cor){ "Processor" };
543 this.__cor.starter = NULL;
544 this.proc = proc;
545 }
546
547 void ?{}(processor & this) with( this ) {
548 name = "Main Processor";
549 cltr = mainCluster;
550 terminated{ 0 };
551 do_terminate = false;
552 preemption_alarm = NULL;
553 pending_preemption = false;
554 kernel_thread = pthread_self();
555
556 runner{ &this };
557 __cfaabi_dbg_print_safe("Kernel : constructed main processor context %p\n", &runner);
558 }
559
560 // Initialize the main processor and the main processor ctx
561 // (the coroutine that contains the processing control flow)
562 mainProcessor = (processor *)&storage_mainProcessor;
563 (*mainProcessor){};
564
565 //initialize the global state variables
566 kernelTLS.this_processor = mainProcessor;
567 kernelTLS.this_thread = mainThread;
568 kernelTLS.this_coroutine = &mainThread->self_cor;
569
570 // Enable preemption
571 kernel_start_preemption();
572
573 // Add the main thread to the ready queue
574 // once resume is called on mainProcessor->runner the mainThread needs to be scheduled like any normal thread
575 ScheduleThread(mainThread);
576
577 // SKULLDUGGERY: Force a context switch to the main processor to set the main thread's context to the current UNIX
578 // context. Hence, the main thread does not begin through CtxInvokeThread, like all other threads. The trick here is that
579 // mainThread is on the ready queue when this call is made.
580 kernel_first_resume( kernelTLS.this_processor );
581
582
583
584 // THE SYSTEM IS NOW COMPLETELY RUNNING
585 __cfaabi_dbg_print_safe("Kernel : Started\n--------------------------------------------------\n\n");
586
587 verify( ! kernelTLS.preemption_state.enabled );
588 enable_interrupts( __cfaabi_dbg_ctx );
589 verify( TL_GET( preemption_state.enabled ) );
590}
591
592void kernel_shutdown(void) {
593 __cfaabi_dbg_print_safe("\n--------------------------------------------------\nKernel : Shutting down\n");
594
595 verify( TL_GET( preemption_state.enabled ) );
596 disable_interrupts();
597 verify( ! kernelTLS.preemption_state.enabled );
598
599 // SKULLDUGGERY: Notify the mainProcessor it needs to terminates.
600 // When its coroutine terminates, it return control to the mainThread
601 // which is currently here
602 mainProcessor->do_terminate = true;
603 returnToKernel();
604
605 // THE SYSTEM IS NOW COMPLETELY STOPPED
606
607 // Disable preemption
608 kernel_stop_preemption();
609
610 // Destroy the main processor and its context in reverse order of construction
611 // These were manually constructed so we need manually destroy them
612 ^(mainProcessor->runner){};
613 ^(mainProcessor){};
614
615 // Final step, destroy the main thread since it is no longer needed
616 // Since we provided a stack to this taxk it will not destroy anything
617 ^(mainThread){};
618
619 ^(global_clusters.list){};
620 ^(global_clusters.lock){};
621
622 __cfaabi_dbg_print_safe("Kernel : Shutdown complete\n");
623}
624
625//=============================================================================================
626// Kernel Quiescing
627//=============================================================================================
628
629// void halt(processor * this) with( this ) {
630// pthread_mutex_lock( &idle.lock );
631
632
633
634// // SKULLDUGGERY: Even if spurious wake-up is a thing
635// // spuriously waking up a kernel thread is not a big deal
636// // if it is very rare.
637// pthread_cond_wait( &idle.cond, &idle.lock);
638// pthread_mutex_unlock( &idle.lock );
639// }
640
641// void wake(processor * this) with( this ) {
642// pthread_mutex_lock (&idle.lock);
643// pthread_cond_signal (&idle.cond);
644// pthread_mutex_unlock(&idle.lock);
645// }
646
647//=============================================================================================
648// Unexpected Terminating logic
649//=============================================================================================
650
651
652static __spinlock_t kernel_abort_lock;
653static bool kernel_abort_called = false;
654
655void * kernel_abort(void) __attribute__ ((__nothrow__)) {
656 // abort cannot be recursively entered by the same or different processors because all signal handlers return when
657 // the globalAbort flag is true.
658 lock( kernel_abort_lock __cfaabi_dbg_ctx2 );
659
660 // first task to abort ?
661 if ( kernel_abort_called ) { // not first task to abort ?
662 unlock( kernel_abort_lock );
663
664 sigset_t mask;
665 sigemptyset( &mask );
666 sigaddset( &mask, SIGALRM ); // block SIGALRM signals
667 sigsuspend( &mask ); // block the processor to prevent further damage during abort
668 _exit( EXIT_FAILURE ); // if processor unblocks before it is killed, terminate it
669 }
670 else {
671 kernel_abort_called = true;
672 unlock( kernel_abort_lock );
673 }
674
675 return kernelTLS.this_thread;
676}
677
678void kernel_abort_msg( void * kernel_data, char * abort_text, int abort_text_size ) {
679 thread_desc * thrd = kernel_data;
680
681 if(thrd) {
682 int len = snprintf( abort_text, abort_text_size, "Error occurred while executing thread %.256s (%p)", thrd->self_cor.name, thrd );
683 __cfaabi_dbg_bits_write( abort_text, len );
684
685 if ( get_coroutine(thrd) != kernelTLS.this_coroutine ) {
686 len = snprintf( abort_text, abort_text_size, " in coroutine %.256s (%p).\n", kernelTLS.this_coroutine->name, kernelTLS.this_coroutine );
687 __cfaabi_dbg_bits_write( abort_text, len );
688 }
689 else {
690 __cfaabi_dbg_bits_write( ".\n", 2 );
691 }
692 }
693 else {
694 int len = snprintf( abort_text, abort_text_size, "Error occurred outside of any thread.\n" );
695 __cfaabi_dbg_bits_write( abort_text, len );
696 }
697}
698
699int kernel_abort_lastframe( void ) __attribute__ ((__nothrow__)) {
700 return get_coroutine(kernelTLS.this_thread) == get_coroutine(mainThread) ? 4 : 2;
701}
702
703static __spinlock_t kernel_debug_lock;
704
705extern "C" {
706 void __cfaabi_dbg_bits_acquire() {
707 lock( kernel_debug_lock __cfaabi_dbg_ctx2 );
708 }
709
710 void __cfaabi_dbg_bits_release() {
711 unlock( kernel_debug_lock );
712 }
713}
714
715//=============================================================================================
716// Kernel Utilities
717//=============================================================================================
718//-----------------------------------------------------------------------------
719// Locks
720void ?{}( semaphore & this, int count = 1 ) {
721 (this.lock){};
722 this.count = count;
723 (this.waiting){};
724}
725void ^?{}(semaphore & this) {}
726
727void P(semaphore & this) with( this ){
728 lock( lock __cfaabi_dbg_ctx2 );
729 count -= 1;
730 if ( count < 0 ) {
731 // queue current task
732 append( waiting, kernelTLS.this_thread );
733
734 // atomically release spin lock and block
735 BlockInternal( &lock );
736 }
737 else {
738 unlock( lock );
739 }
740}
741
742void V(semaphore & this) with( this ) {
743 thread_desc * thrd = NULL;
744 lock( lock __cfaabi_dbg_ctx2 );
745 count += 1;
746 if ( count <= 0 ) {
747 // remove task at head of waiting list
748 thrd = pop_head( waiting );
749 }
750
751 unlock( lock );
752
753 // make new owner
754 WakeThread( thrd );
755}
756
757//-----------------------------------------------------------------------------
758// Global Queues
759void doregister( cluster & cltr ) {
760 lock ( global_clusters.lock __cfaabi_dbg_ctx2);
761 push_front( global_clusters.list, cltr );
762 unlock ( global_clusters.lock );
763}
764
765void unregister( cluster & cltr ) {
766 lock ( global_clusters.lock __cfaabi_dbg_ctx2);
767 remove( global_clusters.list, cltr );
768 unlock( global_clusters.lock );
769}
770
771void doregister( cluster * cltr, thread_desc & thrd ) {
772 lock (cltr->thread_list_lock __cfaabi_dbg_ctx2);
773 push_front(cltr->threads, thrd);
774 unlock (cltr->thread_list_lock);
775}
776
777void unregister( cluster * cltr, thread_desc & thrd ) {
778 lock (cltr->thread_list_lock __cfaabi_dbg_ctx2);
779 remove(cltr->threads, thrd );
780 unlock(cltr->thread_list_lock);
781}
782
783void doregister( cluster * cltr, processor * proc ) {
784 lock (cltr->proc_list_lock __cfaabi_dbg_ctx2);
785 push_front(cltr->procs, *proc);
786 unlock (cltr->proc_list_lock);
787}
788
789void unregister( cluster * cltr, processor * proc ) {
790 lock (cltr->proc_list_lock __cfaabi_dbg_ctx2);
791 remove(cltr->procs, *proc );
792 unlock(cltr->proc_list_lock);
793}
794
795//-----------------------------------------------------------------------------
796// Debug
797__cfaabi_dbg_debug_do(
798 void __cfaabi_dbg_record(__spinlock_t & this, const char * prev_name) {
799 this.prev_name = prev_name;
800 this.prev_thrd = kernelTLS.this_thread;
801 }
802)
803// Local Variables: //
804// mode: c //
805// tab-width: 4 //
806// End: //
Note: See TracBrowser for help on using the repository browser.