source: src/libcfa/concurrency/kernel.c@ 2a6c115

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors deferred_resn demangler enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum with_gc
Last change on this file since 2a6c115 was 214e8da, checked in by Thierry Delisle <tdelisle@…>, 7 years ago

Fixed missing header in kernel.c

  • Property mode set to 100644
File size: 23.8 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// kernel.c --
8//
9// Author : Thierry Delisle
10// Created On : Tue Jan 17 12:27:26 2017
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Mon Apr 9 16:11:46 2018
13// Update Count : 24
14//
15
16//C Includes
17#include <stddef.h>
18#include <errno.h>
19extern "C" {
20#include <stdio.h>
21#include <fenv.h>
22#include <sys/resource.h>
23#include <signal.h>
24#include <unistd.h>
25}
26
27//CFA Includes
28#include "time"
29#include "kernel_private.h"
30#include "preemption.h"
31#include "startup.h"
32
33//Private includes
34#define __CFA_INVOKE_PRIVATE__
35#include "invoke.h"
36
37//Start and stop routine for the kernel, declared first to make sure they run first
38void kernel_startup(void) __attribute__(( constructor( STARTUP_PRIORITY_KERNEL ) ));
39void kernel_shutdown(void) __attribute__(( destructor ( STARTUP_PRIORITY_KERNEL ) ));
40
41//-----------------------------------------------------------------------------
42// Kernel storage
43KERNEL_STORAGE(cluster, mainCluster);
44KERNEL_STORAGE(processor, mainProcessor);
45KERNEL_STORAGE(thread_desc, mainThread);
46KERNEL_STORAGE(machine_context_t, mainThreadCtx);
47
48cluster * mainCluster;
49processor * mainProcessor;
50thread_desc * mainThread;
51
52struct { __dllist_t(cluster) list; __spinlock_t lock; } global_clusters;
53
54//-----------------------------------------------------------------------------
55// Global state
56thread_local struct KernelThreadData kernelTLS = {
57 NULL,
58 NULL,
59 NULL,
60 { 1, false, false }
61};
62
63//-----------------------------------------------------------------------------
64// Struct to steal stack
65struct current_stack_info_t {
66 machine_context_t ctx;
67 unsigned int size; // size of stack
68 void *base; // base of stack
69 void *storage; // pointer to stack
70 void *limit; // stack grows towards stack limit
71 void *context; // address of cfa_context_t
72 void *top; // address of top of storage
73};
74
75void ?{}( current_stack_info_t & this ) {
76 CtxGet( this.ctx );
77 this.base = this.ctx.FP;
78 this.storage = this.ctx.SP;
79
80 rlimit r;
81 getrlimit( RLIMIT_STACK, &r);
82 this.size = r.rlim_cur;
83
84 this.limit = (void *)(((intptr_t)this.base) - this.size);
85 this.context = &storage_mainThreadCtx;
86 this.top = this.base;
87}
88
89//-----------------------------------------------------------------------------
90// Main thread construction
91void ?{}( coStack_t & this, current_stack_info_t * info) with( this ) {
92 size = info->size;
93 storage = info->storage;
94 limit = info->limit;
95 base = info->base;
96 context = info->context;
97 top = info->top;
98 userStack = true;
99}
100
101void ?{}( coroutine_desc & this, current_stack_info_t * info) with( this ) {
102 stack{ info };
103 name = "Main Thread";
104 errno_ = 0;
105 state = Start;
106 starter = NULL;
107}
108
109void ?{}( thread_desc & this, current_stack_info_t * info) with( this ) {
110 self_cor{ info };
111 curr_cor = &self_cor;
112 curr_cluster = mainCluster;
113 self_mon.owner = &this;
114 self_mon.recursion = 1;
115 self_mon_p = &self_mon;
116 next = NULL;
117
118 node.next = NULL;
119 node.prev = NULL;
120 doregister(curr_cluster, this);
121
122 monitors{ &self_mon_p, 1, (fptr_t)0 };
123}
124
125//-----------------------------------------------------------------------------
126// Processor coroutine
127void ?{}(processorCtx_t & this) {
128
129}
130
131// Construct the processor context of non-main processors
132void ?{}(processorCtx_t & this, processor * proc, current_stack_info_t * info) {
133 (this.__cor){ info };
134 this.proc = proc;
135}
136
137void ?{}(processor & this, const char * name, cluster & cltr) with( this ) {
138 this.name = name;
139 this.cltr = &cltr;
140 terminated{ 0 };
141 do_terminate = false;
142 preemption_alarm = NULL;
143 pending_preemption = false;
144 runner.proc = &this;
145
146 sem_init(&idleLock, 0, 0);
147
148 start( &this );
149}
150
151void ^?{}(processor & this) with( this ){
152 if( ! do_terminate ) {
153 __cfaabi_dbg_print_safe("Kernel : core %p signaling termination\n", &this);
154 terminate(&this);
155 verify(this.do_terminate);
156 verify( kernelTLS.this_processor != &this);
157 P( terminated );
158 verify( kernelTLS.this_processor != &this);
159 pthread_join( kernel_thread, NULL );
160 }
161
162 sem_destroy(&idleLock);
163}
164
165void ?{}(cluster & this, const char * name, Duration preemption_rate) with( this ) {
166 this.name = name;
167 this.preemption_rate = preemption_rate;
168 ready_queue{};
169 ready_queue_lock{};
170
171 procs{ __get };
172 idles{ __get };
173 threads{ __get };
174
175 doregister(this);
176}
177
178void ^?{}(cluster & this) {
179 unregister(this);
180}
181
182//=============================================================================================
183// Kernel Scheduling logic
184//=============================================================================================
185//Main of the processor contexts
186void main(processorCtx_t & runner) {
187 processor * this = runner.proc;
188 verify(this);
189
190 __cfaabi_dbg_print_safe("Kernel : core %p starting\n", this);
191
192 doregister(this->cltr, this);
193
194 {
195 // Setup preemption data
196 preemption_scope scope = { this };
197
198 __cfaabi_dbg_print_safe("Kernel : core %p started\n", this);
199
200 thread_desc * readyThread = NULL;
201 for( unsigned int spin_count = 0; ! this->do_terminate; spin_count++ )
202 {
203 readyThread = nextThread( this->cltr );
204
205 if(readyThread)
206 {
207 verify( ! kernelTLS.preemption_state.enabled );
208
209 runThread(this, readyThread);
210
211 verify( ! kernelTLS.preemption_state.enabled );
212
213 //Some actions need to be taken from the kernel
214 finishRunning(this);
215
216 spin_count = 0;
217 }
218 else
219 {
220 spin(this, &spin_count);
221 }
222 }
223
224 __cfaabi_dbg_print_safe("Kernel : core %p stopping\n", this);
225 }
226
227 unregister(this->cltr, this);
228
229 V( this->terminated );
230
231 __cfaabi_dbg_print_safe("Kernel : core %p terminated\n", this);
232}
233
234// KERNEL ONLY
235// runThread runs a thread by context switching
236// from the processor coroutine to the target thread
237void runThread(processor * this, thread_desc * dst) {
238 assert(dst->curr_cor);
239 coroutine_desc * proc_cor = get_coroutine(this->runner);
240 coroutine_desc * thrd_cor = dst->curr_cor;
241
242 // Reset the terminating actions here
243 this->finish.action_code = No_Action;
244
245 // Update global state
246 kernelTLS.this_thread = dst;
247
248 // Context Switch to the thread
249 ThreadCtxSwitch(proc_cor, thrd_cor);
250 // when ThreadCtxSwitch returns we are back in the processor coroutine
251}
252
253// KERNEL_ONLY
254void returnToKernel() {
255 coroutine_desc * proc_cor = get_coroutine(kernelTLS.this_processor->runner);
256 coroutine_desc * thrd_cor = kernelTLS.this_thread->curr_cor = kernelTLS.this_coroutine;
257 ThreadCtxSwitch(thrd_cor, proc_cor);
258}
259
260// KERNEL_ONLY
261// Once a thread has finished running, some of
262// its final actions must be executed from the kernel
263void finishRunning(processor * this) with( this->finish ) {
264 verify( ! kernelTLS.preemption_state.enabled );
265 choose( action_code ) {
266 case No_Action:
267 break;
268 case Release:
269 unlock( *lock );
270 case Schedule:
271 ScheduleThread( thrd );
272 case Release_Schedule:
273 unlock( *lock );
274 ScheduleThread( thrd );
275 case Release_Multi:
276 for(int i = 0; i < lock_count; i++) {
277 unlock( *locks[i] );
278 }
279 case Release_Multi_Schedule:
280 for(int i = 0; i < lock_count; i++) {
281 unlock( *locks[i] );
282 }
283 for(int i = 0; i < thrd_count; i++) {
284 ScheduleThread( thrds[i] );
285 }
286 case Callback:
287 callback();
288 default:
289 abort("KERNEL ERROR: Unexpected action to run after thread");
290 }
291}
292
293// Handles spinning logic
294// TODO : find some strategy to put cores to sleep after some time
295void spin(processor * this, unsigned int * spin_count) {
296 // (*spin_count)++;
297 halt(this);
298}
299
300// KERNEL_ONLY
301// Context invoker for processors
302// This is the entry point for processors (kernel threads)
303// It effectively constructs a coroutine by stealing the pthread stack
304void * CtxInvokeProcessor(void * arg) {
305 processor * proc = (processor *) arg;
306 kernelTLS.this_processor = proc;
307 kernelTLS.this_coroutine = NULL;
308 kernelTLS.this_thread = NULL;
309 kernelTLS.preemption_state.[enabled, disable_count] = [false, 1];
310 // SKULLDUGGERY: We want to create a context for the processor coroutine
311 // which is needed for the 2-step context switch. However, there is no reason
312 // to waste the perfectly valid stack create by pthread.
313 current_stack_info_t info;
314 machine_context_t ctx;
315 info.context = &ctx;
316 (proc->runner){ proc, &info };
317
318 __cfaabi_dbg_print_safe("Coroutine : created stack %p\n", get_coroutine(proc->runner)->stack.base);
319
320 //Set global state
321 kernelTLS.this_coroutine = get_coroutine(proc->runner);
322 kernelTLS.this_thread = NULL;
323
324 //We now have a proper context from which to schedule threads
325 __cfaabi_dbg_print_safe("Kernel : core %p created (%p, %p)\n", proc, &proc->runner, &ctx);
326
327 // SKULLDUGGERY: Since the coroutine doesn't have its own stack, we can't
328 // resume it to start it like it normally would, it will just context switch
329 // back to here. Instead directly call the main since we already are on the
330 // appropriate stack.
331 get_coroutine(proc->runner)->state = Active;
332 main( proc->runner );
333 get_coroutine(proc->runner)->state = Halted;
334
335 // Main routine of the core returned, the core is now fully terminated
336 __cfaabi_dbg_print_safe("Kernel : core %p main ended (%p)\n", proc, &proc->runner);
337
338 return NULL;
339}
340
341void start(processor * this) {
342 __cfaabi_dbg_print_safe("Kernel : Starting core %p\n", this);
343
344 pthread_create( &this->kernel_thread, NULL, CtxInvokeProcessor, (void*)this );
345
346 __cfaabi_dbg_print_safe("Kernel : core %p started\n", this);
347}
348
349// KERNEL_ONLY
350void kernel_first_resume(processor * this) {
351 coroutine_desc * src = kernelTLS.this_coroutine;
352 coroutine_desc * dst = get_coroutine(this->runner);
353
354 verify( ! kernelTLS.preemption_state.enabled );
355
356 create_stack(&dst->stack, dst->stack.size);
357 CtxStart(&this->runner, CtxInvokeCoroutine);
358
359 verify( ! kernelTLS.preemption_state.enabled );
360
361 dst->last = src;
362 dst->starter = dst->starter ? dst->starter : src;
363
364 // set state of current coroutine to inactive
365 src->state = src->state == Halted ? Halted : Inactive;
366
367 // set new coroutine that task is executing
368 kernelTLS.this_coroutine = dst;
369
370 // SKULLDUGGERY normally interrupts are enable before leaving a coroutine ctxswitch.
371 // Therefore, when first creating a coroutine, interrupts are enable before calling the main.
372 // This is consistent with thread creation. However, when creating the main processor coroutine,
373 // we wan't interrupts to be disabled. Therefore, we double-disable interrupts here so they will
374 // stay disabled.
375 disable_interrupts();
376
377 // context switch to specified coroutine
378 assert( src->stack.context );
379 CtxSwitch( src->stack.context, dst->stack.context );
380 // when CtxSwitch returns we are back in the src coroutine
381
382 // set state of new coroutine to active
383 src->state = Active;
384
385 verify( ! kernelTLS.preemption_state.enabled );
386}
387
388//-----------------------------------------------------------------------------
389// Scheduler routines
390
391// KERNEL ONLY
392void ScheduleThread( thread_desc * thrd ) {
393 verify( thrd );
394 verify( thrd->self_cor.state != Halted );
395
396 verify( ! kernelTLS.preemption_state.enabled );
397
398 verifyf( thrd->next == NULL, "Expected null got %p", thrd->next );
399
400 with( *thrd->curr_cluster ) {
401 lock ( ready_queue_lock __cfaabi_dbg_ctx2 );
402 bool was_empty = !(ready_queue != 0);
403 append( ready_queue, thrd );
404 unlock( ready_queue_lock );
405
406 if( was_empty ) {
407 lock (proc_list_lock __cfaabi_dbg_ctx2);
408 if(idles) {
409 wake(idles.head);
410 }
411 unlock (proc_list_lock);
412 }
413 }
414
415 verify( ! kernelTLS.preemption_state.enabled );
416}
417
418// KERNEL ONLY
419thread_desc * nextThread(cluster * this) with( *this ) {
420 verify( ! kernelTLS.preemption_state.enabled );
421 lock( ready_queue_lock __cfaabi_dbg_ctx2 );
422 thread_desc * head = pop_head( ready_queue );
423 unlock( ready_queue_lock );
424 verify( ! kernelTLS.preemption_state.enabled );
425 return head;
426}
427
428void BlockInternal() {
429 disable_interrupts();
430 verify( ! kernelTLS.preemption_state.enabled );
431 returnToKernel();
432 verify( ! kernelTLS.preemption_state.enabled );
433 enable_interrupts( __cfaabi_dbg_ctx );
434}
435
436void BlockInternal( __spinlock_t * lock ) {
437 disable_interrupts();
438 with( *kernelTLS.this_processor ) {
439 finish.action_code = Release;
440 finish.lock = lock;
441 }
442
443 verify( ! kernelTLS.preemption_state.enabled );
444 returnToKernel();
445 verify( ! kernelTLS.preemption_state.enabled );
446
447 enable_interrupts( __cfaabi_dbg_ctx );
448}
449
450void BlockInternal( thread_desc * thrd ) {
451 disable_interrupts();
452 with( * kernelTLS.this_processor ) {
453 finish.action_code = Schedule;
454 finish.thrd = thrd;
455 }
456
457 verify( ! kernelTLS.preemption_state.enabled );
458 returnToKernel();
459 verify( ! kernelTLS.preemption_state.enabled );
460
461 enable_interrupts( __cfaabi_dbg_ctx );
462}
463
464void BlockInternal( __spinlock_t * lock, thread_desc * thrd ) {
465 assert(thrd);
466 disable_interrupts();
467 with( * kernelTLS.this_processor ) {
468 finish.action_code = Release_Schedule;
469 finish.lock = lock;
470 finish.thrd = thrd;
471 }
472
473 verify( ! kernelTLS.preemption_state.enabled );
474 returnToKernel();
475 verify( ! kernelTLS.preemption_state.enabled );
476
477 enable_interrupts( __cfaabi_dbg_ctx );
478}
479
480void BlockInternal(__spinlock_t * locks [], unsigned short count) {
481 disable_interrupts();
482 with( * kernelTLS.this_processor ) {
483 finish.action_code = Release_Multi;
484 finish.locks = locks;
485 finish.lock_count = count;
486 }
487
488 verify( ! kernelTLS.preemption_state.enabled );
489 returnToKernel();
490 verify( ! kernelTLS.preemption_state.enabled );
491
492 enable_interrupts( __cfaabi_dbg_ctx );
493}
494
495void BlockInternal(__spinlock_t * locks [], unsigned short lock_count, thread_desc * thrds [], unsigned short thrd_count) {
496 disable_interrupts();
497 with( *kernelTLS.this_processor ) {
498 finish.action_code = Release_Multi_Schedule;
499 finish.locks = locks;
500 finish.lock_count = lock_count;
501 finish.thrds = thrds;
502 finish.thrd_count = thrd_count;
503 }
504
505 verify( ! kernelTLS.preemption_state.enabled );
506 returnToKernel();
507 verify( ! kernelTLS.preemption_state.enabled );
508
509 enable_interrupts( __cfaabi_dbg_ctx );
510}
511
512void BlockInternal(__finish_callback_fptr_t callback) {
513 disable_interrupts();
514 with( *kernelTLS.this_processor ) {
515 finish.action_code = Callback;
516 finish.callback = callback;
517 }
518
519 verify( ! kernelTLS.preemption_state.enabled );
520 returnToKernel();
521 verify( ! kernelTLS.preemption_state.enabled );
522
523 enable_interrupts( __cfaabi_dbg_ctx );
524}
525
526// KERNEL ONLY
527void LeaveThread(__spinlock_t * lock, thread_desc * thrd) {
528 verify( ! kernelTLS.preemption_state.enabled );
529 with( * kernelTLS.this_processor ) {
530 finish.action_code = thrd ? Release_Schedule : Release;
531 finish.lock = lock;
532 finish.thrd = thrd;
533 }
534
535 returnToKernel();
536}
537
538//=============================================================================================
539// Kernel Setup logic
540//=============================================================================================
541//-----------------------------------------------------------------------------
542// Kernel boot procedures
543void kernel_startup(void) {
544 verify( ! kernelTLS.preemption_state.enabled );
545 __cfaabi_dbg_print_safe("Kernel : Starting\n");
546
547 global_clusters.list{ __get };
548 global_clusters.lock{};
549
550 // Initialize the main cluster
551 mainCluster = (cluster *)&storage_mainCluster;
552 (*mainCluster){"Main Cluster"};
553
554 __cfaabi_dbg_print_safe("Kernel : Main cluster ready\n");
555
556 // Start by initializing the main thread
557 // SKULLDUGGERY: the mainThread steals the process main thread
558 // which will then be scheduled by the mainProcessor normally
559 mainThread = (thread_desc *)&storage_mainThread;
560 current_stack_info_t info;
561 (*mainThread){ &info };
562
563 __cfaabi_dbg_print_safe("Kernel : Main thread ready\n");
564
565
566
567 // Construct the processor context of the main processor
568 void ?{}(processorCtx_t & this, processor * proc) {
569 (this.__cor){ "Processor" };
570 this.__cor.starter = NULL;
571 this.proc = proc;
572 }
573
574 void ?{}(processor & this) with( this ) {
575 name = "Main Processor";
576 cltr = mainCluster;
577 terminated{ 0 };
578 do_terminate = false;
579 preemption_alarm = NULL;
580 pending_preemption = false;
581 kernel_thread = pthread_self();
582
583 runner{ &this };
584 __cfaabi_dbg_print_safe("Kernel : constructed main processor context %p\n", &runner);
585 }
586
587 // Initialize the main processor and the main processor ctx
588 // (the coroutine that contains the processing control flow)
589 mainProcessor = (processor *)&storage_mainProcessor;
590 (*mainProcessor){};
591
592 //initialize the global state variables
593 kernelTLS.this_processor = mainProcessor;
594 kernelTLS.this_thread = mainThread;
595 kernelTLS.this_coroutine = &mainThread->self_cor;
596
597 // Enable preemption
598 kernel_start_preemption();
599
600 // Add the main thread to the ready queue
601 // once resume is called on mainProcessor->runner the mainThread needs to be scheduled like any normal thread
602 ScheduleThread(mainThread);
603
604 // SKULLDUGGERY: Force a context switch to the main processor to set the main thread's context to the current UNIX
605 // context. Hence, the main thread does not begin through CtxInvokeThread, like all other threads. The trick here is that
606 // mainThread is on the ready queue when this call is made.
607 kernel_first_resume( kernelTLS.this_processor );
608
609
610
611 // THE SYSTEM IS NOW COMPLETELY RUNNING
612 __cfaabi_dbg_print_safe("Kernel : Started\n--------------------------------------------------\n\n");
613
614 verify( ! kernelTLS.preemption_state.enabled );
615 enable_interrupts( __cfaabi_dbg_ctx );
616 verify( TL_GET( preemption_state.enabled ) );
617}
618
619void kernel_shutdown(void) {
620 __cfaabi_dbg_print_safe("\n--------------------------------------------------\nKernel : Shutting down\n");
621
622 verify( TL_GET( preemption_state.enabled ) );
623 disable_interrupts();
624 verify( ! kernelTLS.preemption_state.enabled );
625
626 // SKULLDUGGERY: Notify the mainProcessor it needs to terminates.
627 // When its coroutine terminates, it return control to the mainThread
628 // which is currently here
629 mainProcessor->do_terminate = true;
630 returnToKernel();
631
632 // THE SYSTEM IS NOW COMPLETELY STOPPED
633
634 // Disable preemption
635 kernel_stop_preemption();
636
637 // Destroy the main processor and its context in reverse order of construction
638 // These were manually constructed so we need manually destroy them
639 ^(mainProcessor->runner){};
640 ^(mainProcessor){};
641
642 // Final step, destroy the main thread since it is no longer needed
643 // Since we provided a stack to this taxk it will not destroy anything
644 ^(mainThread){};
645
646 ^(global_clusters.list){};
647 ^(global_clusters.lock){};
648
649 __cfaabi_dbg_print_safe("Kernel : Shutdown complete\n");
650}
651
652//=============================================================================================
653// Kernel Quiescing
654//=============================================================================================
655
656void halt(processor * this) with( *this ) {
657 with( *cltr ) {
658 lock (proc_list_lock __cfaabi_dbg_ctx2);
659 remove (procs, *this);
660 push_front(idles, *this);
661 unlock (proc_list_lock);
662 }
663
664 __cfaabi_dbg_print_safe("Kernel : Processor %p ready to sleep\n", this);
665
666 verify( ({int sval = 0; sem_getvalue(&this->idleLock, &sval); sval; }) < 200);
667 int __attribute__((unused)) ret = sem_wait(&idleLock);
668 verify(ret > 0 || errno == EINTR);
669
670 __cfaabi_dbg_print_safe("Kernel : Processor %p woke up and ready to run\n", this);
671
672 with( *cltr ) {
673 lock (proc_list_lock __cfaabi_dbg_ctx2);
674 remove (idles, *this);
675 push_front(procs, *this);
676 unlock (proc_list_lock);
677 }
678}
679
680void wake(processor * this) {
681 __cfaabi_dbg_print_safe("Kernel : Waking up processor %p\n", this);
682 int __attribute__((unused)) ret = sem_post(&this->idleLock);
683 verify(ret > 0 || errno == EINTR);
684 verify( ({int sval = 0; sem_getvalue(&this->idleLock, &sval); sval; }) < 200);
685}
686
687//=============================================================================================
688// Unexpected Terminating logic
689//=============================================================================================
690
691
692static __spinlock_t kernel_abort_lock;
693static bool kernel_abort_called = false;
694
695void * kernel_abort(void) __attribute__ ((__nothrow__)) {
696 // abort cannot be recursively entered by the same or different processors because all signal handlers return when
697 // the globalAbort flag is true.
698 lock( kernel_abort_lock __cfaabi_dbg_ctx2 );
699
700 // first task to abort ?
701 if ( kernel_abort_called ) { // not first task to abort ?
702 unlock( kernel_abort_lock );
703
704 sigset_t mask;
705 sigemptyset( &mask );
706 sigaddset( &mask, SIGALRM ); // block SIGALRM signals
707 sigsuspend( &mask ); // block the processor to prevent further damage during abort
708 _exit( EXIT_FAILURE ); // if processor unblocks before it is killed, terminate it
709 }
710 else {
711 kernel_abort_called = true;
712 unlock( kernel_abort_lock );
713 }
714
715 return kernelTLS.this_thread;
716}
717
718void kernel_abort_msg( void * kernel_data, char * abort_text, int abort_text_size ) {
719 thread_desc * thrd = kernel_data;
720
721 if(thrd) {
722 int len = snprintf( abort_text, abort_text_size, "Error occurred while executing thread %.256s (%p)", thrd->self_cor.name, thrd );
723 __cfaabi_dbg_bits_write( abort_text, len );
724
725 if ( get_coroutine(thrd) != kernelTLS.this_coroutine ) {
726 len = snprintf( abort_text, abort_text_size, " in coroutine %.256s (%p).\n", kernelTLS.this_coroutine->name, kernelTLS.this_coroutine );
727 __cfaabi_dbg_bits_write( abort_text, len );
728 }
729 else {
730 __cfaabi_dbg_bits_write( ".\n", 2 );
731 }
732 }
733 else {
734 int len = snprintf( abort_text, abort_text_size, "Error occurred outside of any thread.\n" );
735 __cfaabi_dbg_bits_write( abort_text, len );
736 }
737}
738
739int kernel_abort_lastframe( void ) __attribute__ ((__nothrow__)) {
740 return get_coroutine(kernelTLS.this_thread) == get_coroutine(mainThread) ? 4 : 2;
741}
742
743static __spinlock_t kernel_debug_lock;
744
745extern "C" {
746 void __cfaabi_dbg_bits_acquire() {
747 lock( kernel_debug_lock __cfaabi_dbg_ctx2 );
748 }
749
750 void __cfaabi_dbg_bits_release() {
751 unlock( kernel_debug_lock );
752 }
753}
754
755//=============================================================================================
756// Kernel Utilities
757//=============================================================================================
758//-----------------------------------------------------------------------------
759// Locks
760void ?{}( semaphore & this, int count = 1 ) {
761 (this.lock){};
762 this.count = count;
763 (this.waiting){};
764}
765void ^?{}(semaphore & this) {}
766
767void P(semaphore & this) with( this ){
768 lock( lock __cfaabi_dbg_ctx2 );
769 count -= 1;
770 if ( count < 0 ) {
771 // queue current task
772 append( waiting, kernelTLS.this_thread );
773
774 // atomically release spin lock and block
775 BlockInternal( &lock );
776 }
777 else {
778 unlock( lock );
779 }
780}
781
782void V(semaphore & this) with( this ) {
783 thread_desc * thrd = NULL;
784 lock( lock __cfaabi_dbg_ctx2 );
785 count += 1;
786 if ( count <= 0 ) {
787 // remove task at head of waiting list
788 thrd = pop_head( waiting );
789 }
790
791 unlock( lock );
792
793 // make new owner
794 WakeThread( thrd );
795}
796
797//-----------------------------------------------------------------------------
798// Global Queues
799void doregister( cluster & cltr ) {
800 lock ( global_clusters.lock __cfaabi_dbg_ctx2);
801 push_front( global_clusters.list, cltr );
802 unlock ( global_clusters.lock );
803}
804
805void unregister( cluster & cltr ) {
806 lock ( global_clusters.lock __cfaabi_dbg_ctx2);
807 remove( global_clusters.list, cltr );
808 unlock( global_clusters.lock );
809}
810
811void doregister( cluster * cltr, thread_desc & thrd ) {
812 lock (cltr->thread_list_lock __cfaabi_dbg_ctx2);
813 push_front(cltr->threads, thrd);
814 unlock (cltr->thread_list_lock);
815}
816
817void unregister( cluster * cltr, thread_desc & thrd ) {
818 lock (cltr->thread_list_lock __cfaabi_dbg_ctx2);
819 remove(cltr->threads, thrd );
820 unlock(cltr->thread_list_lock);
821}
822
823void doregister( cluster * cltr, processor * proc ) {
824 lock (cltr->proc_list_lock __cfaabi_dbg_ctx2);
825 push_front(cltr->procs, *proc);
826 unlock (cltr->proc_list_lock);
827}
828
829void unregister( cluster * cltr, processor * proc ) {
830 lock (cltr->proc_list_lock __cfaabi_dbg_ctx2);
831 remove(cltr->procs, *proc );
832 unlock(cltr->proc_list_lock);
833}
834
835//-----------------------------------------------------------------------------
836// Debug
837__cfaabi_dbg_debug_do(
838 void __cfaabi_dbg_record(__spinlock_t & this, const char * prev_name) {
839 this.prev_name = prev_name;
840 this.prev_thrd = kernelTLS.this_thread;
841 }
842)
843// Local Variables: //
844// mode: c //
845// tab-width: 4 //
846// End: //
Note: See TracBrowser for help on using the repository browser.