source: src/libcfa/concurrency/kernel.c@ 288eede

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors deferred_resn demangler enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum resolv-new with_gc
Last change on this file since 288eede was 4aa2fb2, checked in by Thierry Delisle <tdelisle@…>, 8 years ago

Added verify macro for asserts only present in debug

  • Property mode set to 100644
File size: 17.2 KB
Line 
1// -*- Mode: CFA -*-
2//
3// Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
4//
5// The contents of this file are covered under the licence agreement in the
6// file "LICENCE" distributed with Cforall.
7//
8// kernel.c --
9//
10// Author : Thierry Delisle
11// Created On : Tue Jan 17 12:27:26 2017
12// Last Modified By : Thierry Delisle
13// Last Modified On : --
14// Update Count : 0
15//
16
17#include "startup.h"
18
19//Start and stop routine for the kernel, declared first to make sure they run first
20void kernel_startup(void) __attribute__(( constructor( STARTUP_PRIORITY_KERNEL ) ));
21void kernel_shutdown(void) __attribute__(( destructor ( STARTUP_PRIORITY_KERNEL ) ));
22
23//Header
24#include "kernel_private.h"
25
26//C Includes
27#include <stddef.h>
28extern "C" {
29#include <stdio.h>
30#include <fenv.h>
31#include <sys/resource.h>
32#include <signal.h>
33#include <unistd.h>
34}
35
36//CFA Includes
37#include "libhdr.h"
38#include "preemption.h"
39
40//Private includes
41#define __CFA_INVOKE_PRIVATE__
42#include "invoke.h"
43
44//-----------------------------------------------------------------------------
45// Kernel storage
46#define KERNEL_STORAGE(T,X) static char X##_storage[sizeof(T)]
47
48KERNEL_STORAGE(processorCtx_t, systemProcessorCtx);
49KERNEL_STORAGE(cluster, systemCluster);
50KERNEL_STORAGE(system_proc_t, systemProcessor);
51KERNEL_STORAGE(thread_desc, mainThread);
52KERNEL_STORAGE(machine_context_t, mainThread_context);
53
54cluster * systemCluster;
55system_proc_t * systemProcessor;
56thread_desc * mainThread;
57
58//-----------------------------------------------------------------------------
59// Global state
60
61thread_local processor * this_processor;
62
63coroutine_desc * this_coroutine(void) {
64 return this_processor->current_coroutine;
65}
66
67thread_desc * this_thread(void) {
68 return this_processor->current_thread;
69}
70
71//-----------------------------------------------------------------------------
72// Main thread construction
73struct current_stack_info_t {
74 machine_context_t ctx;
75 unsigned int size; // size of stack
76 void *base; // base of stack
77 void *storage; // pointer to stack
78 void *limit; // stack grows towards stack limit
79 void *context; // address of cfa_context_t
80 void *top; // address of top of storage
81};
82
83void ?{}( current_stack_info_t * this ) {
84 CtxGet( &this->ctx );
85 this->base = this->ctx.FP;
86 this->storage = this->ctx.SP;
87
88 rlimit r;
89 getrlimit( RLIMIT_STACK, &r);
90 this->size = r.rlim_cur;
91
92 this->limit = (void *)(((intptr_t)this->base) - this->size);
93 this->context = &mainThread_context_storage;
94 this->top = this->base;
95}
96
97void ?{}( coStack_t * this, current_stack_info_t * info) {
98 this->size = info->size;
99 this->storage = info->storage;
100 this->limit = info->limit;
101 this->base = info->base;
102 this->context = info->context;
103 this->top = info->top;
104 this->userStack = true;
105}
106
107void ?{}( coroutine_desc * this, current_stack_info_t * info) {
108 (&this->stack){ info };
109 this->name = "Main Thread";
110 this->errno_ = 0;
111 this->state = Start;
112}
113
114void ?{}( thread_desc * this, current_stack_info_t * info) {
115 (&this->cor){ info };
116}
117
118//-----------------------------------------------------------------------------
119// Processor coroutine
120void ?{}(processorCtx_t * this, processor * proc) {
121 (&this->__cor){ "Processor" };
122 this->proc = proc;
123 proc->runner = this;
124}
125
126void ?{}(processorCtx_t * this, processor * proc, current_stack_info_t * info) {
127 (&this->__cor){ info };
128 this->proc = proc;
129 proc->runner = this;
130}
131
132void ?{}(processor * this) {
133 this{ systemCluster };
134}
135
136void ?{}(processor * this, cluster * cltr) {
137 this->cltr = cltr;
138 this->current_coroutine = NULL;
139 this->current_thread = NULL;
140 (&this->terminated){};
141 this->is_terminated = false;
142 this->preemption_alarm = NULL;
143 this->preemption = default_preemption();
144 this->disable_preempt_count = 1; //Start with interrupts disabled
145 this->pending_preemption = false;
146
147 start( this );
148}
149
150void ?{}(processor * this, cluster * cltr, processorCtx_t * runner) {
151 this->cltr = cltr;
152 this->current_coroutine = NULL;
153 this->current_thread = NULL;
154 (&this->terminated){};
155 this->is_terminated = false;
156 this->disable_preempt_count = 0;
157 this->pending_preemption = false;
158
159 this->runner = runner;
160 LIB_DEBUG_PRINT_SAFE("Kernel : constructing processor context %p\n", runner);
161 runner{ this };
162}
163
164void ?{}(system_proc_t * this, cluster * cltr, processorCtx_t * runner) {
165 (&this->alarms){};
166 (&this->alarm_lock){};
167 this->pending_alarm = false;
168
169 (&this->proc){ cltr, runner };
170}
171
172void ^?{}(processor * this) {
173 if( ! this->is_terminated ) {
174 LIB_DEBUG_PRINT_SAFE("Kernel : core %p signaling termination\n", this);
175 this->is_terminated = true;
176 wait( &this->terminated );
177 }
178}
179
180void ?{}(cluster * this) {
181 ( &this->ready_queue ){};
182 ( &this->lock ){};
183}
184
185void ^?{}(cluster * this) {
186
187}
188
189//=============================================================================================
190// Kernel Scheduling logic
191//=============================================================================================
192//Main of the processor contexts
193void main(processorCtx_t * runner) {
194 processor * this = runner->proc;
195
196 LIB_DEBUG_PRINT_SAFE("Kernel : core %p starting\n", this);
197
198 {
199 // Setup preemption data
200 preemption_scope scope = { this };
201
202 LIB_DEBUG_PRINT_SAFE("Kernel : core %p started\n", this);
203
204 thread_desc * readyThread = NULL;
205 for( unsigned int spin_count = 0; ! this->is_terminated; spin_count++ )
206 {
207 readyThread = nextThread( this->cltr );
208
209 if(readyThread)
210 {
211 runThread(this, readyThread);
212
213 //Some actions need to be taken from the kernel
214 finishRunning(this);
215
216 spin_count = 0;
217 }
218 else
219 {
220 spin(this, &spin_count);
221 }
222 }
223
224 LIB_DEBUG_PRINT_SAFE("Kernel : core %p stopping\n", this);
225 }
226
227 signal( &this->terminated );
228 LIB_DEBUG_PRINT_SAFE("Kernel : core %p terminated\n", this);
229}
230
231// runThread runs a thread by context switching
232// from the processor coroutine to the target thread
233void runThread(processor * this, thread_desc * dst) {
234 coroutine_desc * proc_cor = get_coroutine(this->runner);
235 coroutine_desc * thrd_cor = get_coroutine(dst);
236
237 //Reset the terminating actions here
238 this->finish.action_code = No_Action;
239
240 //Update global state
241 this->current_thread = dst;
242
243 // Context Switch to the thread
244 ThreadCtxSwitch(proc_cor, thrd_cor);
245 // when ThreadCtxSwitch returns we are back in the processor coroutine
246}
247
248// Once a thread has finished running, some of
249// its final actions must be executed from the kernel
250void finishRunning(processor * this) {
251 if( this->finish.action_code == Release ) {
252 unlock( this->finish.lock );
253 }
254 else if( this->finish.action_code == Schedule ) {
255 ScheduleThread( this->finish.thrd );
256 }
257 else if( this->finish.action_code == Release_Schedule ) {
258 unlock( this->finish.lock );
259 ScheduleThread( this->finish.thrd );
260 }
261 else if( this->finish.action_code == Release_Multi ) {
262 for(int i = 0; i < this->finish.lock_count; i++) {
263 unlock( this->finish.locks[i] );
264 }
265 }
266 else if( this->finish.action_code == Release_Multi_Schedule ) {
267 for(int i = 0; i < this->finish.lock_count; i++) {
268 unlock( this->finish.locks[i] );
269 }
270 for(int i = 0; i < this->finish.thrd_count; i++) {
271 ScheduleThread( this->finish.thrds[i] );
272 }
273 }
274 else {
275 assert(this->finish.action_code == No_Action);
276 }
277}
278
279// Handles spinning logic
280// TODO : find some strategy to put cores to sleep after some time
281void spin(processor * this, unsigned int * spin_count) {
282 (*spin_count)++;
283}
284
285// Context invoker for processors
286// This is the entry point for processors (kernel threads)
287// It effectively constructs a coroutine by stealing the pthread stack
288void * CtxInvokeProcessor(void * arg) {
289 processor * proc = (processor *) arg;
290 this_processor = proc;
291 // SKULLDUGGERY: We want to create a context for the processor coroutine
292 // which is needed for the 2-step context switch. However, there is no reason
293 // to waste the perfectly valid stack create by pthread.
294 current_stack_info_t info;
295 machine_context_t ctx;
296 info.context = &ctx;
297 processorCtx_t proc_cor_storage = { proc, &info };
298
299 LIB_DEBUG_PRINT_SAFE("Coroutine : created stack %p\n", proc_cor_storage.__cor.stack.base);
300
301 //Set global state
302 proc->current_coroutine = &proc->runner->__cor;
303 proc->current_thread = NULL;
304
305 //We now have a proper context from which to schedule threads
306 LIB_DEBUG_PRINT_SAFE("Kernel : core %p created (%p, %p)\n", proc, proc->runner, &ctx);
307
308 // SKULLDUGGERY: Since the coroutine doesn't have its own stack, we can't
309 // resume it to start it like it normally would, it will just context switch
310 // back to here. Instead directly call the main since we already are on the
311 // appropriate stack.
312 proc_cor_storage.__cor.state = Active;
313 main( &proc_cor_storage );
314 proc_cor_storage.__cor.state = Halted;
315
316 // Main routine of the core returned, the core is now fully terminated
317 LIB_DEBUG_PRINT_SAFE("Kernel : core %p main ended (%p)\n", proc, proc->runner);
318
319 return NULL;
320}
321
322void start(processor * this) {
323 LIB_DEBUG_PRINT_SAFE("Kernel : Starting core %p\n", this);
324
325 pthread_create( &this->kernel_thread, NULL, CtxInvokeProcessor, (void*)this );
326
327 LIB_DEBUG_PRINT_SAFE("Kernel : core %p started\n", this);
328}
329
330//-----------------------------------------------------------------------------
331// Scheduler routines
332void ScheduleThread( thread_desc * thrd ) {
333 if( !thrd ) return;
334
335 verifyf( thrd->next == NULL, "Expected null got %p", thrd->next );
336
337 lock( &systemProcessor->proc.cltr->lock );
338 append( &systemProcessor->proc.cltr->ready_queue, thrd );
339 unlock( &systemProcessor->proc.cltr->lock );
340}
341
342thread_desc * nextThread(cluster * this) {
343 lock( &this->lock );
344 thread_desc * head = pop_head( &this->ready_queue );
345 unlock( &this->lock );
346 return head;
347}
348
349void ScheduleInternal() {
350 suspend();
351}
352
353void ScheduleInternal( spinlock * lock ) {
354 this_processor->finish.action_code = Release;
355 this_processor->finish.lock = lock;
356 suspend();
357}
358
359void ScheduleInternal( thread_desc * thrd ) {
360 this_processor->finish.action_code = Schedule;
361 this_processor->finish.thrd = thrd;
362 suspend();
363}
364
365void ScheduleInternal( spinlock * lock, thread_desc * thrd ) {
366 this_processor->finish.action_code = Release_Schedule;
367 this_processor->finish.lock = lock;
368 this_processor->finish.thrd = thrd;
369 suspend();
370}
371
372void ScheduleInternal(spinlock ** locks, unsigned short count) {
373 this_processor->finish.action_code = Release_Multi;
374 this_processor->finish.locks = locks;
375 this_processor->finish.lock_count = count;
376 suspend();
377}
378
379void ScheduleInternal(spinlock ** locks, unsigned short lock_count, thread_desc ** thrds, unsigned short thrd_count) {
380 this_processor->finish.action_code = Release_Multi_Schedule;
381 this_processor->finish.locks = locks;
382 this_processor->finish.lock_count = lock_count;
383 this_processor->finish.thrds = thrds;
384 this_processor->finish.thrd_count = thrd_count;
385 suspend();
386}
387
388//=============================================================================================
389// Kernel Setup logic
390//=============================================================================================
391//-----------------------------------------------------------------------------
392// Kernel boot procedures
393void kernel_startup(void) {
394 LIB_DEBUG_PRINT_SAFE("Kernel : Starting\n");
395
396 // Start by initializing the main thread
397 // SKULLDUGGERY: the mainThread steals the process main thread
398 // which will then be scheduled by the systemProcessor normally
399 mainThread = (thread_desc *)&mainThread_storage;
400 current_stack_info_t info;
401 mainThread{ &info };
402
403 LIB_DEBUG_PRINT_SAFE("Kernel : Main thread ready\n");
404
405 // Enable preemption
406 kernel_start_preemption();
407
408 // Initialize the system cluster
409 systemCluster = (cluster *)&systemCluster_storage;
410 systemCluster{};
411
412 LIB_DEBUG_PRINT_SAFE("Kernel : System cluster ready\n");
413
414 // Initialize the system processor and the system processor ctx
415 // (the coroutine that contains the processing control flow)
416 systemProcessor = (system_proc_t *)&systemProcessor_storage;
417 systemProcessor{ systemCluster, (processorCtx_t *)&systemProcessorCtx_storage };
418
419 // Add the main thread to the ready queue
420 // once resume is called on systemProcessor->runner the mainThread needs to be scheduled like any normal thread
421 ScheduleThread(mainThread);
422
423 //initialize the global state variables
424 this_processor = &systemProcessor->proc;
425 this_processor->current_thread = mainThread;
426 this_processor->current_coroutine = &mainThread->cor;
427
428 // SKULLDUGGERY: Force a context switch to the system processor to set the main thread's context to the current UNIX
429 // context. Hence, the main thread does not begin through CtxInvokeThread, like all other threads. The trick here is that
430 // mainThread is on the ready queue when this call is made.
431 resume( systemProcessor->proc.runner );
432
433
434
435 // THE SYSTEM IS NOW COMPLETELY RUNNING
436 LIB_DEBUG_PRINT_SAFE("Kernel : Started\n--------------------------------------------------\n\n");
437}
438
439void kernel_shutdown(void) {
440 LIB_DEBUG_PRINT_SAFE("\n--------------------------------------------------\nKernel : Shutting down\n");
441
442 // SKULLDUGGERY: Notify the systemProcessor it needs to terminates.
443 // When its coroutine terminates, it return control to the mainThread
444 // which is currently here
445 systemProcessor->proc.is_terminated = true;
446 suspend();
447
448 // THE SYSTEM IS NOW COMPLETELY STOPPED
449
450 // Destroy the system processor and its context in reverse order of construction
451 // These were manually constructed so we need manually destroy them
452 ^(systemProcessor->proc.runner){};
453 ^(systemProcessor){};
454
455 // Final step, destroy the main thread since it is no longer needed
456 // Since we provided a stack to this taxk it will not destroy anything
457 ^(mainThread){};
458
459 LIB_DEBUG_PRINT_SAFE("Kernel : Shutdown complete\n");
460}
461
462static spinlock kernel_abort_lock;
463static spinlock kernel_debug_lock;
464static bool kernel_abort_called = false;
465
466void * kernel_abort (void) __attribute__ ((__nothrow__)) {
467 // abort cannot be recursively entered by the same or different processors because all signal handlers return when
468 // the globalAbort flag is true.
469 lock( &kernel_abort_lock );
470
471 // first task to abort ?
472 if ( !kernel_abort_called ) { // not first task to abort ?
473 kernel_abort_called = true;
474 unlock( &kernel_abort_lock );
475 }
476 else {
477 unlock( &kernel_abort_lock );
478
479 sigset_t mask;
480 sigemptyset( &mask );
481 sigaddset( &mask, SIGALRM ); // block SIGALRM signals
482 sigaddset( &mask, SIGUSR1 ); // block SIGUSR1 signals
483 sigsuspend( &mask ); // block the processor to prevent further damage during abort
484 _exit( EXIT_FAILURE ); // if processor unblocks before it is killed, terminate it
485 }
486
487 return this_thread();
488}
489
490void kernel_abort_msg( void * kernel_data, char * abort_text, int abort_text_size ) {
491 thread_desc * thrd = kernel_data;
492
493 int len = snprintf( abort_text, abort_text_size, "Error occurred while executing task %.256s (%p)", thrd->cor.name, thrd );
494 __lib_debug_write( STDERR_FILENO, abort_text, len );
495
496 if ( thrd != this_coroutine() ) {
497 len = snprintf( abort_text, abort_text_size, " in coroutine %.256s (%p).\n", this_coroutine()->name, this_coroutine() );
498 __lib_debug_write( STDERR_FILENO, abort_text, len );
499 }
500 else {
501 __lib_debug_write( STDERR_FILENO, ".\n", 2 );
502 }
503}
504
505extern "C" {
506 void __lib_debug_acquire() {
507 lock(&kernel_debug_lock);
508 }
509
510 void __lib_debug_release() {
511 unlock(&kernel_debug_lock);
512 }
513}
514
515//=============================================================================================
516// Kernel Utilities
517//=============================================================================================
518//-----------------------------------------------------------------------------
519// Locks
520void ?{}( spinlock * this ) {
521 this->lock = 0;
522}
523void ^?{}( spinlock * this ) {
524
525}
526
527bool try_lock( spinlock * this ) {
528 return this->lock == 0 && __sync_lock_test_and_set_4( &this->lock, 1 ) == 0;
529}
530
531void lock( spinlock * this ) {
532 for ( unsigned int i = 1;; i += 1 ) {
533 if ( this->lock == 0 && __sync_lock_test_and_set_4( &this->lock, 1 ) == 0 ) break;
534 }
535}
536
537void unlock( spinlock * this ) {
538 __sync_lock_release_4( &this->lock );
539}
540
541void ?{}( signal_once * this ) {
542 this->cond = false;
543}
544void ^?{}( signal_once * this ) {
545
546}
547
548void wait( signal_once * this ) {
549 lock( &this->lock );
550 if( !this->cond ) {
551 append( &this->blocked, this_thread() );
552 ScheduleInternal( &this->lock );
553 lock( &this->lock );
554 }
555 unlock( &this->lock );
556}
557
558void signal( signal_once * this ) {
559 lock( &this->lock );
560 {
561 this->cond = true;
562
563 thread_desc * it;
564 while( it = pop_head( &this->blocked) ) {
565 ScheduleThread( it );
566 }
567 }
568 unlock( &this->lock );
569}
570
571//-----------------------------------------------------------------------------
572// Queues
573void ?{}( __thread_queue_t * this ) {
574 this->head = NULL;
575 this->tail = &this->head;
576}
577
578void append( __thread_queue_t * this, thread_desc * t ) {
579 verify(this->tail != NULL);
580 *this->tail = t;
581 this->tail = &t->next;
582}
583
584thread_desc * pop_head( __thread_queue_t * this ) {
585 thread_desc * head = this->head;
586 if( head ) {
587 this->head = head->next;
588 if( !head->next ) {
589 this->tail = &this->head;
590 }
591 head->next = NULL;
592 }
593 return head;
594}
595
596void ?{}( __condition_stack_t * this ) {
597 this->top = NULL;
598}
599
600void push( __condition_stack_t * this, __condition_criterion_t * t ) {
601 verify( !t->next );
602 t->next = this->top;
603 this->top = t;
604}
605
606__condition_criterion_t * pop( __condition_stack_t * this ) {
607 __condition_criterion_t * top = this->top;
608 if( top ) {
609 this->top = top->next;
610 top->next = NULL;
611 }
612 return top;
613}
614// Local Variables: //
615// mode: c //
616// tab-width: 4 //
617// End: //
Note: See TracBrowser for help on using the repository browser.