source: src/libcfa/concurrency/kernel.c@ 0b465a5

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors deferred_resn demangler enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum resolv-new with_gc
Last change on this file since 0b465a5 was ead8c7e, checked in by Thierry Delisle <tdelisle@…>, 9 years ago

Remove extraenous asserts

  • Property mode set to 100644
File size: 12.9 KB
Line 
1// -*- Mode: CFA -*-
2//
3// Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
4//
5// The contents of this file are covered under the licence agreement in the
6// file "LICENCE" distributed with Cforall.
7//
8// kernel.c --
9//
10// Author : Thierry Delisle
11// Created On : Tue Jan 17 12:27:26 2017
12// Last Modified By : Thierry Delisle
13// Last Modified On : --
14// Update Count : 0
15//
16
17//Start and stop routine for the kernel, declared first to make sure they run first
18void kernel_startup(void) __attribute__((constructor(101)));
19void kernel_shutdown(void) __attribute__((destructor(101)));
20
21//Header
22#include "kernel_private.h"
23
24//C Includes
25#include <stddef.h>
26extern "C" {
27#include <fenv.h>
28#include <sys/resource.h>
29}
30
31//CFA Includes
32#include "libhdr.h"
33
34//Private includes
35#define __CFA_INVOKE_PRIVATE__
36#include "invoke.h"
37
38//-----------------------------------------------------------------------------
39// Kernel storage
40#define KERNEL_STORAGE(T,X) static char X##_storage[sizeof(T)]
41
42KERNEL_STORAGE(processorCtx_t, systemProcessorCtx);
43KERNEL_STORAGE(cluster, systemCluster);
44KERNEL_STORAGE(processor, systemProcessor);
45KERNEL_STORAGE(thread, mainThread);
46KERNEL_STORAGE(machine_context_t, mainThread_context);
47
48cluster * systemCluster;
49processor * systemProcessor;
50thread * mainThread;
51
52//-----------------------------------------------------------------------------
53// Global state
54
55thread_local processor * this_processor;
56
57processor * get_this_processor() {
58 return this_processor;
59}
60
61coroutine * this_coroutine(void) {
62 return this_processor->current_coroutine;
63}
64
65thread * this_thread(void) {
66 return this_processor->current_thread;
67}
68
69//-----------------------------------------------------------------------------
70// Main thread construction
71struct current_stack_info_t {
72 machine_context_t ctx;
73 unsigned int size; // size of stack
74 void *base; // base of stack
75 void *storage; // pointer to stack
76 void *limit; // stack grows towards stack limit
77 void *context; // address of cfa_context_t
78 void *top; // address of top of storage
79};
80
81void ?{}( current_stack_info_t * this ) {
82 CtxGet( &this->ctx );
83 this->base = this->ctx.FP;
84 this->storage = this->ctx.SP;
85
86 rlimit r;
87 getrlimit( RLIMIT_STACK, &r);
88 this->size = r.rlim_cur;
89
90 this->limit = (void *)(((intptr_t)this->base) - this->size);
91 this->context = &mainThread_context_storage;
92 this->top = this->base;
93}
94
95void ?{}( coStack_t * this, current_stack_info_t * info) {
96 this->size = info->size;
97 this->storage = info->storage;
98 this->limit = info->limit;
99 this->base = info->base;
100 this->context = info->context;
101 this->top = info->top;
102 this->userStack = true;
103}
104
105void ?{}( coroutine * this, current_stack_info_t * info) {
106 (&this->stack){ info };
107 this->name = "Main Thread";
108 this->errno_ = 0;
109 this->state = Start;
110}
111
112void ?{}( thread * this, current_stack_info_t * info) {
113 (&this->c){ info };
114}
115
116//-----------------------------------------------------------------------------
117// Processor coroutine
118void ?{}(processorCtx_t * this, processor * proc) {
119 (&this->c){};
120 this->proc = proc;
121 proc->runner = this;
122}
123
124void ?{}(processorCtx_t * this, processor * proc, current_stack_info_t * info) {
125 (&this->c){ info };
126 this->proc = proc;
127 proc->runner = this;
128}
129
130void ?{}(processor * this) {
131 this{ systemCluster };
132}
133
134void ?{}(processor * this, cluster * cltr) {
135 this->cltr = cltr;
136 this->current_coroutine = NULL;
137 this->current_thread = NULL;
138 (&this->terminated){};
139 this->is_terminated = false;
140
141 start( this );
142}
143
144void ?{}(processor * this, cluster * cltr, processorCtx_t * runner) {
145 this->cltr = cltr;
146 this->current_coroutine = NULL;
147 this->current_thread = NULL;
148 (&this->terminated){};
149 this->is_terminated = false;
150
151 this->runner = runner;
152 LIB_DEBUG_PRINTF("Kernel : constructing processor context %p\n", runner);
153 runner{ this };
154}
155
156void ^?{}(processor * this) {
157 if( ! this->is_terminated ) {
158 LIB_DEBUG_PRINTF("Kernel : core %p signaling termination\n", this);
159 this->is_terminated = true;
160 wait( &this->terminated );
161 }
162}
163
164void ?{}(cluster * this) {
165 ( &this->ready_queue ){};
166 ( &this->lock ){};
167}
168
169void ^?{}(cluster * this) {
170
171}
172
173//=============================================================================================
174// Kernel Scheduling logic
175//=============================================================================================
176//Main of the processor contexts
177void main(processorCtx_t * runner) {
178 processor * this = runner->proc;
179 LIB_DEBUG_PRINTF("Kernel : core %p starting\n", this);
180
181 thread * readyThread = NULL;
182 for( unsigned int spin_count = 0; ! this->is_terminated; spin_count++ )
183 {
184 readyThread = nextThread( this->cltr );
185
186 if(readyThread)
187 {
188 runThread(this, readyThread);
189
190 //Some actions need to be taken from the kernel
191 finishRunning(this);
192
193 spin_count = 0;
194 }
195 else
196 {
197 spin(this, &spin_count);
198 }
199 }
200
201 LIB_DEBUG_PRINTF("Kernel : core %p unlocking thread\n", this);
202 signal( &this->terminated );
203 LIB_DEBUG_PRINTF("Kernel : core %p terminated\n", this);
204}
205
206// runThread runs a thread by context switching
207// from the processor coroutine to the target thread
208void runThread(processor * this, thread * dst) {
209 coroutine * proc_cor = get_coroutine(this->runner);
210 coroutine * thrd_cor = get_coroutine(dst);
211
212 //Reset the terminating actions here
213 this->finish.action_code = No_Action;
214
215 //Update global state
216 this->current_thread = dst;
217
218 // Context Switch to the thread
219 ThreadCtxSwitch(proc_cor, thrd_cor);
220 // when ThreadCtxSwitch returns we are back in the processor coroutine
221}
222
223// Once a thread has finished running, some of
224// its final actions must be executed from the kernel
225void finishRunning(processor * this) {
226 if( this->finish.action_code == Release ) {
227 unlock( this->finish.lock );
228 }
229 else if( this->finish.action_code == Schedule ) {
230 ScheduleThread( this->finish.thrd );
231 }
232 else if( this->finish.action_code == Release_Schedule ) {
233 unlock( this->finish.lock );
234 ScheduleThread( this->finish.thrd );
235 }
236 else {
237 assert(this->finish.action_code == No_Action);
238 }
239}
240
241// Handles spinning logic
242// TODO : find some strategy to put cores to sleep after some time
243void spin(processor * this, unsigned int * spin_count) {
244 (*spin_count)++;
245}
246
247// Context invoker for processors
248// This is the entry point for processors (kernel threads)
249// It effectively constructs a coroutine by stealing the pthread stack
250void * CtxInvokeProcessor(void * arg) {
251 processor * proc = (processor *) arg;
252 this_processor = proc;
253 // SKULLDUGGERY: We want to create a context for the processor coroutine
254 // which is needed for the 2-step context switch. However, there is no reason
255 // to waste the perfectly valid stack create by pthread.
256 current_stack_info_t info;
257 machine_context_t ctx;
258 info.context = &ctx;
259 processorCtx_t proc_cor_storage = { proc, &info };
260
261 LIB_DEBUG_PRINTF("Coroutine : created stack %p\n", proc_cor_storage.c.stack.base);
262
263 //Set global state
264 proc->current_coroutine = &proc->runner->c;
265 proc->current_thread = NULL;
266
267 //We now have a proper context from which to schedule threads
268 LIB_DEBUG_PRINTF("Kernel : core %p created (%p, %p)\n", proc, proc->runner, &ctx);
269
270 // SKULLDUGGERY: Since the coroutine doesn't have its own stack, we can't
271 // resume it to start it like it normally would, it will just context switch
272 // back to here. Instead directly call the main since we already are on the
273 // appropriate stack.
274 proc_cor_storage.c.state = Active;
275 main( &proc_cor_storage );
276 proc_cor_storage.c.state = Halted;
277
278 // Main routine of the core returned, the core is now fully terminated
279 LIB_DEBUG_PRINTF("Kernel : core %p main ended (%p)\n", proc, proc->runner);
280
281 return NULL;
282}
283
284void start(processor * this) {
285 LIB_DEBUG_PRINTF("Kernel : Starting core %p\n", this);
286
287 // pthread_attr_t attributes;
288 // pthread_attr_init( &attributes );
289
290 pthread_create( &this->kernel_thread, NULL, CtxInvokeProcessor, (void*)this );
291
292 // pthread_attr_destroy( &attributes );
293
294 LIB_DEBUG_PRINTF("Kernel : core %p started\n", this);
295}
296
297//-----------------------------------------------------------------------------
298// Scheduler routines
299void ScheduleThread( thread * thrd ) {
300 assertf( thrd->next == NULL, "Expected null got %p", thrd->next );
301
302 lock( &systemProcessor->cltr->lock );
303 append( &systemProcessor->cltr->ready_queue, thrd );
304 unlock( &systemProcessor->cltr->lock );
305}
306
307thread * nextThread(cluster * this) {
308 lock( &this->lock );
309 thread * head = pop_head( &this->ready_queue );
310 unlock( &this->lock );
311 return head;
312}
313
314void ScheduleInternal() {
315 suspend();
316}
317
318void ScheduleInternal( spinlock * lock ) {
319 get_this_processor()->finish.action_code = Release;
320 get_this_processor()->finish.lock = lock;
321 suspend();
322}
323
324void ScheduleInternal( thread * thrd ) {
325 get_this_processor()->finish.action_code = Schedule;
326 get_this_processor()->finish.thrd = thrd;
327 suspend();
328}
329
330void ScheduleInternal( spinlock * lock, thread * thrd ) {
331 get_this_processor()->finish.action_code = Release_Schedule;
332 get_this_processor()->finish.lock = lock;
333 get_this_processor()->finish.thrd = thrd;
334 suspend();
335}
336
337//-----------------------------------------------------------------------------
338// Kernel boot procedures
339void kernel_startup(void) {
340 LIB_DEBUG_PRINTF("Kernel : Starting\n");
341
342 // Start by initializing the main thread
343 // SKULLDUGGERY: the mainThread steals the process main thread
344 // which will then be scheduled by the systemProcessor normally
345 mainThread = (thread *)&mainThread_storage;
346 current_stack_info_t info;
347 mainThread{ &info };
348
349 // Initialize the system cluster
350 systemCluster = (cluster *)&systemCluster_storage;
351 systemCluster{};
352
353 // Initialize the system processor and the system processor ctx
354 // (the coroutine that contains the processing control flow)
355 systemProcessor = (processor *)&systemProcessor_storage;
356 systemProcessor{ systemCluster, (processorCtx_t *)&systemProcessorCtx_storage };
357
358 // Add the main thread to the ready queue
359 // once resume is called on systemProcessor->ctx the mainThread needs to be scheduled like any normal thread
360 ScheduleThread(mainThread);
361
362 //initialize the global state variables
363 this_processor = systemProcessor;
364 this_processor->current_thread = mainThread;
365 this_processor->current_coroutine = &mainThread->c;
366
367 // SKULLDUGGERY: Force a context switch to the system processor to set the main thread's context to the current UNIX
368 // context. Hence, the main thread does not begin through CtxInvokeThread, like all other threads. The trick here is that
369 // mainThread is on the ready queue when this call is made.
370 resume(systemProcessor->runner);
371
372
373
374 // THE SYSTEM IS NOW COMPLETELY RUNNING
375 LIB_DEBUG_PRINTF("Kernel : Started\n--------------------------------------------------\n\n");
376}
377
378void kernel_shutdown(void) {
379 LIB_DEBUG_PRINTF("\n--------------------------------------------------\nKernel : Shutting down\n");
380
381 // SKULLDUGGERY: Notify the systemProcessor it needs to terminates.
382 // When its coroutine terminates, it return control to the mainThread
383 // which is currently here
384 systemProcessor->is_terminated = true;
385 suspend();
386
387 // THE SYSTEM IS NOW COMPLETELY STOPPED
388
389 // Destroy the system processor and its context in reverse order of construction
390 // These were manually constructed so we need manually destroy them
391 ^(systemProcessor->runner){};
392 ^(systemProcessor){};
393
394 // Final step, destroy the main thread since it is no longer needed
395 // Since we provided a stack to this taxk it will not destroy anything
396 ^(mainThread){};
397
398 LIB_DEBUG_PRINTF("Kernel : Shutdown complete\n");
399}
400
401//-----------------------------------------------------------------------------
402// Locks
403void ?{}( spinlock * this ) {
404 this->lock = 0;
405}
406void ^?{}( spinlock * this ) {
407
408}
409
410void lock( spinlock * this ) {
411 for ( unsigned int i = 1;; i += 1 ) {
412 if ( this->lock == 0 && __sync_lock_test_and_set_4( &this->lock, 1 ) == 0 ) break;
413 }
414}
415
416void unlock( spinlock * this ) {
417 __sync_lock_release_4( &this->lock );
418}
419
420void ?{}( signal_once * this ) {
421 this->condition = false;
422}
423void ^?{}( signal_once * this ) {
424
425}
426
427void wait( signal_once * this ) {
428 lock( &this->lock );
429 if( !this->condition ) {
430 append( &this->blocked, this_thread() );
431 ScheduleInternal( &this->lock );
432 lock( &this->lock );
433 }
434 unlock( &this->lock );
435}
436
437void signal( signal_once * this ) {
438 lock( &this->lock );
439 {
440 this->condition = true;
441
442 thread * it;
443 while( it = pop_head( &this->blocked) ) {
444 ScheduleThread( it );
445 }
446 }
447 unlock( &this->lock );
448}
449
450//-----------------------------------------------------------------------------
451// Queues
452void ?{}( simple_thread_list * this ) {
453 this->head = NULL;
454 this->tail = &this->head;
455}
456
457void append( simple_thread_list * this, thread * t ) {
458 assert(this->tail != NULL);
459 *this->tail = t;
460 this->tail = &t->next;
461}
462
463thread * pop_head( simple_thread_list * this ) {
464 thread * head = this->head;
465 if( head ) {
466 this->head = head->next;
467 if( !head->next ) {
468 this->tail = &this->head;
469 }
470 head->next = NULL;
471 }
472 return head;
473}
474// Local Variables: //
475// mode: c //
476// tab-width: 4 //
477// End: //
Note: See TracBrowser for help on using the repository browser.