source: src/libcfa/concurrency/kernel.c@ 154fdc8

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors deferred_resn demangler enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum resolv-new with_gc
Last change on this file since 154fdc8 was 5ea06d6, checked in by Thierry Delisle <tdelisle@…>, 8 years ago

Prototype of multi monitor internal scheduling

  • Property mode set to 100644
File size: 15.0 KB
Line 
1// -*- Mode: CFA -*-
2//
3// Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
4//
5// The contents of this file are covered under the licence agreement in the
6// file "LICENCE" distributed with Cforall.
7//
8// kernel.c --
9//
10// Author : Thierry Delisle
11// Created On : Tue Jan 17 12:27:26 2017
12// Last Modified By : Thierry Delisle
13// Last Modified On : --
14// Update Count : 0
15//
16
17#include "startup.h"
18
19//Start and stop routine for the kernel, declared first to make sure they run first
20void kernel_startup(void) __attribute__(( constructor( STARTUP_PRIORITY_KERNEL ) ));
21void kernel_shutdown(void) __attribute__(( destructor ( STARTUP_PRIORITY_KERNEL ) ));
22
23//Header
24#include "kernel_private.h"
25
26//C Includes
27#include <stddef.h>
28extern "C" {
29#include <stdio.h>
30#include <fenv.h>
31#include <sys/resource.h>
32#include <signal.h>
33#include <unistd.h>
34}
35
36//CFA Includes
37#include "libhdr.h"
38
39//Private includes
40#define __CFA_INVOKE_PRIVATE__
41#include "invoke.h"
42
43//-----------------------------------------------------------------------------
44// Kernel storage
45#define KERNEL_STORAGE(T,X) static char X##_storage[sizeof(T)]
46
47KERNEL_STORAGE(processorCtx_t, systemProcessorCtx);
48KERNEL_STORAGE(cluster, systemCluster);
49KERNEL_STORAGE(processor, systemProcessor);
50KERNEL_STORAGE(thread_desc, mainThread);
51KERNEL_STORAGE(machine_context_t, mainThread_context);
52
53cluster * systemCluster;
54processor * systemProcessor;
55thread_desc * mainThread;
56
57//-----------------------------------------------------------------------------
58// Global state
59
60thread_local processor * this_processor;
61
62coroutine_desc * this_coroutine(void) {
63 return this_processor->current_coroutine;
64}
65
66thread_desc * this_thread(void) {
67 return this_processor->current_thread;
68}
69
70//-----------------------------------------------------------------------------
71// Main thread construction
72struct current_stack_info_t {
73 machine_context_t ctx;
74 unsigned int size; // size of stack
75 void *base; // base of stack
76 void *storage; // pointer to stack
77 void *limit; // stack grows towards stack limit
78 void *context; // address of cfa_context_t
79 void *top; // address of top of storage
80};
81
82void ?{}( current_stack_info_t * this ) {
83 CtxGet( &this->ctx );
84 this->base = this->ctx.FP;
85 this->storage = this->ctx.SP;
86
87 rlimit r;
88 getrlimit( RLIMIT_STACK, &r);
89 this->size = r.rlim_cur;
90
91 this->limit = (void *)(((intptr_t)this->base) - this->size);
92 this->context = &mainThread_context_storage;
93 this->top = this->base;
94}
95
96void ?{}( coStack_t * this, current_stack_info_t * info) {
97 this->size = info->size;
98 this->storage = info->storage;
99 this->limit = info->limit;
100 this->base = info->base;
101 this->context = info->context;
102 this->top = info->top;
103 this->userStack = true;
104}
105
106void ?{}( coroutine_desc * this, current_stack_info_t * info) {
107 (&this->stack){ info };
108 this->name = "Main Thread";
109 this->errno_ = 0;
110 this->state = Start;
111}
112
113void ?{}( thread_desc * this, current_stack_info_t * info) {
114 (&this->cor){ info };
115}
116
117//-----------------------------------------------------------------------------
118// Processor coroutine
119void ?{}(processorCtx_t * this, processor * proc) {
120 (&this->__cor){};
121 this->proc = proc;
122 proc->runner = this;
123}
124
125void ?{}(processorCtx_t * this, processor * proc, current_stack_info_t * info) {
126 (&this->__cor){ info };
127 this->proc = proc;
128 proc->runner = this;
129}
130
131void ?{}(processor * this) {
132 this{ systemCluster };
133}
134
135void ?{}(processor * this, cluster * cltr) {
136 this->cltr = cltr;
137 this->current_coroutine = NULL;
138 this->current_thread = NULL;
139 (&this->terminated){};
140 this->is_terminated = false;
141
142 start( this );
143}
144
145void ?{}(processor * this, cluster * cltr, processorCtx_t * runner) {
146 this->cltr = cltr;
147 this->current_coroutine = NULL;
148 this->current_thread = NULL;
149 (&this->terminated){};
150 this->is_terminated = false;
151
152 this->runner = runner;
153 LIB_DEBUG_PRINT_SAFE("Kernel : constructing processor context %p\n", runner);
154 runner{ this };
155}
156
157void ^?{}(processor * this) {
158 if( ! this->is_terminated ) {
159 LIB_DEBUG_PRINT_SAFE("Kernel : core %p signaling termination\n", this);
160 this->is_terminated = true;
161 wait( &this->terminated );
162 }
163}
164
165void ?{}(cluster * this) {
166 ( &this->ready_queue ){};
167 ( &this->lock ){};
168}
169
170void ^?{}(cluster * this) {
171
172}
173
174//=============================================================================================
175// Kernel Scheduling logic
176//=============================================================================================
177//Main of the processor contexts
178void main(processorCtx_t * runner) {
179 processor * this = runner->proc;
180 LIB_DEBUG_PRINT_SAFE("Kernel : core %p starting\n", this);
181
182 thread_desc * readyThread = NULL;
183 for( unsigned int spin_count = 0; ! this->is_terminated; spin_count++ )
184 {
185 readyThread = nextThread( this->cltr );
186
187 if(readyThread)
188 {
189 runThread(this, readyThread);
190
191 //Some actions need to be taken from the kernel
192 finishRunning(this);
193
194 spin_count = 0;
195 }
196 else
197 {
198 spin(this, &spin_count);
199 }
200 }
201
202 LIB_DEBUG_PRINT_SAFE("Kernel : core %p unlocking thread\n", this);
203 signal( &this->terminated );
204 LIB_DEBUG_PRINT_SAFE("Kernel : core %p terminated\n", this);
205}
206
207// runThread runs a thread by context switching
208// from the processor coroutine to the target thread
209void runThread(processor * this, thread_desc * dst) {
210 coroutine_desc * proc_cor = get_coroutine(this->runner);
211 coroutine_desc * thrd_cor = get_coroutine(dst);
212
213 //Reset the terminating actions here
214 this->finish.action_code = No_Action;
215
216 //Update global state
217 this->current_thread = dst;
218
219 // Context Switch to the thread
220 ThreadCtxSwitch(proc_cor, thrd_cor);
221 // when ThreadCtxSwitch returns we are back in the processor coroutine
222}
223
224// Once a thread has finished running, some of
225// its final actions must be executed from the kernel
226void finishRunning(processor * this) {
227 if( this->finish.action_code == Release ) {
228 unlock( this->finish.lock );
229 }
230 else if( this->finish.action_code == Schedule ) {
231 ScheduleThread( this->finish.thrd );
232 }
233 else if( this->finish.action_code == Release_Schedule ) {
234 unlock( this->finish.lock );
235 ScheduleThread( this->finish.thrd );
236 }
237 else {
238 assert(this->finish.action_code == No_Action);
239 }
240}
241
242// Handles spinning logic
243// TODO : find some strategy to put cores to sleep after some time
244void spin(processor * this, unsigned int * spin_count) {
245 (*spin_count)++;
246}
247
248// Context invoker for processors
249// This is the entry point for processors (kernel threads)
250// It effectively constructs a coroutine by stealing the pthread stack
251void * CtxInvokeProcessor(void * arg) {
252 processor * proc = (processor *) arg;
253 this_processor = proc;
254 // SKULLDUGGERY: We want to create a context for the processor coroutine
255 // which is needed for the 2-step context switch. However, there is no reason
256 // to waste the perfectly valid stack create by pthread.
257 current_stack_info_t info;
258 machine_context_t ctx;
259 info.context = &ctx;
260 processorCtx_t proc_cor_storage = { proc, &info };
261
262 LIB_DEBUG_PRINT_SAFE("Coroutine : created stack %p\n", proc_cor_storage.__cor.stack.base);
263
264 //Set global state
265 proc->current_coroutine = &proc->runner->__cor;
266 proc->current_thread = NULL;
267
268 //We now have a proper context from which to schedule threads
269 LIB_DEBUG_PRINT_SAFE("Kernel : core %p created (%p, %p)\n", proc, proc->runner, &ctx);
270
271 // SKULLDUGGERY: Since the coroutine doesn't have its own stack, we can't
272 // resume it to start it like it normally would, it will just context switch
273 // back to here. Instead directly call the main since we already are on the
274 // appropriate stack.
275 proc_cor_storage.__cor.state = Active;
276 main( &proc_cor_storage );
277 proc_cor_storage.__cor.state = Halted;
278
279 // Main routine of the core returned, the core is now fully terminated
280 LIB_DEBUG_PRINT_SAFE("Kernel : core %p main ended (%p)\n", proc, proc->runner);
281
282 return NULL;
283}
284
285void start(processor * this) {
286 LIB_DEBUG_PRINT_SAFE("Kernel : Starting core %p\n", this);
287
288 // pthread_attr_t attributes;
289 // pthread_attr_init( &attributes );
290
291 pthread_create( &this->kernel_thread, NULL, CtxInvokeProcessor, (void*)this );
292
293 // pthread_attr_destroy( &attributes );
294
295 LIB_DEBUG_PRINT_SAFE("Kernel : core %p started\n", this);
296}
297
298//-----------------------------------------------------------------------------
299// Scheduler routines
300void ScheduleThread( thread_desc * thrd ) {
301 if( !thrd ) return;
302
303 assertf( thrd->next == NULL, "Expected null got %p", thrd->next );
304
305 lock( &systemProcessor->cltr->lock );
306 append( &systemProcessor->cltr->ready_queue, thrd );
307 unlock( &systemProcessor->cltr->lock );
308}
309
310thread_desc * nextThread(cluster * this) {
311 lock( &this->lock );
312 thread_desc * head = pop_head( &this->ready_queue );
313 unlock( &this->lock );
314 return head;
315}
316
317void ScheduleInternal() {
318 suspend();
319}
320
321void ScheduleInternal( spinlock * lock ) {
322 this_processor->finish.action_code = Release;
323 this_processor->finish.lock = lock;
324 suspend();
325}
326
327void ScheduleInternal( thread_desc * thrd ) {
328 this_processor->finish.action_code = Schedule;
329 this_processor->finish.thrd = thrd;
330 suspend();
331}
332
333void ScheduleInternal( spinlock * lock, thread_desc * thrd ) {
334 this_processor->finish.action_code = Release_Schedule;
335 this_processor->finish.lock = lock;
336 this_processor->finish.thrd = thrd;
337 suspend();
338}
339
340//-----------------------------------------------------------------------------
341// Kernel boot procedures
342void kernel_startup(void) {
343 LIB_DEBUG_PRINT_SAFE("Kernel : Starting\n");
344
345 // Start by initializing the main thread
346 // SKULLDUGGERY: the mainThread steals the process main thread
347 // which will then be scheduled by the systemProcessor normally
348 mainThread = (thread_desc *)&mainThread_storage;
349 current_stack_info_t info;
350 mainThread{ &info };
351
352 // Initialize the system cluster
353 systemCluster = (cluster *)&systemCluster_storage;
354 systemCluster{};
355
356 // Initialize the system processor and the system processor ctx
357 // (the coroutine that contains the processing control flow)
358 systemProcessor = (processor *)&systemProcessor_storage;
359 systemProcessor{ systemCluster, (processorCtx_t *)&systemProcessorCtx_storage };
360
361 // Add the main thread to the ready queue
362 // once resume is called on systemProcessor->ctx the mainThread needs to be scheduled like any normal thread
363 ScheduleThread(mainThread);
364
365 //initialize the global state variables
366 this_processor = systemProcessor;
367 this_processor->current_thread = mainThread;
368 this_processor->current_coroutine = &mainThread->cor;
369
370 // SKULLDUGGERY: Force a context switch to the system processor to set the main thread's context to the current UNIX
371 // context. Hence, the main thread does not begin through CtxInvokeThread, like all other threads. The trick here is that
372 // mainThread is on the ready queue when this call is made.
373 resume(systemProcessor->runner);
374
375
376
377 // THE SYSTEM IS NOW COMPLETELY RUNNING
378 LIB_DEBUG_PRINT_SAFE("Kernel : Started\n--------------------------------------------------\n\n");
379}
380
381void kernel_shutdown(void) {
382 LIB_DEBUG_PRINT_SAFE("\n--------------------------------------------------\nKernel : Shutting down\n");
383
384 // SKULLDUGGERY: Notify the systemProcessor it needs to terminates.
385 // When its coroutine terminates, it return control to the mainThread
386 // which is currently here
387 systemProcessor->is_terminated = true;
388 suspend();
389
390 // THE SYSTEM IS NOW COMPLETELY STOPPED
391
392 // Destroy the system processor and its context in reverse order of construction
393 // These were manually constructed so we need manually destroy them
394 ^(systemProcessor->runner){};
395 ^(systemProcessor){};
396
397 // Final step, destroy the main thread since it is no longer needed
398 // Since we provided a stack to this taxk it will not destroy anything
399 ^(mainThread){};
400
401 LIB_DEBUG_PRINT_SAFE("Kernel : Shutdown complete\n");
402}
403
404static spinlock kernel_abort_lock;
405static spinlock kernel_debug_lock;
406static bool kernel_abort_called = false;
407
408void * kernel_abort (void) __attribute__ ((__nothrow__)) {
409 // abort cannot be recursively entered by the same or different processors because all signal handlers return when
410 // the globalAbort flag is true.
411 lock( &kernel_abort_lock );
412
413 // first task to abort ?
414 if ( !kernel_abort_called ) { // not first task to abort ?
415 kernel_abort_called = true;
416 unlock( &kernel_abort_lock );
417 }
418 else {
419 unlock( &kernel_abort_lock );
420
421 sigset_t mask;
422 sigemptyset( &mask );
423 sigaddset( &mask, SIGALRM ); // block SIGALRM signals
424 sigaddset( &mask, SIGUSR1 ); // block SIGUSR1 signals
425 sigsuspend( &mask ); // block the processor to prevent further damage during abort
426 _exit( EXIT_FAILURE ); // if processor unblocks before it is killed, terminate it
427 }
428
429 return this_thread();
430}
431
432void kernel_abort_msg( void * kernel_data, char * abort_text, int abort_text_size ) {
433 thread_desc * thrd = kernel_data;
434
435 int len = snprintf( abort_text, abort_text_size, "Error occurred while executing task %.256s (%p)", thrd->cor.name, thrd );
436 __lib_debug_write( STDERR_FILENO, abort_text, len );
437
438 if ( thrd != this_coroutine() ) {
439 len = snprintf( abort_text, abort_text_size, " in coroutine %.256s (%p).\n", this_coroutine()->name, this_coroutine() );
440 __lib_debug_write( STDERR_FILENO, abort_text, len );
441 }
442 else {
443 __lib_debug_write( STDERR_FILENO, ".\n", 2 );
444 }
445}
446
447extern "C" {
448 void __lib_debug_acquire() {
449 lock(&kernel_debug_lock);
450 }
451
452 void __lib_debug_release() {
453 unlock(&kernel_debug_lock);
454 }
455}
456
457//-----------------------------------------------------------------------------
458// Locks
459void ?{}( spinlock * this ) {
460 this->lock = 0;
461}
462void ^?{}( spinlock * this ) {
463
464}
465
466void lock( spinlock * this ) {
467 for ( unsigned int i = 1;; i += 1 ) {
468 if ( this->lock == 0 && __sync_lock_test_and_set_4( &this->lock, 1 ) == 0 ) break;
469 }
470}
471
472void unlock( spinlock * this ) {
473 __sync_lock_release_4( &this->lock );
474}
475
476void ?{}( signal_once * this ) {
477 this->cond = false;
478}
479void ^?{}( signal_once * this ) {
480
481}
482
483void wait( signal_once * this ) {
484 lock( &this->lock );
485 if( !this->cond ) {
486 append( &this->blocked, this_thread() );
487 ScheduleInternal( &this->lock );
488 lock( &this->lock );
489 }
490 unlock( &this->lock );
491}
492
493void signal( signal_once * this ) {
494 lock( &this->lock );
495 {
496 this->cond = true;
497
498 thread_desc * it;
499 while( it = pop_head( &this->blocked) ) {
500 ScheduleThread( it );
501 }
502 }
503 unlock( &this->lock );
504}
505
506//-----------------------------------------------------------------------------
507// Queues
508void ?{}( __thread_queue_t * this ) {
509 this->head = NULL;
510 this->tail = &this->head;
511}
512
513void append( __thread_queue_t * this, thread_desc * t ) {
514 assert(this->tail != NULL);
515 *this->tail = t;
516 this->tail = &t->next;
517}
518
519thread_desc * pop_head( __thread_queue_t * this ) {
520 thread_desc * head = this->head;
521 if( head ) {
522 this->head = head->next;
523 if( !head->next ) {
524 this->tail = &this->head;
525 }
526 head->next = NULL;
527 }
528 return head;
529}
530
531void ?{}( __thread_stack_t * this ) {
532 this->top = NULL;
533}
534
535void push( __thread_stack_t * this, thread_desc * t ) {
536 assert(t->next != NULL);
537 t->next = this->top;
538 this->top = t;
539}
540
541thread_desc * pop( __thread_stack_t * this ) {
542 thread_desc * top = this->top;
543 if( top ) {
544 this->top = top->next;
545 top->next = NULL;
546 }
547 return top;
548}
549// Local Variables: //
550// mode: c //
551// tab-width: 4 //
552// End: //
Note: See TracBrowser for help on using the repository browser.