source: src/libcfa/concurrency/kernel.c@ da6d4566

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors deferred_resn demangler enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum resolv-new with_gc
Last change on this file since da6d4566 was 17af7d1, checked in by Thierry Delisle <tdelisle@…>, 9 years ago

Some clean-up of runtime code

  • Property mode set to 100644
File size: 12.9 KB
Line 
1// -*- Mode: CFA -*-
2//
3// Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
4//
5// The contents of this file are covered under the licence agreement in the
6// file "LICENCE" distributed with Cforall.
7//
8// kernel.c --
9//
10// Author : Thierry Delisle
11// Created On : Tue Jan 17 12:27:26 2017
12// Last Modified By : Thierry Delisle
13// Last Modified On : --
14// Update Count : 0
15//
16
17//Start and stop routine for the kernel, declared first to make sure they run first
18void kernel_startup(void) __attribute__((constructor(101)));
19void kernel_shutdown(void) __attribute__((destructor(101)));
20
21//Header
22#include "kernel_private.h"
23
24//C Includes
25#include <stddef.h>
26extern "C" {
27#include <fenv.h>
28#include <sys/resource.h>
29}
30
31//CFA Includes
32#include "libhdr.h"
33
34//Private includes
35#define __CFA_INVOKE_PRIVATE__
36#include "invoke.h"
37
38//-----------------------------------------------------------------------------
39// Kernel storage
40#define KERNEL_STORAGE(T,X) static char X##_storage[sizeof(T)]
41
42KERNEL_STORAGE(processorCtx_t, systemProcessorCtx);
43KERNEL_STORAGE(cluster, systemCluster);
44KERNEL_STORAGE(processor, systemProcessor);
45KERNEL_STORAGE(thread_desc, mainThread);
46KERNEL_STORAGE(machine_context_t, mainThread_context);
47
48cluster * systemCluster;
49processor * systemProcessor;
50thread_desc * mainThread;
51
52//-----------------------------------------------------------------------------
53// Global state
54
55thread_local processor * this_processor;
56
57coroutine_desc * this_coroutine(void) {
58 return this_processor->current_coroutine;
59}
60
61thread_desc * this_thread(void) {
62 return this_processor->current_thread;
63}
64
65//-----------------------------------------------------------------------------
66// Main thread construction
67struct current_stack_info_t {
68 machine_context_t ctx;
69 unsigned int size; // size of stack
70 void *base; // base of stack
71 void *storage; // pointer to stack
72 void *limit; // stack grows towards stack limit
73 void *context; // address of cfa_context_t
74 void *top; // address of top of storage
75};
76
77void ?{}( current_stack_info_t * this ) {
78 CtxGet( &this->ctx );
79 this->base = this->ctx.FP;
80 this->storage = this->ctx.SP;
81
82 rlimit r;
83 getrlimit( RLIMIT_STACK, &r);
84 this->size = r.rlim_cur;
85
86 this->limit = (void *)(((intptr_t)this->base) - this->size);
87 this->context = &mainThread_context_storage;
88 this->top = this->base;
89}
90
91void ?{}( coStack_t * this, current_stack_info_t * info) {
92 this->size = info->size;
93 this->storage = info->storage;
94 this->limit = info->limit;
95 this->base = info->base;
96 this->context = info->context;
97 this->top = info->top;
98 this->userStack = true;
99}
100
101void ?{}( coroutine_desc * this, current_stack_info_t * info) {
102 (&this->stack){ info };
103 this->name = "Main Thread";
104 this->errno_ = 0;
105 this->state = Start;
106}
107
108void ?{}( thread_desc * this, current_stack_info_t * info) {
109 (&this->cor){ info };
110}
111
112//-----------------------------------------------------------------------------
113// Processor coroutine
114void ?{}(processorCtx_t * this, processor * proc) {
115 (&this->__cor){};
116 this->proc = proc;
117 proc->runner = this;
118}
119
120void ?{}(processorCtx_t * this, processor * proc, current_stack_info_t * info) {
121 (&this->__cor){ info };
122 this->proc = proc;
123 proc->runner = this;
124}
125
126void ?{}(processor * this) {
127 this{ systemCluster };
128}
129
130void ?{}(processor * this, cluster * cltr) {
131 this->cltr = cltr;
132 this->current_coroutine = NULL;
133 this->current_thread = NULL;
134 (&this->terminated){};
135 this->is_terminated = false;
136
137 start( this );
138}
139
140void ?{}(processor * this, cluster * cltr, processorCtx_t * runner) {
141 this->cltr = cltr;
142 this->current_coroutine = NULL;
143 this->current_thread = NULL;
144 (&this->terminated){};
145 this->is_terminated = false;
146
147 this->runner = runner;
148 LIB_DEBUG_PRINTF("Kernel : constructing processor context %p\n", runner);
149 runner{ this };
150}
151
152void ^?{}(processor * this) {
153 if( ! this->is_terminated ) {
154 LIB_DEBUG_PRINTF("Kernel : core %p signaling termination\n", this);
155 this->is_terminated = true;
156 wait( &this->terminated );
157 }
158}
159
160void ?{}(cluster * this) {
161 ( &this->ready_queue ){};
162 ( &this->lock ){};
163}
164
165void ^?{}(cluster * this) {
166
167}
168
169//=============================================================================================
170// Kernel Scheduling logic
171//=============================================================================================
172//Main of the processor contexts
173void main(processorCtx_t * runner) {
174 processor * this = runner->proc;
175 LIB_DEBUG_PRINTF("Kernel : core %p starting\n", this);
176
177 thread_desc * readyThread = NULL;
178 for( unsigned int spin_count = 0; ! this->is_terminated; spin_count++ )
179 {
180 readyThread = nextThread( this->cltr );
181
182 if(readyThread)
183 {
184 runThread(this, readyThread);
185
186 //Some actions need to be taken from the kernel
187 finishRunning(this);
188
189 spin_count = 0;
190 }
191 else
192 {
193 spin(this, &spin_count);
194 }
195 }
196
197 LIB_DEBUG_PRINTF("Kernel : core %p unlocking thread\n", this);
198 signal( &this->terminated );
199 LIB_DEBUG_PRINTF("Kernel : core %p terminated\n", this);
200}
201
202// runThread runs a thread by context switching
203// from the processor coroutine to the target thread
204void runThread(processor * this, thread_desc * dst) {
205 coroutine_desc * proc_cor = get_coroutine(this->runner);
206 coroutine_desc * thrd_cor = get_coroutine(dst);
207
208 //Reset the terminating actions here
209 this->finish.action_code = No_Action;
210
211 //Update global state
212 this->current_thread = dst;
213
214 // Context Switch to the thread
215 ThreadCtxSwitch(proc_cor, thrd_cor);
216 // when ThreadCtxSwitch returns we are back in the processor coroutine
217}
218
219// Once a thread has finished running, some of
220// its final actions must be executed from the kernel
221void finishRunning(processor * this) {
222 if( this->finish.action_code == Release ) {
223 unlock( this->finish.lock );
224 }
225 else if( this->finish.action_code == Schedule ) {
226 ScheduleThread( this->finish.thrd );
227 }
228 else if( this->finish.action_code == Release_Schedule ) {
229 unlock( this->finish.lock );
230 ScheduleThread( this->finish.thrd );
231 }
232 else {
233 assert(this->finish.action_code == No_Action);
234 }
235}
236
237// Handles spinning logic
238// TODO : find some strategy to put cores to sleep after some time
239void spin(processor * this, unsigned int * spin_count) {
240 (*spin_count)++;
241}
242
243// Context invoker for processors
244// This is the entry point for processors (kernel threads)
245// It effectively constructs a coroutine by stealing the pthread stack
246void * CtxInvokeProcessor(void * arg) {
247 processor * proc = (processor *) arg;
248 this_processor = proc;
249 // SKULLDUGGERY: We want to create a context for the processor coroutine
250 // which is needed for the 2-step context switch. However, there is no reason
251 // to waste the perfectly valid stack create by pthread.
252 current_stack_info_t info;
253 machine_context_t ctx;
254 info.context = &ctx;
255 processorCtx_t proc_cor_storage = { proc, &info };
256
257 LIB_DEBUG_PRINTF("Coroutine : created stack %p\n", proc_cor_storage.__cor.stack.base);
258
259 //Set global state
260 proc->current_coroutine = &proc->runner->__cor;
261 proc->current_thread = NULL;
262
263 //We now have a proper context from which to schedule threads
264 LIB_DEBUG_PRINTF("Kernel : core %p created (%p, %p)\n", proc, proc->runner, &ctx);
265
266 // SKULLDUGGERY: Since the coroutine doesn't have its own stack, we can't
267 // resume it to start it like it normally would, it will just context switch
268 // back to here. Instead directly call the main since we already are on the
269 // appropriate stack.
270 proc_cor_storage.__cor.state = Active;
271 main( &proc_cor_storage );
272 proc_cor_storage.__cor.state = Halted;
273
274 // Main routine of the core returned, the core is now fully terminated
275 LIB_DEBUG_PRINTF("Kernel : core %p main ended (%p)\n", proc, proc->runner);
276
277 return NULL;
278}
279
280void start(processor * this) {
281 LIB_DEBUG_PRINTF("Kernel : Starting core %p\n", this);
282
283 // pthread_attr_t attributes;
284 // pthread_attr_init( &attributes );
285
286 pthread_create( &this->kernel_thread, NULL, CtxInvokeProcessor, (void*)this );
287
288 // pthread_attr_destroy( &attributes );
289
290 LIB_DEBUG_PRINTF("Kernel : core %p started\n", this);
291}
292
293//-----------------------------------------------------------------------------
294// Scheduler routines
295void ScheduleThread( thread_desc * thrd ) {
296 assertf( thrd->next == NULL, "Expected null got %p", thrd->next );
297
298 lock( &systemProcessor->cltr->lock );
299 append( &systemProcessor->cltr->ready_queue, thrd );
300 unlock( &systemProcessor->cltr->lock );
301}
302
303thread_desc * nextThread(cluster * this) {
304 lock( &this->lock );
305 thread_desc * head = pop_head( &this->ready_queue );
306 unlock( &this->lock );
307 return head;
308}
309
310void ScheduleInternal() {
311 suspend();
312}
313
314void ScheduleInternal( spinlock * lock ) {
315 this_processor->finish.action_code = Release;
316 this_processor->finish.lock = lock;
317 suspend();
318}
319
320void ScheduleInternal( thread_desc * thrd ) {
321 this_processor->finish.action_code = Schedule;
322 this_processor->finish.thrd = thrd;
323 suspend();
324}
325
326void ScheduleInternal( spinlock * lock, thread_desc * thrd ) {
327 this_processor->finish.action_code = Release_Schedule;
328 this_processor->finish.lock = lock;
329 this_processor->finish.thrd = thrd;
330 suspend();
331}
332
333//-----------------------------------------------------------------------------
334// Kernel boot procedures
335void kernel_startup(void) {
336 LIB_DEBUG_PRINTF("Kernel : Starting\n");
337
338 // Start by initializing the main thread
339 // SKULLDUGGERY: the mainThread steals the process main thread
340 // which will then be scheduled by the systemProcessor normally
341 mainThread = (thread_desc *)&mainThread_storage;
342 current_stack_info_t info;
343 mainThread{ &info };
344
345 // Initialize the system cluster
346 systemCluster = (cluster *)&systemCluster_storage;
347 systemCluster{};
348
349 // Initialize the system processor and the system processor ctx
350 // (the coroutine that contains the processing control flow)
351 systemProcessor = (processor *)&systemProcessor_storage;
352 systemProcessor{ systemCluster, (processorCtx_t *)&systemProcessorCtx_storage };
353
354 // Add the main thread to the ready queue
355 // once resume is called on systemProcessor->ctx the mainThread needs to be scheduled like any normal thread
356 ScheduleThread(mainThread);
357
358 //initialize the global state variables
359 this_processor = systemProcessor;
360 this_processor->current_thread = mainThread;
361 this_processor->current_coroutine = &mainThread->cor;
362
363 // SKULLDUGGERY: Force a context switch to the system processor to set the main thread's context to the current UNIX
364 // context. Hence, the main thread does not begin through CtxInvokeThread, like all other threads. The trick here is that
365 // mainThread is on the ready queue when this call is made.
366 resume(systemProcessor->runner);
367
368
369
370 // THE SYSTEM IS NOW COMPLETELY RUNNING
371 LIB_DEBUG_PRINTF("Kernel : Started\n--------------------------------------------------\n\n");
372}
373
374void kernel_shutdown(void) {
375 LIB_DEBUG_PRINTF("\n--------------------------------------------------\nKernel : Shutting down\n");
376
377 // SKULLDUGGERY: Notify the systemProcessor it needs to terminates.
378 // When its coroutine terminates, it return control to the mainThread
379 // which is currently here
380 systemProcessor->is_terminated = true;
381 suspend();
382
383 // THE SYSTEM IS NOW COMPLETELY STOPPED
384
385 // Destroy the system processor and its context in reverse order of construction
386 // These were manually constructed so we need manually destroy them
387 ^(systemProcessor->runner){};
388 ^(systemProcessor){};
389
390 // Final step, destroy the main thread since it is no longer needed
391 // Since we provided a stack to this taxk it will not destroy anything
392 ^(mainThread){};
393
394 LIB_DEBUG_PRINTF("Kernel : Shutdown complete\n");
395}
396
397//-----------------------------------------------------------------------------
398// Locks
399void ?{}( spinlock * this ) {
400 this->lock = 0;
401}
402void ^?{}( spinlock * this ) {
403
404}
405
406void lock( spinlock * this ) {
407 for ( unsigned int i = 1;; i += 1 ) {
408 if ( this->lock == 0 && __sync_lock_test_and_set_4( &this->lock, 1 ) == 0 ) break;
409 }
410}
411
412void unlock( spinlock * this ) {
413 __sync_lock_release_4( &this->lock );
414}
415
416void ?{}( signal_once * this ) {
417 this->condition = false;
418}
419void ^?{}( signal_once * this ) {
420
421}
422
423void wait( signal_once * this ) {
424 lock( &this->lock );
425 if( !this->condition ) {
426 append( &this->blocked, this_thread() );
427 ScheduleInternal( &this->lock );
428 lock( &this->lock );
429 }
430 unlock( &this->lock );
431}
432
433void signal( signal_once * this ) {
434 lock( &this->lock );
435 {
436 this->condition = true;
437
438 thread_desc * it;
439 while( it = pop_head( &this->blocked) ) {
440 ScheduleThread( it );
441 }
442 }
443 unlock( &this->lock );
444}
445
446//-----------------------------------------------------------------------------
447// Queues
448void ?{}( simple_thread_list * this ) {
449 this->head = NULL;
450 this->tail = &this->head;
451}
452
453void append( simple_thread_list * this, thread_desc * t ) {
454 assert(this->tail != NULL);
455 *this->tail = t;
456 this->tail = &t->next;
457}
458
459thread_desc * pop_head( simple_thread_list * this ) {
460 thread_desc * head = this->head;
461 if( head ) {
462 this->head = head->next;
463 if( !head->next ) {
464 this->tail = &this->head;
465 }
466 head->next = NULL;
467 }
468 return head;
469}
470// Local Variables: //
471// mode: c //
472// tab-width: 4 //
473// End: //
Note: See TracBrowser for help on using the repository browser.