source: src/libcfa/concurrency/kernel.c@ d43cd01

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors deferred_resn demangler enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum resolv-new with_gc
Last change on this file since d43cd01 was 1c273d0, checked in by Thierry Delisle <tdelisle@…>, 8 years ago

preemption works for threads

  • Property mode set to 100644
File size: 19.7 KB
Line 
1// -*- Mode: CFA -*-
2//
3// Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
4//
5// The contents of this file are covered under the licence agreement in the
6// file "LICENCE" distributed with Cforall.
7//
8// kernel.c --
9//
10// Author : Thierry Delisle
11// Created On : Tue Jan 17 12:27:26 2017
12// Last Modified By : Thierry Delisle
13// Last Modified On : --
14// Update Count : 0
15//
16
17#include "startup.h"
18
19//Start and stop routine for the kernel, declared first to make sure they run first
20void kernel_startup(void) __attribute__(( constructor( STARTUP_PRIORITY_KERNEL ) ));
21void kernel_shutdown(void) __attribute__(( destructor ( STARTUP_PRIORITY_KERNEL ) ));
22
23//Header
24#include "kernel_private.h"
25
26//C Includes
27#include <stddef.h>
28extern "C" {
29#include <stdio.h>
30#include <fenv.h>
31#include <sys/resource.h>
32#include <signal.h>
33#include <unistd.h>
34}
35
36//CFA Includes
37#include "libhdr.h"
38#include "preemption.h"
39
40//Private includes
41#define __CFA_INVOKE_PRIVATE__
42#include "invoke.h"
43
44//-----------------------------------------------------------------------------
45// Kernel storage
46#define KERNEL_STORAGE(T,X) static char X##_storage[sizeof(T)]
47
48KERNEL_STORAGE(processorCtx_t, systemProcessorCtx);
49KERNEL_STORAGE(cluster, systemCluster);
50KERNEL_STORAGE(system_proc_t, systemProcessor);
51KERNEL_STORAGE(thread_desc, mainThread);
52KERNEL_STORAGE(machine_context_t, mainThread_context);
53
54cluster * systemCluster;
55system_proc_t * systemProcessor;
56thread_desc * mainThread;
57
58//-----------------------------------------------------------------------------
59// Global state
60
61volatile thread_local processor * this_processor;
62volatile thread_local coroutine_desc * this_coroutine;
63volatile thread_local thread_desc * this_thread;
64volatile thread_local unsigned short disable_preempt_count = 1;
65
66//-----------------------------------------------------------------------------
67// Main thread construction
68struct current_stack_info_t {
69 machine_context_t ctx;
70 unsigned int size; // size of stack
71 void *base; // base of stack
72 void *storage; // pointer to stack
73 void *limit; // stack grows towards stack limit
74 void *context; // address of cfa_context_t
75 void *top; // address of top of storage
76};
77
78void ?{}( current_stack_info_t * this ) {
79 CtxGet( &this->ctx );
80 this->base = this->ctx.FP;
81 this->storage = this->ctx.SP;
82
83 rlimit r;
84 getrlimit( RLIMIT_STACK, &r);
85 this->size = r.rlim_cur;
86
87 this->limit = (void *)(((intptr_t)this->base) - this->size);
88 this->context = &mainThread_context_storage;
89 this->top = this->base;
90}
91
92void ?{}( coStack_t * this, current_stack_info_t * info) {
93 this->size = info->size;
94 this->storage = info->storage;
95 this->limit = info->limit;
96 this->base = info->base;
97 this->context = info->context;
98 this->top = info->top;
99 this->userStack = true;
100}
101
102void ?{}( coroutine_desc * this, current_stack_info_t * info) {
103 (&this->stack){ info };
104 this->name = "Main Thread";
105 this->errno_ = 0;
106 this->state = Start;
107}
108
109void ?{}( thread_desc * this, current_stack_info_t * info) {
110 (&this->cor){ info };
111}
112
113//-----------------------------------------------------------------------------
114// Processor coroutine
115void ?{}(processorCtx_t * this, processor * proc) {
116 (&this->__cor){ "Processor" };
117 this->proc = proc;
118 proc->runner = this;
119}
120
121void ?{}(processorCtx_t * this, processor * proc, current_stack_info_t * info) {
122 (&this->__cor){ info };
123 this->proc = proc;
124 proc->runner = this;
125}
126
127void ?{}(processor * this) {
128 this{ systemCluster };
129}
130
131void ?{}(processor * this, cluster * cltr) {
132 this->cltr = cltr;
133 (&this->terminated){};
134 this->is_terminated = false;
135 this->preemption_alarm = NULL;
136 this->preemption = default_preemption();
137 this->pending_preemption = false;
138
139 start( this );
140}
141
142void ?{}(processor * this, cluster * cltr, processorCtx_t * runner) {
143 this->cltr = cltr;
144 (&this->terminated){};
145 this->is_terminated = false;
146 this->preemption_alarm = NULL;
147 this->preemption = default_preemption();
148 this->pending_preemption = false;
149 this->kernel_thread = pthread_self();
150
151 this->runner = runner;
152 LIB_DEBUG_PRINT_SAFE("Kernel : constructing system processor context %p\n", runner);
153 runner{ this };
154}
155
156LIB_DEBUG_DO( bool validate( alarm_list_t * this ); )
157
158void ?{}(system_proc_t * this, cluster * cltr, processorCtx_t * runner) {
159 (&this->alarms){};
160 (&this->alarm_lock){};
161 this->pending_alarm = false;
162
163 (&this->proc){ cltr, runner };
164
165 verify( validate( &this->alarms ) );
166}
167
168void ^?{}(processor * this) {
169 if( ! this->is_terminated ) {
170 LIB_DEBUG_PRINT_SAFE("Kernel : core %p signaling termination\n", this);
171 this->is_terminated = true;
172 wait( &this->terminated );
173 }
174}
175
176void ?{}(cluster * this) {
177 ( &this->ready_queue ){};
178 ( &this->lock ){};
179}
180
181void ^?{}(cluster * this) {
182
183}
184
185//=============================================================================================
186// Kernel Scheduling logic
187//=============================================================================================
188//Main of the processor contexts
189void main(processorCtx_t * runner) {
190 processor * this = runner->proc;
191
192 LIB_DEBUG_PRINT_SAFE("Kernel : core %p starting\n", this);
193
194 {
195 // Setup preemption data
196 preemption_scope scope = { this };
197
198 LIB_DEBUG_PRINT_SAFE("Kernel : core %p started\n", this);
199
200 thread_desc * readyThread = NULL;
201 for( unsigned int spin_count = 0; ! this->is_terminated; spin_count++ )
202 {
203 readyThread = nextThread( this->cltr );
204
205 if(readyThread)
206 {
207 verify( disable_preempt_count > 0 );
208
209 runThread(this, readyThread);
210
211 verify( disable_preempt_count > 0 );
212
213 //Some actions need to be taken from the kernel
214 finishRunning(this);
215
216 spin_count = 0;
217 }
218 else
219 {
220 spin(this, &spin_count);
221 }
222 }
223
224 LIB_DEBUG_PRINT_SAFE("Kernel : core %p stopping\n", this);
225 }
226
227 signal( &this->terminated );
228 LIB_DEBUG_PRINT_SAFE("Kernel : core %p terminated\n", this);
229}
230
231// runThread runs a thread by context switching
232// from the processor coroutine to the target thread
233void runThread(processor * this, thread_desc * dst) {
234 coroutine_desc * proc_cor = get_coroutine(this->runner);
235 coroutine_desc * thrd_cor = get_coroutine(dst);
236
237 //Reset the terminating actions here
238 this->finish.action_code = No_Action;
239
240 //Update global state
241 this_thread = dst;
242
243 // Context Switch to the thread
244 ThreadCtxSwitch(proc_cor, thrd_cor);
245 // when ThreadCtxSwitch returns we are back in the processor coroutine
246}
247
248// Once a thread has finished running, some of
249// its final actions must be executed from the kernel
250void finishRunning(processor * this) {
251 if( this->finish.action_code == Release ) {
252 unlock( this->finish.lock );
253 }
254 else if( this->finish.action_code == Schedule ) {
255 ScheduleThread( this->finish.thrd );
256 }
257 else if( this->finish.action_code == Release_Schedule ) {
258 unlock( this->finish.lock );
259 ScheduleThread( this->finish.thrd );
260 }
261 else if( this->finish.action_code == Release_Multi ) {
262 for(int i = 0; i < this->finish.lock_count; i++) {
263 unlock( this->finish.locks[i] );
264 }
265 }
266 else if( this->finish.action_code == Release_Multi_Schedule ) {
267 for(int i = 0; i < this->finish.lock_count; i++) {
268 unlock( this->finish.locks[i] );
269 }
270 for(int i = 0; i < this->finish.thrd_count; i++) {
271 ScheduleThread( this->finish.thrds[i] );
272 }
273 }
274 else {
275 assert(this->finish.action_code == No_Action);
276 }
277}
278
279// Handles spinning logic
280// TODO : find some strategy to put cores to sleep after some time
281void spin(processor * this, unsigned int * spin_count) {
282 (*spin_count)++;
283}
284
285// Context invoker for processors
286// This is the entry point for processors (kernel threads)
287// It effectively constructs a coroutine by stealing the pthread stack
288void * CtxInvokeProcessor(void * arg) {
289 processor * proc = (processor *) arg;
290 this_processor = proc;
291 this_coroutine = NULL;
292 this_thread = NULL;
293 disable_preempt_count = 1;
294 // SKULLDUGGERY: We want to create a context for the processor coroutine
295 // which is needed for the 2-step context switch. However, there is no reason
296 // to waste the perfectly valid stack create by pthread.
297 current_stack_info_t info;
298 machine_context_t ctx;
299 info.context = &ctx;
300 processorCtx_t proc_cor_storage = { proc, &info };
301
302 LIB_DEBUG_PRINT_SAFE("Coroutine : created stack %p\n", proc_cor_storage.__cor.stack.base);
303
304 //Set global state
305 this_coroutine = &proc->runner->__cor;
306 this_thread = NULL;
307
308 //We now have a proper context from which to schedule threads
309 LIB_DEBUG_PRINT_SAFE("Kernel : core %p created (%p, %p)\n", proc, proc->runner, &ctx);
310
311 // SKULLDUGGERY: Since the coroutine doesn't have its own stack, we can't
312 // resume it to start it like it normally would, it will just context switch
313 // back to here. Instead directly call the main since we already are on the
314 // appropriate stack.
315 proc_cor_storage.__cor.state = Active;
316 main( &proc_cor_storage );
317 proc_cor_storage.__cor.state = Halted;
318
319 // Main routine of the core returned, the core is now fully terminated
320 LIB_DEBUG_PRINT_SAFE("Kernel : core %p main ended (%p)\n", proc, proc->runner);
321
322 return NULL;
323}
324
325void start(processor * this) {
326 LIB_DEBUG_PRINT_SAFE("Kernel : Starting core %p\n", this);
327
328 // SIGALRM must only be caught by the system processor
329 sigset_t old_mask;
330 bool is_system_proc = this_processor == &systemProcessor->proc;
331 if ( is_system_proc ) {
332 // Child kernel-thread inherits the signal mask from the parent kernel-thread. So one special case for the
333 // system processor creating the user processor => toggle the blocking SIGALRM on system processor, create user
334 // processor, and toggle back (below) previous signal mask of the system processor.
335
336 sigset_t new_mask;
337 sigemptyset( &new_mask );
338 sigemptyset( &old_mask );
339 sigaddset( &new_mask, SIGALRM );
340
341 if ( sigprocmask( SIG_BLOCK, &new_mask, &old_mask ) == -1 ) {
342 abortf( "internal error, sigprocmask" );
343 }
344
345 assert( ! sigismember( &old_mask, SIGALRM ) );
346 }
347
348 pthread_create( &this->kernel_thread, NULL, CtxInvokeProcessor, (void*)this );
349
350 // Toggle back previous signal mask of system processor.
351 if ( is_system_proc ) {
352 if ( sigprocmask( SIG_SETMASK, &old_mask, NULL ) == -1 ) {
353 abortf( "internal error, sigprocmask" );
354 } // if
355 } // if
356
357 LIB_DEBUG_PRINT_SAFE("Kernel : core %p started\n", this);
358}
359
360//-----------------------------------------------------------------------------
361// Scheduler routines
362void ScheduleThread( thread_desc * thrd ) {
363 // if( !thrd ) return;
364 assert( thrd );
365 assert( thrd->cor.state != Halted );
366
367 verify( disable_preempt_count > 0 );
368
369 verifyf( thrd->next == NULL, "Expected null got %p", thrd->next );
370
371 lock( &systemProcessor->proc.cltr->lock, __PRETTY_FUNCTION__ );
372 append( &systemProcessor->proc.cltr->ready_queue, thrd );
373 unlock( &systemProcessor->proc.cltr->lock );
374
375 verify( disable_preempt_count > 0 );
376}
377
378thread_desc * nextThread(cluster * this) {
379 verify( disable_preempt_count > 0 );
380 lock( &this->lock, __PRETTY_FUNCTION__ );
381 thread_desc * head = pop_head( &this->ready_queue );
382 unlock( &this->lock );
383 verify( disable_preempt_count > 0 );
384 return head;
385}
386
387void BlockInternal() {
388 disable_interrupts();
389 verify( disable_preempt_count > 0 );
390 suspend();
391 verify( disable_preempt_count > 0 );
392 enable_interrupts( __PRETTY_FUNCTION__ );
393}
394
395void BlockInternal( spinlock * lock ) {
396 disable_interrupts();
397 this_processor->finish.action_code = Release;
398 this_processor->finish.lock = lock;
399
400 verify( disable_preempt_count > 0 );
401 suspend();
402 verify( disable_preempt_count > 0 );
403
404 enable_interrupts( __PRETTY_FUNCTION__ );
405}
406
407void BlockInternal( thread_desc * thrd ) {
408 disable_interrupts();
409 assert( thrd->cor.state != Halted );
410 this_processor->finish.action_code = Schedule;
411 this_processor->finish.thrd = thrd;
412
413 verify( disable_preempt_count > 0 );
414 suspend();
415 verify( disable_preempt_count > 0 );
416
417 enable_interrupts( __PRETTY_FUNCTION__ );
418}
419
420void BlockInternal( spinlock * lock, thread_desc * thrd ) {
421 disable_interrupts();
422 this_processor->finish.action_code = Release_Schedule;
423 this_processor->finish.lock = lock;
424 this_processor->finish.thrd = thrd;
425
426 verify( disable_preempt_count > 0 );
427 suspend();
428 verify( disable_preempt_count > 0 );
429
430 enable_interrupts( __PRETTY_FUNCTION__ );
431}
432
433void BlockInternal(spinlock ** locks, unsigned short count) {
434 disable_interrupts();
435 this_processor->finish.action_code = Release_Multi;
436 this_processor->finish.locks = locks;
437 this_processor->finish.lock_count = count;
438
439 verify( disable_preempt_count > 0 );
440 suspend();
441 verify( disable_preempt_count > 0 );
442
443 enable_interrupts( __PRETTY_FUNCTION__ );
444}
445
446void BlockInternal(spinlock ** locks, unsigned short lock_count, thread_desc ** thrds, unsigned short thrd_count) {
447 disable_interrupts();
448 this_processor->finish.action_code = Release_Multi_Schedule;
449 this_processor->finish.locks = locks;
450 this_processor->finish.lock_count = lock_count;
451 this_processor->finish.thrds = thrds;
452 this_processor->finish.thrd_count = thrd_count;
453
454 verify( disable_preempt_count > 0 );
455 suspend();
456 verify( disable_preempt_count > 0 );
457
458 enable_interrupts( __PRETTY_FUNCTION__ );
459}
460
461//=============================================================================================
462// Kernel Setup logic
463//=============================================================================================
464//-----------------------------------------------------------------------------
465// Kernel boot procedures
466void kernel_startup(void) {
467 LIB_DEBUG_PRINT_SAFE("Kernel : Starting\n");
468
469 // Start by initializing the main thread
470 // SKULLDUGGERY: the mainThread steals the process main thread
471 // which will then be scheduled by the systemProcessor normally
472 mainThread = (thread_desc *)&mainThread_storage;
473 current_stack_info_t info;
474 mainThread{ &info };
475
476 LIB_DEBUG_PRINT_SAFE("Kernel : Main thread ready\n");
477
478 // Initialize the system cluster
479 systemCluster = (cluster *)&systemCluster_storage;
480 systemCluster{};
481
482 LIB_DEBUG_PRINT_SAFE("Kernel : System cluster ready\n");
483
484 // Initialize the system processor and the system processor ctx
485 // (the coroutine that contains the processing control flow)
486 systemProcessor = (system_proc_t *)&systemProcessor_storage;
487 systemProcessor{ systemCluster, (processorCtx_t *)&systemProcessorCtx_storage };
488
489 // Add the main thread to the ready queue
490 // once resume is called on systemProcessor->runner the mainThread needs to be scheduled like any normal thread
491 ScheduleThread(mainThread);
492
493 //initialize the global state variables
494 this_processor = &systemProcessor->proc;
495 this_thread = mainThread;
496 this_coroutine = &mainThread->cor;
497 disable_preempt_count = 1;
498
499 // Enable preemption
500 kernel_start_preemption();
501
502 // SKULLDUGGERY: Force a context switch to the system processor to set the main thread's context to the current UNIX
503 // context. Hence, the main thread does not begin through CtxInvokeThread, like all other threads. The trick here is that
504 // mainThread is on the ready queue when this call is made.
505 resume( systemProcessor->proc.runner );
506
507
508
509 // THE SYSTEM IS NOW COMPLETELY RUNNING
510 LIB_DEBUG_PRINT_SAFE("Kernel : Started\n--------------------------------------------------\n\n");
511
512 enable_interrupts( __PRETTY_FUNCTION__ );
513}
514
515void kernel_shutdown(void) {
516 LIB_DEBUG_PRINT_SAFE("\n--------------------------------------------------\nKernel : Shutting down\n");
517
518 disable_interrupts();
519
520 // SKULLDUGGERY: Notify the systemProcessor it needs to terminates.
521 // When its coroutine terminates, it return control to the mainThread
522 // which is currently here
523 systemProcessor->proc.is_terminated = true;
524 suspend();
525
526 // THE SYSTEM IS NOW COMPLETELY STOPPED
527
528 // Disable preemption
529 kernel_stop_preemption();
530
531 // Destroy the system processor and its context in reverse order of construction
532 // These were manually constructed so we need manually destroy them
533 ^(systemProcessor->proc.runner){};
534 ^(systemProcessor){};
535
536 // Final step, destroy the main thread since it is no longer needed
537 // Since we provided a stack to this taxk it will not destroy anything
538 ^(mainThread){};
539
540 LIB_DEBUG_PRINT_SAFE("Kernel : Shutdown complete\n");
541}
542
543static spinlock kernel_abort_lock;
544static spinlock kernel_debug_lock;
545static bool kernel_abort_called = false;
546
547void * kernel_abort (void) __attribute__ ((__nothrow__)) {
548 // abort cannot be recursively entered by the same or different processors because all signal handlers return when
549 // the globalAbort flag is true.
550 lock( &kernel_abort_lock, __PRETTY_FUNCTION__ );
551
552 // first task to abort ?
553 if ( !kernel_abort_called ) { // not first task to abort ?
554 kernel_abort_called = true;
555 unlock( &kernel_abort_lock );
556 }
557 else {
558 unlock( &kernel_abort_lock );
559
560 sigset_t mask;
561 sigemptyset( &mask );
562 sigaddset( &mask, SIGALRM ); // block SIGALRM signals
563 sigaddset( &mask, SIGUSR1 ); // block SIGUSR1 signals
564 sigsuspend( &mask ); // block the processor to prevent further damage during abort
565 _exit( EXIT_FAILURE ); // if processor unblocks before it is killed, terminate it
566 }
567
568 return this_thread;
569}
570
571void kernel_abort_msg( void * kernel_data, char * abort_text, int abort_text_size ) {
572 thread_desc * thrd = kernel_data;
573
574 int len = snprintf( abort_text, abort_text_size, "Error occurred while executing task %.256s (%p)", thrd->cor.name, thrd );
575 __lib_debug_write( STDERR_FILENO, abort_text, len );
576
577 if ( thrd != this_coroutine ) {
578 len = snprintf( abort_text, abort_text_size, " in coroutine %.256s (%p).\n", this_coroutine->name, this_coroutine );
579 __lib_debug_write( STDERR_FILENO, abort_text, len );
580 }
581 else {
582 __lib_debug_write( STDERR_FILENO, ".\n", 2 );
583 }
584}
585
586extern "C" {
587 void __lib_debug_acquire() {
588 lock(&kernel_debug_lock, __PRETTY_FUNCTION__);
589 }
590
591 void __lib_debug_release() {
592 unlock(&kernel_debug_lock);
593 }
594}
595
596//=============================================================================================
597// Kernel Utilities
598//=============================================================================================
599//-----------------------------------------------------------------------------
600// Locks
601void ?{}( spinlock * this ) {
602 this->lock = 0;
603}
604void ^?{}( spinlock * this ) {
605
606}
607
608bool try_lock( spinlock * this, const char * caller ) {
609 bool ret = this->lock == 0 && __sync_lock_test_and_set_4( &this->lock, 1 ) == 0;
610 this->prev = caller;
611 return ret;
612}
613
614void lock( spinlock * this, const char * caller ) {
615 for ( unsigned int i = 1;; i += 1 ) {
616 if ( this->lock == 0 && __sync_lock_test_and_set_4( &this->lock, 1 ) == 0 ) break;
617 }
618 this->prev = caller;
619}
620
621void unlock( spinlock * this ) {
622 __sync_lock_release_4( &this->lock );
623}
624
625void ?{}( signal_once * this ) {
626 this->cond = false;
627}
628void ^?{}( signal_once * this ) {
629
630}
631
632void wait( signal_once * this ) {
633 lock( &this->lock, __PRETTY_FUNCTION__ );
634 if( !this->cond ) {
635 append( &this->blocked, (thread_desc*)this_thread );
636 BlockInternal( &this->lock );
637 }
638 else {
639 unlock( &this->lock );
640 }
641}
642
643void signal( signal_once * this ) {
644 lock( &this->lock, __PRETTY_FUNCTION__ );
645 {
646 this->cond = true;
647
648 disable_interrupts();
649 thread_desc * it;
650 while( it = pop_head( &this->blocked) ) {
651 ScheduleThread( it );
652 }
653 enable_interrupts( __PRETTY_FUNCTION__ );
654 }
655 unlock( &this->lock );
656}
657
658//-----------------------------------------------------------------------------
659// Queues
660void ?{}( __thread_queue_t * this ) {
661 this->head = NULL;
662 this->tail = &this->head;
663}
664
665void append( __thread_queue_t * this, thread_desc * t ) {
666 verify(this->tail != NULL);
667 *this->tail = t;
668 this->tail = &t->next;
669}
670
671thread_desc * pop_head( __thread_queue_t * this ) {
672 thread_desc * head = this->head;
673 if( head ) {
674 this->head = head->next;
675 if( !head->next ) {
676 this->tail = &this->head;
677 }
678 head->next = NULL;
679 }
680 return head;
681}
682
683void ?{}( __condition_stack_t * this ) {
684 this->top = NULL;
685}
686
687void push( __condition_stack_t * this, __condition_criterion_t * t ) {
688 verify( !t->next );
689 t->next = this->top;
690 this->top = t;
691}
692
693__condition_criterion_t * pop( __condition_stack_t * this ) {
694 __condition_criterion_t * top = this->top;
695 if( top ) {
696 this->top = top->next;
697 top->next = NULL;
698 }
699 return top;
700}
701// Local Variables: //
702// mode: c //
703// tab-width: 4 //
704// End: //
Note: See TracBrowser for help on using the repository browser.