source: src/libcfa/concurrency/kernel.c@ c1a9c86

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors deferred_resn demangler enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum resolv-new with_gc
Last change on this file since c1a9c86 was 8fc45b7, checked in by Thierry Delisle <tdelisle@…>, 8 years ago

Internal helper functions now use arrays and references instead of pointers

  • Property mode set to 100644
File size: 19.4 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// kernel.c --
8//
9// Author : Thierry Delisle
10// Created On : Tue Jan 17 12:27:26 2017
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Fri Jul 21 22:33:18 2017
13// Update Count : 2
14//
15
16#include "libhdr.h"
17
18//C Includes
19#include <stddef.h>
20extern "C" {
21#include <stdio.h>
22#include <fenv.h>
23#include <sys/resource.h>
24#include <signal.h>
25#include <unistd.h>
26}
27
28//CFA Includes
29#include "kernel_private.h"
30#include "preemption.h"
31#include "startup.h"
32
33//Private includes
34#define __CFA_INVOKE_PRIVATE__
35#include "invoke.h"
36
37//Start and stop routine for the kernel, declared first to make sure they run first
38void kernel_startup(void) __attribute__(( constructor( STARTUP_PRIORITY_KERNEL ) ));
39void kernel_shutdown(void) __attribute__(( destructor ( STARTUP_PRIORITY_KERNEL ) ));
40
41//-----------------------------------------------------------------------------
42// Kernel storage
43KERNEL_STORAGE(cluster, mainCluster);
44KERNEL_STORAGE(processor, mainProcessor);
45KERNEL_STORAGE(processorCtx_t, mainProcessorCtx);
46KERNEL_STORAGE(thread_desc, mainThread);
47KERNEL_STORAGE(machine_context_t, mainThreadCtx);
48
49cluster * mainCluster;
50processor * mainProcessor;
51thread_desc * mainThread;
52
53//-----------------------------------------------------------------------------
54// Global state
55
56thread_local coroutine_desc * volatile this_coroutine;
57thread_local thread_desc * volatile this_thread;
58thread_local processor * volatile this_processor;
59
60volatile thread_local bool preemption_in_progress = 0;
61volatile thread_local unsigned short disable_preempt_count = 1;
62
63//-----------------------------------------------------------------------------
64// Main thread construction
65struct current_stack_info_t {
66 machine_context_t ctx;
67 unsigned int size; // size of stack
68 void *base; // base of stack
69 void *storage; // pointer to stack
70 void *limit; // stack grows towards stack limit
71 void *context; // address of cfa_context_t
72 void *top; // address of top of storage
73};
74
75void ?{}( current_stack_info_t & this ) {
76 CtxGet( this.ctx );
77 this.base = this.ctx.FP;
78 this.storage = this.ctx.SP;
79
80 rlimit r;
81 getrlimit( RLIMIT_STACK, &r);
82 this.size = r.rlim_cur;
83
84 this.limit = (void *)(((intptr_t)this.base) - this.size);
85 this.context = &storage_mainThreadCtx;
86 this.top = this.base;
87}
88
89void ?{}( coStack_t & this, current_stack_info_t * info) {
90 this.size = info->size;
91 this.storage = info->storage;
92 this.limit = info->limit;
93 this.base = info->base;
94 this.context = info->context;
95 this.top = info->top;
96 this.userStack = true;
97}
98
99void ?{}( coroutine_desc & this, current_stack_info_t * info) {
100 (this.stack){ info };
101 this.name = "Main Thread";
102 this.errno_ = 0;
103 this.state = Start;
104 this.starter = NULL;
105}
106
107void ?{}( thread_desc & this, current_stack_info_t * info) {
108 (this.self_cor){ info };
109}
110
111//-----------------------------------------------------------------------------
112// Processor coroutine
113
114// Construct the processor context of the main processor
115void ?{}(processorCtx_t & this, processor * proc) {
116 (this.__cor){ "Processor" };
117 this.__cor.starter = NULL;
118 this.proc = proc;
119 proc->runner = &this;
120}
121
122// Construct the processor context of non-main processors
123void ?{}(processorCtx_t & this, processor * proc, current_stack_info_t * info) {
124 (this.__cor){ info };
125 this.proc = proc;
126 proc->runner = &this;
127}
128
129void ?{}(processor & this) {
130 this{ mainCluster };
131}
132
133void ?{}(processor & this, cluster * cltr) {
134 this.cltr = cltr;
135 (this.terminated){ 0 };
136 this.do_terminate = false;
137 this.preemption_alarm = NULL;
138 this.pending_preemption = false;
139
140 start( &this );
141}
142
143void ?{}(processor & this, cluster * cltr, processorCtx_t & runner) {
144 this.cltr = cltr;
145 (this.terminated){ 0 };
146 this.do_terminate = false;
147 this.preemption_alarm = NULL;
148 this.pending_preemption = false;
149 this.kernel_thread = pthread_self();
150
151 this.runner = &runner;
152 LIB_DEBUG_PRINT_SAFE("Kernel : constructing main processor context %p\n", &runner);
153 runner{ &this };
154}
155
156void ^?{}(processor & this) {
157 if( ! this.do_terminate ) {
158 LIB_DEBUG_PRINT_SAFE("Kernel : core %p signaling termination\n", &this);
159 this.do_terminate = true;
160 P( this.terminated );
161 pthread_join( this.kernel_thread, NULL );
162 }
163}
164
165void ?{}(cluster & this) {
166 ( this.ready_queue ){};
167 ( this.ready_queue_lock ){};
168
169 this.preemption = default_preemption();
170}
171
172void ^?{}(cluster & this) {
173
174}
175
176//=============================================================================================
177// Kernel Scheduling logic
178//=============================================================================================
179//Main of the processor contexts
180void main(processorCtx_t & runner) {
181 processor * this = runner.proc;
182
183 LIB_DEBUG_PRINT_SAFE("Kernel : core %p starting\n", this);
184
185 {
186 // Setup preemption data
187 preemption_scope scope = { this };
188
189 LIB_DEBUG_PRINT_SAFE("Kernel : core %p started\n", this);
190
191 thread_desc * readyThread = NULL;
192 for( unsigned int spin_count = 0; ! this->do_terminate; spin_count++ )
193 {
194 readyThread = nextThread( this->cltr );
195
196 if(readyThread)
197 {
198 verify( disable_preempt_count > 0 );
199
200 runThread(this, readyThread);
201
202 verify( disable_preempt_count > 0 );
203
204 //Some actions need to be taken from the kernel
205 finishRunning(this);
206
207 spin_count = 0;
208 }
209 else
210 {
211 spin(this, &spin_count);
212 }
213 }
214
215 LIB_DEBUG_PRINT_SAFE("Kernel : core %p stopping\n", this);
216 }
217
218 V( this->terminated );
219
220 LIB_DEBUG_PRINT_SAFE("Kernel : core %p terminated\n", this);
221}
222
223// runThread runs a thread by context switching
224// from the processor coroutine to the target thread
225void runThread(processor * this, thread_desc * dst) {
226 coroutine_desc * proc_cor = get_coroutine(*this->runner);
227 coroutine_desc * thrd_cor = get_coroutine(dst);
228
229 //Reset the terminating actions here
230 this->finish.action_code = No_Action;
231
232 //Update global state
233 this_thread = dst;
234
235 // Context Switch to the thread
236 ThreadCtxSwitch(proc_cor, thrd_cor);
237 // when ThreadCtxSwitch returns we are back in the processor coroutine
238}
239
240// Once a thread has finished running, some of
241// its final actions must be executed from the kernel
242void finishRunning(processor * this) {
243 if( this->finish.action_code == Release ) {
244 unlock( this->finish.lock );
245 }
246 else if( this->finish.action_code == Schedule ) {
247 ScheduleThread( this->finish.thrd );
248 }
249 else if( this->finish.action_code == Release_Schedule ) {
250 unlock( this->finish.lock );
251 ScheduleThread( this->finish.thrd );
252 }
253 else if( this->finish.action_code == Release_Multi ) {
254 for(int i = 0; i < this->finish.lock_count; i++) {
255 unlock( this->finish.locks[i] );
256 }
257 }
258 else if( this->finish.action_code == Release_Multi_Schedule ) {
259 for(int i = 0; i < this->finish.lock_count; i++) {
260 unlock( this->finish.locks[i] );
261 }
262 for(int i = 0; i < this->finish.thrd_count; i++) {
263 ScheduleThread( this->finish.thrds[i] );
264 }
265 }
266 else {
267 assert(this->finish.action_code == No_Action);
268 }
269}
270
271// Handles spinning logic
272// TODO : find some strategy to put cores to sleep after some time
273void spin(processor * this, unsigned int * spin_count) {
274 (*spin_count)++;
275}
276
277// Context invoker for processors
278// This is the entry point for processors (kernel threads)
279// It effectively constructs a coroutine by stealing the pthread stack
280void * CtxInvokeProcessor(void * arg) {
281 processor * proc = (processor *) arg;
282 this_processor = proc;
283 this_coroutine = NULL;
284 this_thread = NULL;
285 disable_preempt_count = 1;
286 // SKULLDUGGERY: We want to create a context for the processor coroutine
287 // which is needed for the 2-step context switch. However, there is no reason
288 // to waste the perfectly valid stack create by pthread.
289 current_stack_info_t info;
290 machine_context_t ctx;
291 info.context = &ctx;
292 processorCtx_t proc_cor_storage = { proc, &info };
293
294 LIB_DEBUG_PRINT_SAFE("Coroutine : created stack %p\n", proc_cor_storage.__cor.stack.base);
295
296 //Set global state
297 this_coroutine = &proc->runner->__cor;
298 this_thread = NULL;
299
300 //We now have a proper context from which to schedule threads
301 LIB_DEBUG_PRINT_SAFE("Kernel : core %p created (%p, %p)\n", proc, proc->runner, &ctx);
302
303 // SKULLDUGGERY: Since the coroutine doesn't have its own stack, we can't
304 // resume it to start it like it normally would, it will just context switch
305 // back to here. Instead directly call the main since we already are on the
306 // appropriate stack.
307 proc_cor_storage.__cor.state = Active;
308 main( proc_cor_storage );
309 proc_cor_storage.__cor.state = Halted;
310
311 // Main routine of the core returned, the core is now fully terminated
312 LIB_DEBUG_PRINT_SAFE("Kernel : core %p main ended (%p)\n", proc, proc->runner);
313
314 return NULL;
315}
316
317void start(processor * this) {
318 LIB_DEBUG_PRINT_SAFE("Kernel : Starting core %p\n", this);
319
320 pthread_create( &this->kernel_thread, NULL, CtxInvokeProcessor, (void*)this );
321
322 LIB_DEBUG_PRINT_SAFE("Kernel : core %p started\n", this);
323}
324
325//-----------------------------------------------------------------------------
326// Scheduler routines
327void ScheduleThread( thread_desc * thrd ) {
328 // if( !thrd ) return;
329 verify( thrd );
330 verify( thrd->self_cor.state != Halted );
331
332 verify( disable_preempt_count > 0 );
333
334 verifyf( thrd->next == NULL, "Expected null got %p", thrd->next );
335
336 lock( &this_processor->cltr->ready_queue_lock DEBUG_CTX2 );
337 append( this_processor->cltr->ready_queue, thrd );
338 unlock( &this_processor->cltr->ready_queue_lock );
339
340 verify( disable_preempt_count > 0 );
341}
342
343thread_desc * nextThread(cluster * this) {
344 verify( disable_preempt_count > 0 );
345 lock( &this->ready_queue_lock DEBUG_CTX2 );
346 thread_desc * head = pop_head( this->ready_queue );
347 unlock( &this->ready_queue_lock );
348 verify( disable_preempt_count > 0 );
349 return head;
350}
351
352void BlockInternal() {
353 disable_interrupts();
354 verify( disable_preempt_count > 0 );
355 suspend();
356 verify( disable_preempt_count > 0 );
357 enable_interrupts( DEBUG_CTX );
358}
359
360void BlockInternal( spinlock * lock ) {
361 disable_interrupts();
362 this_processor->finish.action_code = Release;
363 this_processor->finish.lock = lock;
364
365 verify( disable_preempt_count > 0 );
366 suspend();
367 verify( disable_preempt_count > 0 );
368
369 enable_interrupts( DEBUG_CTX );
370}
371
372void BlockInternal( thread_desc * thrd ) {
373 assert(thrd);
374 disable_interrupts();
375 assert( thrd->self_cor.state != Halted );
376 this_processor->finish.action_code = Schedule;
377 this_processor->finish.thrd = thrd;
378
379 verify( disable_preempt_count > 0 );
380 suspend();
381 verify( disable_preempt_count > 0 );
382
383 enable_interrupts( DEBUG_CTX );
384}
385
386void BlockInternal( spinlock * lock, thread_desc * thrd ) {
387 assert(thrd);
388 disable_interrupts();
389 this_processor->finish.action_code = Release_Schedule;
390 this_processor->finish.lock = lock;
391 this_processor->finish.thrd = thrd;
392
393 verify( disable_preempt_count > 0 );
394 suspend();
395 verify( disable_preempt_count > 0 );
396
397 enable_interrupts( DEBUG_CTX );
398}
399
400void BlockInternal(spinlock * locks [], unsigned short count) {
401 disable_interrupts();
402 this_processor->finish.action_code = Release_Multi;
403 this_processor->finish.locks = locks;
404 this_processor->finish.lock_count = count;
405
406 verify( disable_preempt_count > 0 );
407 suspend();
408 verify( disable_preempt_count > 0 );
409
410 enable_interrupts( DEBUG_CTX );
411}
412
413void BlockInternal(spinlock * locks [], unsigned short lock_count, thread_desc * thrds [], unsigned short thrd_count) {
414 disable_interrupts();
415 this_processor->finish.action_code = Release_Multi_Schedule;
416 this_processor->finish.locks = locks;
417 this_processor->finish.lock_count = lock_count;
418 this_processor->finish.thrds = thrds;
419 this_processor->finish.thrd_count = thrd_count;
420
421 verify( disable_preempt_count > 0 );
422 suspend();
423 verify( disable_preempt_count > 0 );
424
425 enable_interrupts( DEBUG_CTX );
426}
427
428void LeaveThread(spinlock * lock, thread_desc * thrd) {
429 verify( disable_preempt_count > 0 );
430 this_processor->finish.action_code = thrd ? Release_Schedule : Release;
431 this_processor->finish.lock = lock;
432 this_processor->finish.thrd = thrd;
433
434 suspend();
435}
436
437//=============================================================================================
438// Kernel Setup logic
439//=============================================================================================
440//-----------------------------------------------------------------------------
441// Kernel boot procedures
442void kernel_startup(void) {
443 LIB_DEBUG_PRINT_SAFE("Kernel : Starting\n");
444
445 // Start by initializing the main thread
446 // SKULLDUGGERY: the mainThread steals the process main thread
447 // which will then be scheduled by the mainProcessor normally
448 mainThread = (thread_desc *)&storage_mainThread;
449 current_stack_info_t info;
450 (*mainThread){ &info };
451
452 LIB_DEBUG_PRINT_SAFE("Kernel : Main thread ready\n");
453
454 // Initialize the main cluster
455 mainCluster = (cluster *)&storage_mainCluster;
456 (*mainCluster){};
457
458 LIB_DEBUG_PRINT_SAFE("Kernel : main cluster ready\n");
459
460 // Initialize the main processor and the main processor ctx
461 // (the coroutine that contains the processing control flow)
462 mainProcessor = (processor *)&storage_mainProcessor;
463 (*mainProcessor){ mainCluster, *(processorCtx_t *)&storage_mainProcessorCtx };
464
465 //initialize the global state variables
466 this_processor = mainProcessor;
467 this_thread = mainThread;
468 this_coroutine = &mainThread->self_cor;
469
470 // Enable preemption
471 kernel_start_preemption();
472
473 // Add the main thread to the ready queue
474 // once resume is called on mainProcessor->runner the mainThread needs to be scheduled like any normal thread
475 ScheduleThread(mainThread);
476
477 // SKULLDUGGERY: Force a context switch to the main processor to set the main thread's context to the current UNIX
478 // context. Hence, the main thread does not begin through CtxInvokeThread, like all other threads. The trick here is that
479 // mainThread is on the ready queue when this call is made.
480 resume( *mainProcessor->runner );
481
482
483
484 // THE SYSTEM IS NOW COMPLETELY RUNNING
485 LIB_DEBUG_PRINT_SAFE("Kernel : Started\n--------------------------------------------------\n\n");
486
487 enable_interrupts( DEBUG_CTX );
488}
489
490void kernel_shutdown(void) {
491 LIB_DEBUG_PRINT_SAFE("\n--------------------------------------------------\nKernel : Shutting down\n");
492
493 disable_interrupts();
494
495 // SKULLDUGGERY: Notify the mainProcessor it needs to terminates.
496 // When its coroutine terminates, it return control to the mainThread
497 // which is currently here
498 mainProcessor->do_terminate = true;
499 suspend();
500
501 // THE SYSTEM IS NOW COMPLETELY STOPPED
502
503 // Disable preemption
504 kernel_stop_preemption();
505
506 // Destroy the main processor and its context in reverse order of construction
507 // These were manually constructed so we need manually destroy them
508 ^(*mainProcessor->runner){};
509 ^(mainProcessor){};
510
511 // Final step, destroy the main thread since it is no longer needed
512 // Since we provided a stack to this taxk it will not destroy anything
513 ^(mainThread){};
514
515 LIB_DEBUG_PRINT_SAFE("Kernel : Shutdown complete\n");
516}
517
518static spinlock kernel_abort_lock;
519static spinlock kernel_debug_lock;
520static bool kernel_abort_called = false;
521
522void * kernel_abort (void) __attribute__ ((__nothrow__)) {
523 // abort cannot be recursively entered by the same or different processors because all signal handlers return when
524 // the globalAbort flag is true.
525 lock( &kernel_abort_lock DEBUG_CTX2 );
526
527 // first task to abort ?
528 if ( !kernel_abort_called ) { // not first task to abort ?
529 kernel_abort_called = true;
530 unlock( &kernel_abort_lock );
531 }
532 else {
533 unlock( &kernel_abort_lock );
534
535 sigset_t mask;
536 sigemptyset( &mask );
537 sigaddset( &mask, SIGALRM ); // block SIGALRM signals
538 sigaddset( &mask, SIGUSR1 ); // block SIGUSR1 signals
539 sigsuspend( &mask ); // block the processor to prevent further damage during abort
540 _exit( EXIT_FAILURE ); // if processor unblocks before it is killed, terminate it
541 }
542
543 return this_thread;
544}
545
546void kernel_abort_msg( void * kernel_data, char * abort_text, int abort_text_size ) {
547 thread_desc * thrd = kernel_data;
548
549 int len = snprintf( abort_text, abort_text_size, "Error occurred while executing task %.256s (%p)", thrd->self_cor.name, thrd );
550 __lib_debug_write( abort_text, len );
551
552 if ( thrd != this_coroutine ) {
553 len = snprintf( abort_text, abort_text_size, " in coroutine %.256s (%p).\n", this_coroutine->name, this_coroutine );
554 __lib_debug_write( abort_text, len );
555 }
556 else {
557 __lib_debug_write( ".\n", 2 );
558 }
559}
560
561extern "C" {
562 void __lib_debug_acquire() {
563 lock( &kernel_debug_lock DEBUG_CTX2 );
564 }
565
566 void __lib_debug_release() {
567 unlock( &kernel_debug_lock );
568 }
569}
570
571//=============================================================================================
572// Kernel Utilities
573//=============================================================================================
574//-----------------------------------------------------------------------------
575// Locks
576void ?{}( spinlock & this ) {
577 this.lock = 0;
578}
579void ^?{}( spinlock & this ) {
580
581}
582
583bool try_lock( spinlock * this DEBUG_CTX_PARAM2 ) {
584 return this->lock == 0 && __sync_lock_test_and_set_4( &this->lock, 1 ) == 0;
585}
586
587void lock( spinlock * this DEBUG_CTX_PARAM2 ) {
588 for ( unsigned int i = 1;; i += 1 ) {
589 if ( this->lock == 0 && __sync_lock_test_and_set_4( &this->lock, 1 ) == 0 ) { break; }
590 }
591 LIB_DEBUG_DO(
592 this->prev_name = caller;
593 this->prev_thrd = this_thread;
594 )
595}
596
597void lock_yield( spinlock * this DEBUG_CTX_PARAM2 ) {
598 for ( unsigned int i = 1;; i += 1 ) {
599 if ( this->lock == 0 && __sync_lock_test_and_set_4( &this->lock, 1 ) == 0 ) { break; }
600 yield();
601 }
602 LIB_DEBUG_DO(
603 this->prev_name = caller;
604 this->prev_thrd = this_thread;
605 )
606}
607
608
609void unlock( spinlock * this ) {
610 __sync_lock_release_4( &this->lock );
611}
612
613void ?{}( semaphore & this, int count = 1 ) {
614 (this.lock){};
615 this.count = count;
616 (this.waiting){};
617}
618void ^?{}(semaphore & this) {}
619
620void P(semaphore & this) {
621 lock( &this.lock DEBUG_CTX2 );
622 this.count -= 1;
623 if ( this.count < 0 ) {
624 // queue current task
625 append( this.waiting, (thread_desc *)this_thread );
626
627 // atomically release spin lock and block
628 BlockInternal( &this.lock );
629 }
630 else {
631 unlock( &this.lock );
632 }
633}
634
635void V(semaphore & this) {
636 thread_desc * thrd = NULL;
637 lock( &this.lock DEBUG_CTX2 );
638 this.count += 1;
639 if ( this.count <= 0 ) {
640 // remove task at head of waiting list
641 thrd = pop_head( this.waiting );
642 }
643
644 unlock( &this.lock );
645
646 // make new owner
647 WakeThread( thrd );
648}
649
650//-----------------------------------------------------------------------------
651// Queues
652void ?{}( __thread_queue_t & this ) {
653 this.head = NULL;
654 this.tail = &this.head;
655}
656
657void append( __thread_queue_t & this, thread_desc * t ) {
658 verify(this.tail != NULL);
659 *this.tail = t;
660 this.tail = &t->next;
661}
662
663thread_desc * pop_head( __thread_queue_t & this ) {
664 thread_desc * head = this.head;
665 if( head ) {
666 this.head = head->next;
667 if( !head->next ) {
668 this.tail = &this.head;
669 }
670 head->next = NULL;
671 }
672 return head;
673}
674
675thread_desc * remove( __thread_queue_t & this, thread_desc ** it ) {
676 thread_desc * thrd = *it;
677 verify( thrd );
678
679 (*it) = thrd->next;
680
681 if( this.tail == &thrd->next ) {
682 this.tail = it;
683 }
684
685 thrd->next = NULL;
686
687 verify( (this.head == NULL) == (&this.head == this.tail) );
688 verify( *this.tail == NULL );
689 return thrd;
690}
691
692void ?{}( __condition_stack_t & this ) {
693 this.top = NULL;
694}
695
696void push( __condition_stack_t & this, __condition_criterion_t * t ) {
697 verify( !t->next );
698 t->next = this.top;
699 this.top = t;
700}
701
702__condition_criterion_t * pop( __condition_stack_t & this ) {
703 __condition_criterion_t * top = this.top;
704 if( top ) {
705 this.top = top->next;
706 top->next = NULL;
707 }
708 return top;
709}
710
711// Local Variables: //
712// mode: c //
713// tab-width: 4 //
714// End: //
Note: See TracBrowser for help on using the repository browser.