source: src/libcfa/concurrency/kernel.c@ 85b1deb

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors deferred_resn demangler enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum with_gc
Last change on this file since 85b1deb was 85b1deb, checked in by Thierry Delisle <tdelisle@…>, 7 years ago

Fix processor halting

  • Property mode set to 100644
File size: 23.6 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// kernel.c --
8//
9// Author : Thierry Delisle
10// Created On : Tue Jan 17 12:27:26 2017
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Mon Apr 9 16:11:46 2018
13// Update Count : 24
14//
15
16//C Includes
17#include <stddef.h>
18#include <errno.h>
19#include <string.h>
20extern "C" {
21#include <stdio.h>
22#include <fenv.h>
23#include <sys/resource.h>
24#include <signal.h>
25#include <unistd.h>
26}
27
28//CFA Includes
29#include "time"
30#include "kernel_private.h"
31#include "preemption.h"
32#include "startup.h"
33
34//Private includes
35#define __CFA_INVOKE_PRIVATE__
36#include "invoke.h"
37
38//Start and stop routine for the kernel, declared first to make sure they run first
39void kernel_startup(void) __attribute__(( constructor( STARTUP_PRIORITY_KERNEL ) ));
40void kernel_shutdown(void) __attribute__(( destructor ( STARTUP_PRIORITY_KERNEL ) ));
41
42//-----------------------------------------------------------------------------
43// Kernel storage
44KERNEL_STORAGE(cluster, mainCluster);
45KERNEL_STORAGE(processor, mainProcessor);
46KERNEL_STORAGE(thread_desc, mainThread);
47KERNEL_STORAGE(machine_context_t, mainThreadCtx);
48
49cluster * mainCluster;
50processor * mainProcessor;
51thread_desc * mainThread;
52
53extern "C" {
54struct { __dllist_t(cluster) list; __spinlock_t lock; } __cfa_dbg_global_clusters;
55}
56
57//-----------------------------------------------------------------------------
58// Global state
59thread_local struct KernelThreadData kernelTLS = {
60 NULL,
61 NULL,
62 NULL,
63 { 1, false, false }
64};
65
66//-----------------------------------------------------------------------------
67// Struct to steal stack
68struct current_stack_info_t {
69 machine_context_t ctx;
70 unsigned int size; // size of stack
71 void *base; // base of stack
72 void *storage; // pointer to stack
73 void *limit; // stack grows towards stack limit
74 void *context; // address of cfa_context_t
75 void *top; // address of top of storage
76};
77
78void ?{}( current_stack_info_t & this ) {
79 CtxGet( this.ctx );
80 this.base = this.ctx.FP;
81 this.storage = this.ctx.SP;
82
83 rlimit r;
84 getrlimit( RLIMIT_STACK, &r);
85 this.size = r.rlim_cur;
86
87 this.limit = (void *)(((intptr_t)this.base) - this.size);
88 this.context = &storage_mainThreadCtx;
89 this.top = this.base;
90}
91
92//-----------------------------------------------------------------------------
93// Main thread construction
94void ?{}( coStack_t & this, current_stack_info_t * info) with( this ) {
95 size = info->size;
96 storage = info->storage;
97 limit = info->limit;
98 base = info->base;
99 context = info->context;
100 top = info->top;
101 userStack = true;
102}
103
104void ?{}( coroutine_desc & this, current_stack_info_t * info) with( this ) {
105 stack{ info };
106 name = "Main Thread";
107 errno_ = 0;
108 state = Start;
109 starter = NULL;
110}
111
112void ?{}( thread_desc & this, current_stack_info_t * info) with( this ) {
113 self_cor{ info };
114 curr_cor = &self_cor;
115 curr_cluster = mainCluster;
116 self_mon.owner = &this;
117 self_mon.recursion = 1;
118 self_mon_p = &self_mon;
119 next = NULL;
120
121 node.next = NULL;
122 node.prev = NULL;
123 doregister(curr_cluster, this);
124
125 monitors{ &self_mon_p, 1, (fptr_t)0 };
126}
127
128//-----------------------------------------------------------------------------
129// Processor coroutine
130void ?{}(processorCtx_t & this) {
131
132}
133
134// Construct the processor context of non-main processors
135void ?{}(processorCtx_t & this, processor * proc, current_stack_info_t * info) {
136 (this.__cor){ info };
137 this.proc = proc;
138}
139
140void ?{}(processor & this, const char * name, cluster & cltr) with( this ) {
141 this.name = name;
142 this.cltr = &cltr;
143 terminated{ 0 };
144 do_terminate = false;
145 preemption_alarm = NULL;
146 pending_preemption = false;
147 runner.proc = &this;
148
149 idleLock{};
150
151 start( &this );
152}
153
154void ^?{}(processor & this) with( this ){
155 if( ! __atomic_load_n(&do_terminate, __ATOMIC_ACQUIRE) ) {
156 __cfaabi_dbg_print_safe("Kernel : core %p signaling termination\n", &this);
157
158 __atomic_store_n(&do_terminate, true, __ATOMIC_RELAXED);
159 wake( &this );
160
161 P( terminated );
162 verify( kernelTLS.this_processor != &this);
163 }
164
165 pthread_join( kernel_thread, NULL );
166}
167
168void ?{}(cluster & this, const char * name, Duration preemption_rate) with( this ) {
169 this.name = name;
170 this.preemption_rate = preemption_rate;
171 ready_queue{};
172 ready_queue_lock{};
173
174 procs{ __get };
175 idles{ __get };
176 threads{ __get };
177
178 doregister(this);
179}
180
181void ^?{}(cluster & this) {
182 unregister(this);
183}
184
185//=============================================================================================
186// Kernel Scheduling logic
187//=============================================================================================
188//Main of the processor contexts
189void main(processorCtx_t & runner) {
190 processor * this = runner.proc;
191 verify(this);
192
193 __cfaabi_dbg_print_safe("Kernel : core %p starting\n", this);
194
195 doregister(this->cltr, this);
196
197 {
198 // Setup preemption data
199 preemption_scope scope = { this };
200
201 __cfaabi_dbg_print_safe("Kernel : core %p started\n", this);
202
203 thread_desc * readyThread = NULL;
204 for( unsigned int spin_count = 0; ! __atomic_load_n(&this->do_terminate, __ATOMIC_SEQ_CST); spin_count++ )
205 {
206 readyThread = nextThread( this->cltr );
207
208 if(readyThread)
209 {
210 verify( ! kernelTLS.preemption_state.enabled );
211
212 runThread(this, readyThread);
213
214 verify( ! kernelTLS.preemption_state.enabled );
215
216 //Some actions need to be taken from the kernel
217 finishRunning(this);
218
219 spin_count = 0;
220 }
221 else
222 {
223 // spin(this, &spin_count);
224 halt(this);
225 }
226 }
227
228 __cfaabi_dbg_print_safe("Kernel : core %p stopping\n", this);
229 }
230
231 unregister(this->cltr, this);
232
233 V( this->terminated );
234
235 __cfaabi_dbg_print_safe("Kernel : core %p terminated\n", this);
236}
237
238// KERNEL ONLY
239// runThread runs a thread by context switching
240// from the processor coroutine to the target thread
241void runThread(processor * this, thread_desc * dst) {
242 assert(dst->curr_cor);
243 coroutine_desc * proc_cor = get_coroutine(this->runner);
244 coroutine_desc * thrd_cor = dst->curr_cor;
245
246 // Reset the terminating actions here
247 this->finish.action_code = No_Action;
248
249 // Update global state
250 kernelTLS.this_thread = dst;
251
252 // Context Switch to the thread
253 ThreadCtxSwitch(proc_cor, thrd_cor);
254 // when ThreadCtxSwitch returns we are back in the processor coroutine
255}
256
257// KERNEL_ONLY
258void returnToKernel() {
259 coroutine_desc * proc_cor = get_coroutine(kernelTLS.this_processor->runner);
260 coroutine_desc * thrd_cor = kernelTLS.this_thread->curr_cor = kernelTLS.this_coroutine;
261 ThreadCtxSwitch(thrd_cor, proc_cor);
262}
263
264// KERNEL_ONLY
265// Once a thread has finished running, some of
266// its final actions must be executed from the kernel
267void finishRunning(processor * this) with( this->finish ) {
268 verify( ! kernelTLS.preemption_state.enabled );
269 choose( action_code ) {
270 case No_Action:
271 break;
272 case Release:
273 unlock( *lock );
274 case Schedule:
275 ScheduleThread( thrd );
276 case Release_Schedule:
277 unlock( *lock );
278 ScheduleThread( thrd );
279 case Release_Multi:
280 for(int i = 0; i < lock_count; i++) {
281 unlock( *locks[i] );
282 }
283 case Release_Multi_Schedule:
284 for(int i = 0; i < lock_count; i++) {
285 unlock( *locks[i] );
286 }
287 for(int i = 0; i < thrd_count; i++) {
288 ScheduleThread( thrds[i] );
289 }
290 case Callback:
291 callback();
292 default:
293 abort("KERNEL ERROR: Unexpected action to run after thread");
294 }
295}
296
297// KERNEL_ONLY
298// Context invoker for processors
299// This is the entry point for processors (kernel threads)
300// It effectively constructs a coroutine by stealing the pthread stack
301void * CtxInvokeProcessor(void * arg) {
302 processor * proc = (processor *) arg;
303 kernelTLS.this_processor = proc;
304 kernelTLS.this_coroutine = NULL;
305 kernelTLS.this_thread = NULL;
306 kernelTLS.preemption_state.[enabled, disable_count] = [false, 1];
307 // SKULLDUGGERY: We want to create a context for the processor coroutine
308 // which is needed for the 2-step context switch. However, there is no reason
309 // to waste the perfectly valid stack create by pthread.
310 current_stack_info_t info;
311 machine_context_t ctx;
312 info.context = &ctx;
313 (proc->runner){ proc, &info };
314
315 __cfaabi_dbg_print_safe("Coroutine : created stack %p\n", get_coroutine(proc->runner)->stack.base);
316
317 //Set global state
318 kernelTLS.this_coroutine = get_coroutine(proc->runner);
319 kernelTLS.this_thread = NULL;
320
321 //We now have a proper context from which to schedule threads
322 __cfaabi_dbg_print_safe("Kernel : core %p created (%p, %p)\n", proc, &proc->runner, &ctx);
323
324 // SKULLDUGGERY: Since the coroutine doesn't have its own stack, we can't
325 // resume it to start it like it normally would, it will just context switch
326 // back to here. Instead directly call the main since we already are on the
327 // appropriate stack.
328 get_coroutine(proc->runner)->state = Active;
329 main( proc->runner );
330 get_coroutine(proc->runner)->state = Halted;
331
332 // Main routine of the core returned, the core is now fully terminated
333 __cfaabi_dbg_print_safe("Kernel : core %p main ended (%p)\n", proc, &proc->runner);
334
335 return NULL;
336}
337
338void start(processor * this) {
339 __cfaabi_dbg_print_safe("Kernel : Starting core %p\n", this);
340
341 pthread_create( &this->kernel_thread, NULL, CtxInvokeProcessor, (void*)this );
342
343 __cfaabi_dbg_print_safe("Kernel : core %p started\n", this);
344}
345
346// KERNEL_ONLY
347void kernel_first_resume(processor * this) {
348 coroutine_desc * src = kernelTLS.this_coroutine;
349 coroutine_desc * dst = get_coroutine(this->runner);
350
351 verify( ! kernelTLS.preemption_state.enabled );
352
353 create_stack(&dst->stack, dst->stack.size);
354 CtxStart(&this->runner, CtxInvokeCoroutine);
355
356 verify( ! kernelTLS.preemption_state.enabled );
357
358 dst->last = src;
359 dst->starter = dst->starter ? dst->starter : src;
360
361 // set state of current coroutine to inactive
362 src->state = src->state == Halted ? Halted : Inactive;
363
364 // set new coroutine that task is executing
365 kernelTLS.this_coroutine = dst;
366
367 // SKULLDUGGERY normally interrupts are enable before leaving a coroutine ctxswitch.
368 // Therefore, when first creating a coroutine, interrupts are enable before calling the main.
369 // This is consistent with thread creation. However, when creating the main processor coroutine,
370 // we wan't interrupts to be disabled. Therefore, we double-disable interrupts here so they will
371 // stay disabled.
372 disable_interrupts();
373
374 // context switch to specified coroutine
375 assert( src->stack.context );
376 CtxSwitch( src->stack.context, dst->stack.context );
377 // when CtxSwitch returns we are back in the src coroutine
378
379 // set state of new coroutine to active
380 src->state = Active;
381
382 verify( ! kernelTLS.preemption_state.enabled );
383}
384
385//-----------------------------------------------------------------------------
386// Scheduler routines
387
388// KERNEL ONLY
389void ScheduleThread( thread_desc * thrd ) {
390 verify( thrd );
391 verify( thrd->self_cor.state != Halted );
392
393 verify( ! kernelTLS.preemption_state.enabled );
394
395 verifyf( thrd->next == NULL, "Expected null got %p", thrd->next );
396
397 with( *thrd->curr_cluster ) {
398 lock ( ready_queue_lock __cfaabi_dbg_ctx2 );
399 bool was_empty = !(ready_queue != 0);
400 append( ready_queue, thrd );
401 unlock( ready_queue_lock );
402
403 if(was_empty) {
404 lock (proc_list_lock __cfaabi_dbg_ctx2);
405 if(idles) {
406 wake_fast(idles.head);
407 }
408 unlock (proc_list_lock);
409 }
410 else if( struct processor * idle = idles.head ) {
411 wake_fast(idle);
412 }
413
414 }
415
416 verify( ! kernelTLS.preemption_state.enabled );
417}
418
419// KERNEL ONLY
420thread_desc * nextThread(cluster * this) with( *this ) {
421 verify( ! kernelTLS.preemption_state.enabled );
422 lock( ready_queue_lock __cfaabi_dbg_ctx2 );
423 thread_desc * head = pop_head( ready_queue );
424 unlock( ready_queue_lock );
425 verify( ! kernelTLS.preemption_state.enabled );
426 return head;
427}
428
429void BlockInternal() {
430 disable_interrupts();
431 verify( ! kernelTLS.preemption_state.enabled );
432 returnToKernel();
433 verify( ! kernelTLS.preemption_state.enabled );
434 enable_interrupts( __cfaabi_dbg_ctx );
435}
436
437void BlockInternal( __spinlock_t * lock ) {
438 disable_interrupts();
439 with( *kernelTLS.this_processor ) {
440 finish.action_code = Release;
441 finish.lock = lock;
442 }
443
444 verify( ! kernelTLS.preemption_state.enabled );
445 returnToKernel();
446 verify( ! kernelTLS.preemption_state.enabled );
447
448 enable_interrupts( __cfaabi_dbg_ctx );
449}
450
451void BlockInternal( thread_desc * thrd ) {
452 disable_interrupts();
453 with( * kernelTLS.this_processor ) {
454 finish.action_code = Schedule;
455 finish.thrd = thrd;
456 }
457
458 verify( ! kernelTLS.preemption_state.enabled );
459 returnToKernel();
460 verify( ! kernelTLS.preemption_state.enabled );
461
462 enable_interrupts( __cfaabi_dbg_ctx );
463}
464
465void BlockInternal( __spinlock_t * lock, thread_desc * thrd ) {
466 assert(thrd);
467 disable_interrupts();
468 with( * kernelTLS.this_processor ) {
469 finish.action_code = Release_Schedule;
470 finish.lock = lock;
471 finish.thrd = thrd;
472 }
473
474 verify( ! kernelTLS.preemption_state.enabled );
475 returnToKernel();
476 verify( ! kernelTLS.preemption_state.enabled );
477
478 enable_interrupts( __cfaabi_dbg_ctx );
479}
480
481void BlockInternal(__spinlock_t * locks [], unsigned short count) {
482 disable_interrupts();
483 with( * kernelTLS.this_processor ) {
484 finish.action_code = Release_Multi;
485 finish.locks = locks;
486 finish.lock_count = count;
487 }
488
489 verify( ! kernelTLS.preemption_state.enabled );
490 returnToKernel();
491 verify( ! kernelTLS.preemption_state.enabled );
492
493 enable_interrupts( __cfaabi_dbg_ctx );
494}
495
496void BlockInternal(__spinlock_t * locks [], unsigned short lock_count, thread_desc * thrds [], unsigned short thrd_count) {
497 disable_interrupts();
498 with( *kernelTLS.this_processor ) {
499 finish.action_code = Release_Multi_Schedule;
500 finish.locks = locks;
501 finish.lock_count = lock_count;
502 finish.thrds = thrds;
503 finish.thrd_count = thrd_count;
504 }
505
506 verify( ! kernelTLS.preemption_state.enabled );
507 returnToKernel();
508 verify( ! kernelTLS.preemption_state.enabled );
509
510 enable_interrupts( __cfaabi_dbg_ctx );
511}
512
513void BlockInternal(__finish_callback_fptr_t callback) {
514 disable_interrupts();
515 with( *kernelTLS.this_processor ) {
516 finish.action_code = Callback;
517 finish.callback = callback;
518 }
519
520 verify( ! kernelTLS.preemption_state.enabled );
521 returnToKernel();
522 verify( ! kernelTLS.preemption_state.enabled );
523
524 enable_interrupts( __cfaabi_dbg_ctx );
525}
526
527// KERNEL ONLY
528void LeaveThread(__spinlock_t * lock, thread_desc * thrd) {
529 verify( ! kernelTLS.preemption_state.enabled );
530 with( * kernelTLS.this_processor ) {
531 finish.action_code = thrd ? Release_Schedule : Release;
532 finish.lock = lock;
533 finish.thrd = thrd;
534 }
535
536 returnToKernel();
537}
538
539//=============================================================================================
540// Kernel Setup logic
541//=============================================================================================
542//-----------------------------------------------------------------------------
543// Kernel boot procedures
544void kernel_startup(void) {
545 verify( ! kernelTLS.preemption_state.enabled );
546 __cfaabi_dbg_print_safe("Kernel : Starting\n");
547
548 __cfa_dbg_global_clusters.list{ __get };
549 __cfa_dbg_global_clusters.lock{};
550
551 // Initialize the main cluster
552 mainCluster = (cluster *)&storage_mainCluster;
553 (*mainCluster){"Main Cluster"};
554
555 __cfaabi_dbg_print_safe("Kernel : Main cluster ready\n");
556
557 // Start by initializing the main thread
558 // SKULLDUGGERY: the mainThread steals the process main thread
559 // which will then be scheduled by the mainProcessor normally
560 mainThread = (thread_desc *)&storage_mainThread;
561 current_stack_info_t info;
562 (*mainThread){ &info };
563
564 __cfaabi_dbg_print_safe("Kernel : Main thread ready\n");
565
566
567
568 // Construct the processor context of the main processor
569 void ?{}(processorCtx_t & this, processor * proc) {
570 (this.__cor){ "Processor" };
571 this.__cor.starter = NULL;
572 this.proc = proc;
573 }
574
575 void ?{}(processor & this) with( this ) {
576 name = "Main Processor";
577 cltr = mainCluster;
578 terminated{ 0 };
579 do_terminate = false;
580 preemption_alarm = NULL;
581 pending_preemption = false;
582 kernel_thread = pthread_self();
583
584 runner{ &this };
585 __cfaabi_dbg_print_safe("Kernel : constructed main processor context %p\n", &runner);
586 }
587
588 // Initialize the main processor and the main processor ctx
589 // (the coroutine that contains the processing control flow)
590 mainProcessor = (processor *)&storage_mainProcessor;
591 (*mainProcessor){};
592
593 //initialize the global state variables
594 kernelTLS.this_processor = mainProcessor;
595 kernelTLS.this_thread = mainThread;
596 kernelTLS.this_coroutine = &mainThread->self_cor;
597
598 // Enable preemption
599 kernel_start_preemption();
600
601 // Add the main thread to the ready queue
602 // once resume is called on mainProcessor->runner the mainThread needs to be scheduled like any normal thread
603 ScheduleThread(mainThread);
604
605 // SKULLDUGGERY: Force a context switch to the main processor to set the main thread's context to the current UNIX
606 // context. Hence, the main thread does not begin through CtxInvokeThread, like all other threads. The trick here is that
607 // mainThread is on the ready queue when this call is made.
608 kernel_first_resume( kernelTLS.this_processor );
609
610
611
612 // THE SYSTEM IS NOW COMPLETELY RUNNING
613 __cfaabi_dbg_print_safe("Kernel : Started\n--------------------------------------------------\n\n");
614
615 verify( ! kernelTLS.preemption_state.enabled );
616 enable_interrupts( __cfaabi_dbg_ctx );
617 verify( TL_GET( preemption_state.enabled ) );
618}
619
620void kernel_shutdown(void) {
621 __cfaabi_dbg_print_safe("\n--------------------------------------------------\nKernel : Shutting down\n");
622
623 verify( TL_GET( preemption_state.enabled ) );
624 disable_interrupts();
625 verify( ! kernelTLS.preemption_state.enabled );
626
627 // SKULLDUGGERY: Notify the mainProcessor it needs to terminates.
628 // When its coroutine terminates, it return control to the mainThread
629 // which is currently here
630 __atomic_store_n(&mainProcessor->do_terminate, true, __ATOMIC_RELEASE);
631 returnToKernel();
632 mainThread->self_cor.state = Halted;
633
634 // THE SYSTEM IS NOW COMPLETELY STOPPED
635
636 // Disable preemption
637 kernel_stop_preemption();
638
639 // Destroy the main processor and its context in reverse order of construction
640 // These were manually constructed so we need manually destroy them
641 ^(mainProcessor->runner){};
642 ^(mainProcessor){};
643
644 // Final step, destroy the main thread since it is no longer needed
645 // Since we provided a stack to this taxk it will not destroy anything
646 ^(mainThread){};
647
648 ^(__cfa_dbg_global_clusters.list){};
649 ^(__cfa_dbg_global_clusters.lock){};
650
651 __cfaabi_dbg_print_safe("Kernel : Shutdown complete\n");
652}
653
654//=============================================================================================
655// Kernel Quiescing
656//=============================================================================================
657
658void halt(processor * this) with( *this ) {
659 // verify( ! __atomic_load_n(&do_terminate, __ATOMIC_SEQ_CST) );
660
661 with( *cltr ) {
662 lock (proc_list_lock __cfaabi_dbg_ctx2);
663 remove (procs, *this);
664 push_front(idles, *this);
665 unlock (proc_list_lock);
666 }
667
668 __cfaabi_dbg_print_safe("Kernel : Processor %p ready to sleep\n", this);
669
670 wait( idleLock );
671
672 __cfaabi_dbg_print_safe("Kernel : Processor %p woke up and ready to run\n", this);
673
674 with( *cltr ) {
675 lock (proc_list_lock __cfaabi_dbg_ctx2);
676 remove (idles, *this);
677 push_front(procs, *this);
678 unlock (proc_list_lock);
679 }
680}
681
682//=============================================================================================
683// Unexpected Terminating logic
684//=============================================================================================
685
686
687static __spinlock_t kernel_abort_lock;
688static bool kernel_abort_called = false;
689
690void * kernel_abort(void) __attribute__ ((__nothrow__)) {
691 // abort cannot be recursively entered by the same or different processors because all signal handlers return when
692 // the globalAbort flag is true.
693 lock( kernel_abort_lock __cfaabi_dbg_ctx2 );
694
695 // first task to abort ?
696 if ( kernel_abort_called ) { // not first task to abort ?
697 unlock( kernel_abort_lock );
698
699 sigset_t mask;
700 sigemptyset( &mask );
701 sigaddset( &mask, SIGALRM ); // block SIGALRM signals
702 sigsuspend( &mask ); // block the processor to prevent further damage during abort
703 _exit( EXIT_FAILURE ); // if processor unblocks before it is killed, terminate it
704 }
705 else {
706 kernel_abort_called = true;
707 unlock( kernel_abort_lock );
708 }
709
710 return kernelTLS.this_thread;
711}
712
713void kernel_abort_msg( void * kernel_data, char * abort_text, int abort_text_size ) {
714 thread_desc * thrd = kernel_data;
715
716 if(thrd) {
717 int len = snprintf( abort_text, abort_text_size, "Error occurred while executing thread %.256s (%p)", thrd->self_cor.name, thrd );
718 __cfaabi_dbg_bits_write( abort_text, len );
719
720 if ( get_coroutine(thrd) != kernelTLS.this_coroutine ) {
721 len = snprintf( abort_text, abort_text_size, " in coroutine %.256s (%p).\n", kernelTLS.this_coroutine->name, kernelTLS.this_coroutine );
722 __cfaabi_dbg_bits_write( abort_text, len );
723 }
724 else {
725 __cfaabi_dbg_bits_write( ".\n", 2 );
726 }
727 }
728 else {
729 int len = snprintf( abort_text, abort_text_size, "Error occurred outside of any thread.\n" );
730 __cfaabi_dbg_bits_write( abort_text, len );
731 }
732}
733
734int kernel_abort_lastframe( void ) __attribute__ ((__nothrow__)) {
735 return get_coroutine(kernelTLS.this_thread) == get_coroutine(mainThread) ? 4 : 2;
736}
737
738static __spinlock_t kernel_debug_lock;
739
740extern "C" {
741 void __cfaabi_dbg_bits_acquire() {
742 lock( kernel_debug_lock __cfaabi_dbg_ctx2 );
743 }
744
745 void __cfaabi_dbg_bits_release() {
746 unlock( kernel_debug_lock );
747 }
748}
749
750//=============================================================================================
751// Kernel Utilities
752//=============================================================================================
753//-----------------------------------------------------------------------------
754// Locks
755void ?{}( semaphore & this, int count = 1 ) {
756 (this.lock){};
757 this.count = count;
758 (this.waiting){};
759}
760void ^?{}(semaphore & this) {}
761
762void P(semaphore & this) with( this ){
763 lock( lock __cfaabi_dbg_ctx2 );
764 count -= 1;
765 if ( count < 0 ) {
766 // queue current task
767 append( waiting, kernelTLS.this_thread );
768
769 // atomically release spin lock and block
770 BlockInternal( &lock );
771 }
772 else {
773 unlock( lock );
774 }
775}
776
777void V(semaphore & this) with( this ) {
778 thread_desc * thrd = NULL;
779 lock( lock __cfaabi_dbg_ctx2 );
780 count += 1;
781 if ( count <= 0 ) {
782 // remove task at head of waiting list
783 thrd = pop_head( waiting );
784 }
785
786 unlock( lock );
787
788 // make new owner
789 WakeThread( thrd );
790}
791
792//-----------------------------------------------------------------------------
793// Global Queues
794void doregister( cluster & cltr ) {
795 lock ( __cfa_dbg_global_clusters.lock __cfaabi_dbg_ctx2);
796 push_front( __cfa_dbg_global_clusters.list, cltr );
797 unlock ( __cfa_dbg_global_clusters.lock );
798}
799
800void unregister( cluster & cltr ) {
801 lock ( __cfa_dbg_global_clusters.lock __cfaabi_dbg_ctx2);
802 remove( __cfa_dbg_global_clusters.list, cltr );
803 unlock( __cfa_dbg_global_clusters.lock );
804}
805
806void doregister( cluster * cltr, thread_desc & thrd ) {
807 lock (cltr->thread_list_lock __cfaabi_dbg_ctx2);
808 push_front(cltr->threads, thrd);
809 unlock (cltr->thread_list_lock);
810}
811
812void unregister( cluster * cltr, thread_desc & thrd ) {
813 lock (cltr->thread_list_lock __cfaabi_dbg_ctx2);
814 remove(cltr->threads, thrd );
815 unlock(cltr->thread_list_lock);
816}
817
818void doregister( cluster * cltr, processor * proc ) {
819 lock (cltr->proc_list_lock __cfaabi_dbg_ctx2);
820 push_front(cltr->procs, *proc);
821 unlock (cltr->proc_list_lock);
822}
823
824void unregister( cluster * cltr, processor * proc ) {
825 lock (cltr->proc_list_lock __cfaabi_dbg_ctx2);
826 remove(cltr->procs, *proc );
827 unlock(cltr->proc_list_lock);
828}
829
830//-----------------------------------------------------------------------------
831// Debug
832__cfaabi_dbg_debug_do(
833 void __cfaabi_dbg_record(__spinlock_t & this, const char * prev_name) {
834 this.prev_name = prev_name;
835 this.prev_thrd = kernelTLS.this_thread;
836 }
837)
838// Local Variables: //
839// mode: c //
840// tab-width: 4 //
841// End: //
Note: See TracBrowser for help on using the repository browser.