1 | // |
---|
2 | // Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo |
---|
3 | // |
---|
4 | // The contents of this file are covered under the licence agreement in the |
---|
5 | // file "LICENCE" distributed with Cforall. |
---|
6 | // |
---|
7 | // TupleAssignment.cc -- |
---|
8 | // |
---|
9 | // Author : Rodolfo G. Esteves |
---|
10 | // Created On : Mon May 18 07:44:20 2015 |
---|
11 | // Last Modified By : Peter A. Buhr |
---|
12 | // Last Modified On : Fri Dec 13 23:45:51 2019 |
---|
13 | // Update Count : 24 |
---|
14 | // |
---|
15 | |
---|
16 | #include <stddef.h> // for size_t |
---|
17 | #include <cassert> // for assert |
---|
18 | #include <list> // for list |
---|
19 | #include <vector> |
---|
20 | |
---|
21 | #include "AST/CVQualifiers.hpp" |
---|
22 | #include "AST/Expr.hpp" |
---|
23 | #include "AST/Node.hpp" |
---|
24 | #include "AST/Type.hpp" |
---|
25 | #include "Common/PassVisitor.h" // for PassVisitor, WithDeclsToAdd, WithGu... |
---|
26 | #include "Common/ScopedMap.h" // for ScopedMap |
---|
27 | #include "Common/utility.h" // for CodeLocation |
---|
28 | #include "InitTweak/InitTweak.h" // for getFunction |
---|
29 | #include "SynTree/LinkageSpec.h" // for Spec, C, Intrinsic |
---|
30 | #include "SynTree/Constant.h" // for Constant |
---|
31 | #include "SynTree/Declaration.h" // for StructDecl, DeclarationWithType |
---|
32 | #include "SynTree/Expression.h" // for UntypedMemberExpr, Expression, Uniq... |
---|
33 | #include "SynTree/Label.h" // for operator==, Label |
---|
34 | #include "SynTree/Mutator.h" // for Mutator |
---|
35 | #include "SynTree/Type.h" // for Type, Type::Qualifiers, TupleType |
---|
36 | #include "SynTree/Visitor.h" // for Visitor |
---|
37 | #include "Tuples.h" |
---|
38 | |
---|
39 | class CompoundStmt; |
---|
40 | class TypeSubstitution; |
---|
41 | |
---|
42 | namespace Tuples { |
---|
43 | namespace { |
---|
44 | struct MemberTupleExpander final : public WithShortCircuiting, public WithVisitorRef<MemberTupleExpander> { |
---|
45 | void premutate( UntypedMemberExpr * ) { visit_children = false; } |
---|
46 | Expression * postmutate( UntypedMemberExpr * memberExpr ); |
---|
47 | }; |
---|
48 | |
---|
49 | struct UniqueExprExpander final : public WithDeclsToAdd { |
---|
50 | Expression * postmutate( UniqueExpr * unqExpr ); |
---|
51 | |
---|
52 | std::map< int, Expression * > decls; // not vector, because order added may not be increasing order |
---|
53 | |
---|
54 | ~UniqueExprExpander() { |
---|
55 | for ( std::pair<const int, Expression *> & p : decls ) { |
---|
56 | delete p.second; |
---|
57 | } |
---|
58 | } |
---|
59 | }; |
---|
60 | |
---|
61 | struct TupleAssignExpander { |
---|
62 | Expression * postmutate( TupleAssignExpr * tupleExpr ); |
---|
63 | }; |
---|
64 | |
---|
65 | struct TupleTypeReplacer : public WithDeclsToAdd, public WithGuards, public WithConstTypeSubstitution { |
---|
66 | Type * postmutate( TupleType * tupleType ); |
---|
67 | |
---|
68 | void premutate( CompoundStmt * ) { |
---|
69 | GuardScope( typeMap ); |
---|
70 | } |
---|
71 | private: |
---|
72 | ScopedMap< int, StructDecl * > typeMap; |
---|
73 | }; |
---|
74 | |
---|
75 | struct TupleIndexExpander { |
---|
76 | Expression * postmutate( TupleIndexExpr * tupleExpr ); |
---|
77 | }; |
---|
78 | |
---|
79 | struct TupleExprExpander final { |
---|
80 | Expression * postmutate( TupleExpr * tupleExpr ); |
---|
81 | }; |
---|
82 | } |
---|
83 | |
---|
84 | void expandMemberTuples( std::list< Declaration * > & translationUnit ) { |
---|
85 | PassVisitor<MemberTupleExpander> expander; |
---|
86 | mutateAll( translationUnit, expander ); |
---|
87 | } |
---|
88 | |
---|
89 | void expandUniqueExpr( std::list< Declaration * > & translationUnit ) { |
---|
90 | PassVisitor<UniqueExprExpander> unqExpander; |
---|
91 | mutateAll( translationUnit, unqExpander ); |
---|
92 | } |
---|
93 | |
---|
94 | void expandTuples( std::list< Declaration * > & translationUnit ) { |
---|
95 | PassVisitor<TupleAssignExpander> assnExpander; |
---|
96 | mutateAll( translationUnit, assnExpander ); |
---|
97 | |
---|
98 | PassVisitor<TupleTypeReplacer> replacer; |
---|
99 | mutateAll( translationUnit, replacer ); |
---|
100 | |
---|
101 | PassVisitor<TupleIndexExpander> idxExpander; |
---|
102 | mutateAll( translationUnit, idxExpander ); |
---|
103 | |
---|
104 | PassVisitor<TupleExprExpander> exprExpander; |
---|
105 | mutateAll( translationUnit, exprExpander ); |
---|
106 | } |
---|
107 | |
---|
108 | namespace { |
---|
109 | /// given a expression representing the member and an expression representing the aggregate, |
---|
110 | /// reconstructs a flattened UntypedMemberExpr with the right precedence |
---|
111 | Expression * reconstructMemberExpr( Expression * member, Expression * aggr, CodeLocation & loc ) { |
---|
112 | if ( UntypedMemberExpr * memberExpr = dynamic_cast< UntypedMemberExpr * >( member ) ) { |
---|
113 | // construct a new UntypedMemberExpr with the correct structure , and recursively |
---|
114 | // expand that member expression. |
---|
115 | PassVisitor<MemberTupleExpander> expander; |
---|
116 | UntypedMemberExpr * inner = new UntypedMemberExpr( memberExpr->aggregate, aggr->clone() ); |
---|
117 | UntypedMemberExpr * newMemberExpr = new UntypedMemberExpr( memberExpr->member, inner ); |
---|
118 | inner->location = newMemberExpr->location = loc; |
---|
119 | memberExpr->member = nullptr; |
---|
120 | memberExpr->aggregate = nullptr; |
---|
121 | delete memberExpr; |
---|
122 | return newMemberExpr->acceptMutator( expander ); |
---|
123 | } else { |
---|
124 | // not a member expression, so there is nothing to do but attach and return |
---|
125 | UntypedMemberExpr * newMemberExpr = new UntypedMemberExpr( member, aggr->clone() ); |
---|
126 | newMemberExpr->location = loc; |
---|
127 | return newMemberExpr; |
---|
128 | } |
---|
129 | } |
---|
130 | } |
---|
131 | |
---|
132 | Expression * MemberTupleExpander::postmutate( UntypedMemberExpr * memberExpr ) { |
---|
133 | if ( UntypedTupleExpr * tupleExpr = dynamic_cast< UntypedTupleExpr * > ( memberExpr->member ) ) { |
---|
134 | Expression * aggr = memberExpr->aggregate->clone()->acceptMutator( *visitor ); |
---|
135 | // aggregate expressions which might be impure must be wrapped in unique expressions |
---|
136 | if ( Tuples::maybeImpureIgnoreUnique( memberExpr->aggregate ) ) aggr = new UniqueExpr( aggr ); |
---|
137 | for ( Expression *& expr : tupleExpr->exprs ) { |
---|
138 | expr = reconstructMemberExpr( expr, aggr, memberExpr->location ); |
---|
139 | expr->location = memberExpr->location; |
---|
140 | } |
---|
141 | delete aggr; |
---|
142 | tupleExpr->location = memberExpr->location; |
---|
143 | return tupleExpr; |
---|
144 | } else { |
---|
145 | // there may be a tuple expr buried in the aggregate |
---|
146 | // xxx - this is a memory leak |
---|
147 | UntypedMemberExpr * newMemberExpr = new UntypedMemberExpr( memberExpr->member->clone(), memberExpr->aggregate->acceptMutator( *visitor ) ); |
---|
148 | newMemberExpr->location = memberExpr->location; |
---|
149 | return newMemberExpr; |
---|
150 | } |
---|
151 | } |
---|
152 | |
---|
153 | Expression * UniqueExprExpander::postmutate( UniqueExpr * unqExpr ) { |
---|
154 | const int id = unqExpr->get_id(); |
---|
155 | |
---|
156 | // on first time visiting a unique expr with a particular ID, generate the expression that replaces all UniqueExprs with that ID, |
---|
157 | // and lookup on subsequent hits. This ensures that all unique exprs with the same ID reference the same variable. |
---|
158 | if ( ! decls.count( id ) ) { |
---|
159 | Expression * assignUnq; |
---|
160 | Expression * var = unqExpr->get_var(); |
---|
161 | if ( unqExpr->get_object() ) { |
---|
162 | // an object was generated to represent this unique expression -- it should be added to the list of declarations now |
---|
163 | declsToAddBefore.push_back( unqExpr->get_object() ); |
---|
164 | unqExpr->set_object( nullptr ); |
---|
165 | // steal the expr from the unqExpr |
---|
166 | assignUnq = UntypedExpr::createAssign( unqExpr->get_var()->clone(), unqExpr->get_expr() ); |
---|
167 | unqExpr->set_expr( nullptr ); |
---|
168 | } else { |
---|
169 | // steal the already generated assignment to var from the unqExpr - this has been generated by FixInit |
---|
170 | Expression * expr = unqExpr->get_expr(); |
---|
171 | CommaExpr * commaExpr = strict_dynamic_cast< CommaExpr * >( expr ); |
---|
172 | assignUnq = commaExpr->get_arg1(); |
---|
173 | commaExpr->set_arg1( nullptr ); |
---|
174 | } |
---|
175 | ObjectDecl * finished = new ObjectDecl( toString( "_unq", id, "_finished_" ), Type::StorageClasses(), LinkageSpec::Cforall, nullptr, new BasicType( Type::Qualifiers(), BasicType::Bool ), |
---|
176 | new SingleInit( new ConstantExpr( Constant::from_int( 0 ) ) ) ); |
---|
177 | declsToAddBefore.push_back( finished ); |
---|
178 | // (finished ? _unq_expr_N : (_unq_expr_N = <unqExpr->get_expr()>, finished = 1, _unq_expr_N)) |
---|
179 | // This pattern ensures that each unique expression is evaluated once, regardless of evaluation order of the generated C code. |
---|
180 | Expression * assignFinished = UntypedExpr::createAssign( new VariableExpr(finished), new ConstantExpr( Constant::from_int( 1 ) ) ); |
---|
181 | ConditionalExpr * condExpr = new ConditionalExpr( new VariableExpr( finished ), var->clone(), |
---|
182 | new CommaExpr( new CommaExpr( assignUnq, assignFinished ), var->clone() ) ); |
---|
183 | condExpr->set_result( var->get_result()->clone() ); |
---|
184 | condExpr->set_env( maybeClone( unqExpr->get_env() ) ); |
---|
185 | decls[id] = condExpr; |
---|
186 | } |
---|
187 | delete unqExpr; |
---|
188 | return decls[id]->clone(); |
---|
189 | } |
---|
190 | |
---|
191 | Expression * TupleAssignExpander::postmutate( TupleAssignExpr * assnExpr ) { |
---|
192 | StmtExpr * ret = assnExpr->get_stmtExpr(); |
---|
193 | assnExpr->set_stmtExpr( nullptr ); |
---|
194 | // move env to StmtExpr |
---|
195 | ret->set_env( assnExpr->get_env() ); |
---|
196 | assnExpr->set_env( nullptr ); |
---|
197 | delete assnExpr; |
---|
198 | return ret; |
---|
199 | } |
---|
200 | |
---|
201 | Type * TupleTypeReplacer::postmutate( TupleType * tupleType ) { |
---|
202 | unsigned tupleSize = tupleType->size(); |
---|
203 | if ( ! typeMap.count( tupleSize ) ) { |
---|
204 | // generate struct type to replace tuple type based on the number of components in the tuple |
---|
205 | StructDecl * decl = new StructDecl( toString( "_tuple", tupleSize, "_" ) ); |
---|
206 | decl->location = tupleType->location; |
---|
207 | decl->set_body( true ); |
---|
208 | for ( size_t i = 0; i < tupleSize; ++i ) { |
---|
209 | TypeDecl * tyParam = new TypeDecl( toString( "tuple_param_", tupleSize, "_", i ), Type::StorageClasses(), nullptr, TypeDecl::Dtype, true ); |
---|
210 | decl->get_members().push_back( new ObjectDecl( toString("field_", i ), Type::StorageClasses(), LinkageSpec::C, nullptr, new TypeInstType( Type::Qualifiers(), tyParam->get_name(), tyParam ), nullptr ) ); |
---|
211 | decl->get_parameters().push_back( tyParam ); |
---|
212 | } |
---|
213 | if ( tupleSize == 0 ) { |
---|
214 | // empty structs are not standard C. Add a dummy field to empty tuples to silence warnings when a compound literal Tuple0 is created. |
---|
215 | decl->get_members().push_back( new ObjectDecl( "dummy", Type::StorageClasses(), LinkageSpec::C, nullptr, new BasicType( Type::Qualifiers(), BasicType::SignedInt ), nullptr ) ); |
---|
216 | } |
---|
217 | typeMap[tupleSize] = decl; |
---|
218 | declsToAddBefore.push_back( decl ); |
---|
219 | } |
---|
220 | Type::Qualifiers qualifiers = tupleType->get_qualifiers(); |
---|
221 | |
---|
222 | StructDecl * decl = typeMap[tupleSize]; |
---|
223 | StructInstType * newType = new StructInstType( qualifiers, decl ); |
---|
224 | for ( auto p : group_iterate( tupleType->get_types(), decl->get_parameters() ) ) { |
---|
225 | Type * t = std::get<0>(p); |
---|
226 | newType->get_parameters().push_back( new TypeExpr( t->clone() ) ); |
---|
227 | } |
---|
228 | delete tupleType; |
---|
229 | return newType; |
---|
230 | } |
---|
231 | |
---|
232 | Expression * TupleIndexExpander::postmutate( TupleIndexExpr * tupleExpr ) { |
---|
233 | Expression * tuple = tupleExpr->tuple; |
---|
234 | assert( tuple ); |
---|
235 | tupleExpr->tuple = nullptr; |
---|
236 | unsigned int idx = tupleExpr->index; |
---|
237 | TypeSubstitution * env = tupleExpr->env; |
---|
238 | tupleExpr->env = nullptr; |
---|
239 | delete tupleExpr; |
---|
240 | |
---|
241 | if ( TupleExpr * tupleExpr = dynamic_cast< TupleExpr * > ( tuple ) ) { |
---|
242 | if ( ! maybeImpureIgnoreUnique( tupleExpr ) ) { |
---|
243 | // optimization: definitely pure tuple expr => can reduce to the only relevant component. |
---|
244 | assert( tupleExpr->exprs.size() > idx ); |
---|
245 | Expression *& expr = *std::next(tupleExpr->exprs.begin(), idx); |
---|
246 | Expression * ret = expr; |
---|
247 | ret->env = env; |
---|
248 | expr = nullptr; // remove from list so it can safely be deleted |
---|
249 | delete tupleExpr; |
---|
250 | return ret; |
---|
251 | } |
---|
252 | } |
---|
253 | |
---|
254 | StructInstType * type = strict_dynamic_cast< StructInstType * >( tuple->result ); |
---|
255 | StructDecl * structDecl = type->baseStruct; |
---|
256 | assert( structDecl->members.size() > idx ); |
---|
257 | Declaration * member = *std::next(structDecl->members.begin(), idx); |
---|
258 | MemberExpr * memExpr = new MemberExpr( strict_dynamic_cast< DeclarationWithType * >( member ), tuple ); |
---|
259 | memExpr->env = env; |
---|
260 | return memExpr; |
---|
261 | } |
---|
262 | |
---|
263 | Expression * replaceTupleExpr( Type * result, const std::list< Expression * > & exprs, TypeSubstitution * env ) { |
---|
264 | if ( result->isVoid() ) { |
---|
265 | // void result - don't need to produce a value for cascading - just output a chain of comma exprs |
---|
266 | assert( ! exprs.empty() ); |
---|
267 | std::list< Expression * >::const_iterator iter = exprs.begin(); |
---|
268 | Expression * expr = new CastExpr( *iter++ ); |
---|
269 | for ( ; iter != exprs.end(); ++iter ) { |
---|
270 | expr = new CommaExpr( expr, new CastExpr( *iter ) ); |
---|
271 | } |
---|
272 | expr->set_env( env ); |
---|
273 | return expr; |
---|
274 | } else { |
---|
275 | // typed tuple expression - produce a compound literal which performs each of the expressions |
---|
276 | // as a distinct part of its initializer - the produced compound literal may be used as part of |
---|
277 | // another expression |
---|
278 | std::list< Initializer * > inits; |
---|
279 | for ( Expression * expr : exprs ) { |
---|
280 | inits.push_back( new SingleInit( expr ) ); |
---|
281 | } |
---|
282 | Expression * expr = new CompoundLiteralExpr( result, new ListInit( inits ) ); |
---|
283 | expr->set_env( env ); |
---|
284 | return expr; |
---|
285 | } |
---|
286 | } |
---|
287 | |
---|
288 | Expression * TupleExprExpander::postmutate( TupleExpr * tupleExpr ) { |
---|
289 | Type * result = tupleExpr->get_result(); |
---|
290 | std::list< Expression * > exprs = tupleExpr->get_exprs(); |
---|
291 | assert( result ); |
---|
292 | TypeSubstitution * env = tupleExpr->get_env(); |
---|
293 | |
---|
294 | // remove data from shell and delete it |
---|
295 | tupleExpr->set_result( nullptr ); |
---|
296 | tupleExpr->get_exprs().clear(); |
---|
297 | tupleExpr->set_env( nullptr ); |
---|
298 | delete tupleExpr; |
---|
299 | |
---|
300 | return replaceTupleExpr( result, exprs, env ); |
---|
301 | } |
---|
302 | |
---|
303 | Type * makeTupleType( const std::list< Expression * > & exprs ) { |
---|
304 | // produce the TupleType which aggregates the types of the exprs |
---|
305 | std::list< Type * > types; |
---|
306 | Type::Qualifiers qualifiers( Type::Const | Type::Volatile | Type::Restrict | Type::Atomic | Type::Mutex ); |
---|
307 | for ( Expression * expr : exprs ) { |
---|
308 | assert( expr->get_result() ); |
---|
309 | if ( expr->get_result()->isVoid() ) { |
---|
310 | // if the type of any expr is void, the type of the entire tuple is void |
---|
311 | return new VoidType( Type::Qualifiers() ); |
---|
312 | } |
---|
313 | Type * type = expr->get_result()->clone(); |
---|
314 | types.push_back( type ); |
---|
315 | // the qualifiers on the tuple type are the qualifiers that exist on all component types |
---|
316 | qualifiers &= type->get_qualifiers(); |
---|
317 | } // for |
---|
318 | if ( exprs.empty() ) qualifiers = Type::Qualifiers(); |
---|
319 | return new TupleType( qualifiers, types ); |
---|
320 | } |
---|
321 | const ast::Type * makeTupleType( const std::vector<ast::ptr<ast::Expr>> & exprs ) { |
---|
322 | // produce the TupleType which aggregates the types of the exprs |
---|
323 | std::vector<ast::ptr<ast::Type>> types; |
---|
324 | ast::CV::Qualifiers quals{ |
---|
325 | ast::CV::Const | ast::CV::Volatile | ast::CV::Restrict | |
---|
326 | ast::CV::Atomic | ast::CV::Mutex }; |
---|
327 | |
---|
328 | for ( const ast::Expr * expr : exprs ) { |
---|
329 | assert( expr->result ); |
---|
330 | // if the type of any expr is void, the type of the entire tuple is void |
---|
331 | if ( expr->result->isVoid() ) return new ast::VoidType{}; |
---|
332 | |
---|
333 | // qualifiers on the tuple type are the qualifiers that exist on all components |
---|
334 | quals &= expr->result->qualifiers; |
---|
335 | |
---|
336 | types.emplace_back( expr->result ); |
---|
337 | } |
---|
338 | |
---|
339 | if ( exprs.empty() ) { quals = ast::CV::Qualifiers{}; } |
---|
340 | return new ast::TupleType{ std::move(types), quals }; |
---|
341 | } |
---|
342 | |
---|
343 | TypeInstType * isTtype( Type * type ) { |
---|
344 | if ( TypeInstType * inst = dynamic_cast< TypeInstType * >( type ) ) { |
---|
345 | if ( inst->get_baseType() && inst->get_baseType()->get_kind() == TypeDecl::Ttype ) { |
---|
346 | return inst; |
---|
347 | } |
---|
348 | } |
---|
349 | return nullptr; |
---|
350 | } |
---|
351 | |
---|
352 | const TypeInstType * isTtype( const Type * type ) { |
---|
353 | if ( const TypeInstType * inst = dynamic_cast< const TypeInstType * >( type ) ) { |
---|
354 | if ( inst->baseType && inst->baseType->kind == TypeDecl::Ttype ) { |
---|
355 | return inst; |
---|
356 | } |
---|
357 | } |
---|
358 | return nullptr; |
---|
359 | } |
---|
360 | |
---|
361 | const ast::TypeInstType * isTtype( const ast::Type * type ) { |
---|
362 | if ( const ast::TypeInstType * inst = dynamic_cast< const ast::TypeInstType * >( type ) ) { |
---|
363 | if ( inst->base && inst->base->kind == ast::TypeDecl::Ttype ) { |
---|
364 | return inst; |
---|
365 | } |
---|
366 | } |
---|
367 | return nullptr; |
---|
368 | } |
---|
369 | |
---|
370 | namespace { |
---|
371 | /// determines if impurity (read: side-effects) may exist in a piece of code. Currently gives a very crude approximation, wherein any function call expression means the code may be impure |
---|
372 | struct ImpurityDetector : public WithShortCircuiting { |
---|
373 | ImpurityDetector( bool ignoreUnique ) : ignoreUnique( ignoreUnique ) {} |
---|
374 | |
---|
375 | void previsit( const ApplicationExpr * appExpr ) { |
---|
376 | visit_children = false; |
---|
377 | if ( const DeclarationWithType * function = InitTweak::getFunction( appExpr ) ) { |
---|
378 | if ( function->linkage == LinkageSpec::Intrinsic ) { |
---|
379 | if ( function->name == "*?" || function->name == "?[?]" ) { |
---|
380 | // intrinsic dereference, subscript are pure, but need to recursively look for impurity |
---|
381 | visit_children = true; |
---|
382 | return; |
---|
383 | } |
---|
384 | } |
---|
385 | } |
---|
386 | maybeImpure = true; |
---|
387 | } |
---|
388 | void previsit( const UntypedExpr * ) { maybeImpure = true; visit_children = false; } |
---|
389 | void previsit( const UniqueExpr * ) { |
---|
390 | if ( ignoreUnique ) { |
---|
391 | // bottom out at unique expression. |
---|
392 | // The existence of a unique expression doesn't change the purity of an expression. |
---|
393 | // That is, even if the wrapped expression is impure, the wrapper protects the rest of the expression. |
---|
394 | visit_children = false; |
---|
395 | return; |
---|
396 | } |
---|
397 | } |
---|
398 | |
---|
399 | bool maybeImpure = false; |
---|
400 | bool ignoreUnique; |
---|
401 | }; |
---|
402 | } // namespace |
---|
403 | |
---|
404 | bool maybeImpure( const Expression * expr ) { |
---|
405 | PassVisitor<ImpurityDetector> detector( false ); |
---|
406 | expr->accept( detector ); |
---|
407 | return detector.pass.maybeImpure; |
---|
408 | } |
---|
409 | |
---|
410 | bool maybeImpureIgnoreUnique( const Expression * expr ) { |
---|
411 | PassVisitor<ImpurityDetector> detector( true ); |
---|
412 | expr->accept( detector ); |
---|
413 | return detector.pass.maybeImpure; |
---|
414 | } |
---|
415 | } // namespace Tuples |
---|
416 | |
---|
417 | // Local Variables: // |
---|
418 | // tab-width: 4 // |
---|
419 | // mode: c++ // |
---|
420 | // compile-command: "make install" // |
---|
421 | // End: // |
---|