source: src/Tuples/TupleExpansion.cc@ b6fd751

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors deferred_resn demangler enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum resolv-new with_gc
Last change on this file since b6fd751 was 77971f6, checked in by Rob Schluntz <rschlunt@…>, 9 years ago

resolve ctor/dtors for UniqueExprs

  • Property mode set to 100644
File size: 10.8 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// TupleAssignment.cc --
8//
9// Author : Rodolfo G. Esteves
10// Created On : Mon May 18 07:44:20 2015
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Mon May 18 15:02:53 2015
13// Update Count : 2
14//
15
16#include <iterator>
17#include <iostream>
18#include <cassert>
19#include "Tuples.h"
20#include "GenPoly/DeclMutator.h"
21#include "SynTree/Mutator.h"
22#include "SynTree/Statement.h"
23#include "SynTree/Declaration.h"
24#include "SynTree/Type.h"
25#include "SynTree/Expression.h"
26#include "SynTree/Initializer.h"
27#include "SymTab/Mangler.h"
28#include "Common/ScopedMap.h"
29#include "ResolvExpr/typeops.h"
30#include "InitTweak/GenInit.h"
31
32namespace Tuples {
33 namespace {
34 class MemberTupleExpander : public Mutator {
35 public:
36 typedef Mutator Parent;
37 virtual Expression * mutate( UntypedMemberExpr * memberExpr );
38 };
39
40 class UniqueExprExpander : public GenPoly::DeclMutator {
41 public:
42 typedef GenPoly::DeclMutator Parent;
43 virtual Expression * mutate( UniqueExpr * unqExpr );
44 std::map< int, ObjectDecl * > decls; // not vector, because order added may not be increasing order
45 };
46
47 class TupleAssignExpander : public Mutator {
48 public:
49 typedef Mutator Parent;
50 virtual Expression * mutate( TupleAssignExpr * tupleExpr );
51 };
52
53 class TupleTypeReplacer : public GenPoly::DeclMutator {
54 public:
55 typedef GenPoly::DeclMutator Parent;
56
57 virtual Type * mutate( TupleType * tupleType );
58
59 virtual CompoundStmt * mutate( CompoundStmt * stmt ) {
60 typeMap.beginScope();
61 stmt = Parent::mutate( stmt );
62 typeMap.endScope();
63 return stmt;
64 }
65 private:
66 ScopedMap< std::string, StructDecl * > typeMap;
67 };
68
69 class TupleIndexExpander : public Mutator {
70 public:
71 typedef Mutator Parent;
72 virtual Expression * mutate( TupleIndexExpr * tupleExpr );
73 };
74
75 class TupleExprExpander : public Mutator {
76 public:
77 typedef Mutator Parent;
78 virtual Expression * mutate( TupleExpr * tupleExpr );
79 };
80 }
81
82 void expandMemberTuples( std::list< Declaration * > & translationUnit ) {
83 MemberTupleExpander expander;
84 mutateAll( translationUnit, expander );
85 }
86
87 void expandUniqueExpr( std::list< Declaration * > & translationUnit ) {
88 UniqueExprExpander unqExpander;
89 unqExpander.mutateDeclarationList( translationUnit );
90 }
91
92 void expandTuples( std::list< Declaration * > & translationUnit ) {
93 TupleAssignExpander assnExpander;
94 mutateAll( translationUnit, assnExpander );
95
96 TupleTypeReplacer replacer;
97 replacer.mutateDeclarationList( translationUnit );
98
99 TupleIndexExpander idxExpander;
100 mutateAll( translationUnit, idxExpander );
101
102 TupleExprExpander exprExpander;
103 mutateAll( translationUnit, exprExpander );
104 }
105
106 namespace {
107 /// given a expression representing the member and an expression representing the aggregate,
108 /// reconstructs a flattened UntypedMemberExpr with the right precedence
109 Expression * reconstructMemberExpr( Expression * member, UniqueExpr * aggr ) {
110 if ( UntypedMemberExpr * memberExpr = dynamic_cast< UntypedMemberExpr * >( member ) ) {
111 // construct a new UntypedMemberExpr with the correct structure , and recursively
112 // expand that member expression.
113 MemberTupleExpander expander;
114 UntypedMemberExpr * newMemberExpr = new UntypedMemberExpr( memberExpr->get_member(), new UntypedMemberExpr( memberExpr->get_aggregate(), aggr->clone() ) );
115
116 memberExpr->set_member(nullptr);
117 memberExpr->set_aggregate(nullptr);
118 delete memberExpr;
119 return newMemberExpr->acceptMutator( expander );
120 } else {
121 // not a member expression, so there is nothing to do but attach and return
122 return new UntypedMemberExpr( member, aggr->clone() );
123 }
124 }
125 }
126
127 Expression * MemberTupleExpander::mutate( UntypedMemberExpr * memberExpr ) {
128 if ( TupleExpr * tupleExpr = dynamic_cast< TupleExpr * > ( memberExpr->get_member() ) ) {
129 UniqueExpr * unqExpr = new UniqueExpr( memberExpr->get_aggregate()->clone() );
130 for ( Expression *& expr : tupleExpr->get_exprs() ) {
131 expr = reconstructMemberExpr( expr, unqExpr );
132 }
133 delete unqExpr;
134 return tupleExpr;
135 } else {
136 // there may be a tuple expr buried in the aggregate
137 // xxx - this is a memory leak
138 return new UntypedMemberExpr( memberExpr->get_member()->clone(), memberExpr->get_aggregate()->acceptMutator( *this ) );
139 }
140 }
141
142 Expression * UniqueExprExpander::mutate( UniqueExpr * unqExpr ) {
143 unqExpr = safe_dynamic_cast< UniqueExpr * > ( Parent::mutate( unqExpr ) );
144 if ( ! decls.count( unqExpr->get_id() ) ) {
145 // xxx - it's possible (likely?) that expressions can appear in the wrong order because of this. Need to ensure they're placed in the correct location.
146
147 // xxx - this doesn't work, because it would need to be placed after fixInit, but fixInit doesn't know (and shouldn't have to know) about the existance of UniqueExprs - i.e. it will visit them twice
148 // need to construct/destruct unique exprs in general - maybe it's not worth it and fixInit should handle UniqueExpr explicitly?
149 // currently, tmp is being destructed before unqExpr is used, which suggests there should be a separate lifetime for unqExpr from the tmp_ret
150
151 // if ( CommaExpr * commaExpr = dynamic_cast< CommaExpr * >( unqExpr->get_expr() ) ) {
152 // if ( VariableExpr * varExpr = dynamic_cast< VariableExpr * >( commaExpr->get_arg2() ) ) {
153 // // steal existing decl from expr
154 // if ( ObjectDecl * decl = dynamic_cast< ObjectDecl * >( varExpr->get_var() ) ) {
155 // decls[unqExpr->get_id()] = decl;
156 // return unqExpr->get_expr()->clone();
157 // }
158 // }
159 // }
160
161 ObjectDecl * objDecl = unqExpr->get_object();
162 unqExpr->set_object( nullptr );
163 decls[unqExpr->get_id()] = objDecl;
164 addDeclaration( objDecl );
165 }
166 return new VariableExpr( decls[unqExpr->get_id()] );
167 }
168
169 Expression * TupleAssignExpander::mutate( TupleAssignExpr * assnExpr ) {
170 // xxx - Parent::mutate?
171 CompoundStmt * compoundStmt = new CompoundStmt( noLabels );
172 std::list< Statement * > & stmts = compoundStmt->get_kids();
173 for ( ObjectDecl * obj : assnExpr->get_tempDecls() ) {
174 stmts.push_back( new DeclStmt( noLabels, obj ) );
175 }
176 TupleExpr * tupleExpr = new TupleExpr( assnExpr->get_assigns() );
177 assert( tupleExpr->get_result() );
178 stmts.push_back( new ExprStmt( noLabels, tupleExpr ) );
179 assnExpr->get_tempDecls().clear();
180 assnExpr->get_assigns().clear();
181 delete assnExpr;
182 return new StmtExpr( compoundStmt );
183 }
184
185 Type * TupleTypeReplacer::mutate( TupleType * tupleType ) {
186 std::string mangleName = SymTab::Mangler::mangleType( tupleType );
187 TupleType * newType = safe_dynamic_cast< TupleType * > ( Parent::mutate( tupleType ) );
188 if ( ! typeMap.count( mangleName ) ) {
189 // generate struct type to replace tuple type
190 StructDecl * decl = new StructDecl( "_tuple_type_" + mangleName );
191 decl->set_body( true );
192 int cnt = 0;
193 for ( Type * t : *newType ) {
194 decl->get_members().push_back( new ObjectDecl( "field_"+std::to_string(++cnt), DeclarationNode::NoStorageClass, LinkageSpec::C, nullptr, t->clone(), nullptr ) );
195 }
196 typeMap[mangleName] = decl;
197 addDeclaration( decl );
198 }
199 Type::Qualifiers qualifiers = newType->get_qualifiers();
200 delete newType;
201 return new StructInstType( qualifiers, typeMap[mangleName] );
202 }
203
204 Expression * TupleIndexExpander::mutate( TupleIndexExpr * tupleExpr ) {
205 Expression * tuple = maybeMutate( tupleExpr->get_tuple(), *this );
206 assert( tuple );
207 tupleExpr->set_tuple( nullptr );
208 unsigned int idx = tupleExpr->get_index();
209 delete tupleExpr;
210
211 StructInstType * type = safe_dynamic_cast< StructInstType * >( tuple->get_result() );
212 StructDecl * structDecl = type->get_baseStruct();
213 assert( structDecl->get_members().size() > idx );
214 Declaration * member = *std::next(structDecl->get_members().begin(), idx);
215 return new MemberExpr( safe_dynamic_cast< DeclarationWithType * >( member ), tuple );
216 }
217
218 Expression * replaceTupleExpr( Type * result, const std::list< Expression * > & exprs ) {
219 if ( result->isVoid() ) {
220 // void result - don't need to produce a value for cascading - just output a chain of comma exprs
221 assert( ! exprs.empty() );
222 std::list< Expression * >::const_iterator iter = exprs.begin();
223 Expression * expr = *iter++;
224 for ( ; iter != exprs.end(); ++iter ) {
225 expr = new CommaExpr( expr, *iter );
226 }
227 return expr;
228 } else {
229 // typed tuple expression - produce a compound literal which performs each of the expressions
230 // as a distinct part of its initializer - the produced compound literal may be used as part of
231 // another expression
232 std::list< Initializer * > inits;
233 for ( Expression * expr : exprs ) {
234 inits.push_back( new SingleInit( expr ) );
235 }
236 return new CompoundLiteralExpr( result, new ListInit( inits ) );
237 }
238 }
239
240 Expression * TupleExprExpander::mutate( TupleExpr * tupleExpr ) {
241 // recursively expand sub-tuple-expressions
242 tupleExpr = safe_dynamic_cast<TupleExpr *>(Parent::mutate(tupleExpr));
243 Type * result = tupleExpr->get_result();
244 std::list< Expression * > exprs = tupleExpr->get_exprs();
245 assert( result );
246
247 // remove data from shell and delete it
248 tupleExpr->set_result( nullptr );
249 tupleExpr->get_exprs().clear();
250 delete tupleExpr;
251
252 return replaceTupleExpr( result, exprs );
253 }
254
255 Type * makeTupleType( const std::list< Expression * > & exprs ) {
256 // produce the TupleType which aggregates the types of the exprs
257 TupleType *tupleType = new TupleType( Type::Qualifiers(true, true, true, true, true, false) );
258 Type::Qualifiers &qualifiers = tupleType->get_qualifiers();
259 for ( Expression * expr : exprs ) {
260 assert( expr->get_result() );
261 if ( expr->get_result()->isVoid() ) {
262 // if the type of any expr is void, the type of the entire tuple is void
263 delete tupleType;
264 return new VoidType( Type::Qualifiers() );
265 }
266 Type * type = expr->get_result()->clone();
267 tupleType->get_types().push_back( type );
268 // the qualifiers on the tuple type are the qualifiers that exist on all component types
269 qualifiers &= type->get_qualifiers();
270 } // for
271 return tupleType;
272 }
273
274 namespace {
275 /// determines if impurity (read: side-effects) may exist in a piece of code. Currently gives a very crude approximation, wherein any function call expression means the code may be impure
276 class ImpurityDetector : public Visitor {
277 public:
278 typedef Visitor Parent;
279 virtual void visit( ApplicationExpr * appExpr ) { maybeImpure = true; }
280 virtual void visit( UntypedExpr * untypedExpr ) { maybeImpure = true; }
281 bool maybeImpure = false;
282 };
283 } // namespace
284
285 bool maybeImpure( Expression * expr ) {
286 ImpurityDetector detector;
287 expr->accept( detector );
288 return detector.maybeImpure;
289 }
290} // namespace Tuples
291
292// Local Variables: //
293// tab-width: 4 //
294// mode: c++ //
295// compile-command: "make install" //
296// End: //
297
Note: See TracBrowser for help on using the repository browser.