source: src/Tuples/TupleExpansion.cc@ 0e76cf4f

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors deferred_resn demangler enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum resolv-new with_gc
Last change on this file since 0e76cf4f was 5f5083e, checked in by Thierry Delisle <tdelisle@…>, 9 years ago

Fixed a few warnings in tuples

  • Property mode set to 100644
File size: 12.4 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// TupleAssignment.cc --
8//
9// Author : Rodolfo G. Esteves
10// Created On : Mon May 18 07:44:20 2015
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Mon May 18 15:02:53 2015
13// Update Count : 2
14//
15
16#include <iterator>
17#include <iostream>
18#include <cassert>
19#include "Tuples.h"
20#include "GenPoly/DeclMutator.h"
21#include "SynTree/Mutator.h"
22#include "SynTree/Statement.h"
23#include "SynTree/Declaration.h"
24#include "SynTree/Type.h"
25#include "SynTree/Expression.h"
26#include "SynTree/Initializer.h"
27#include "SymTab/Mangler.h"
28#include "Common/ScopedMap.h"
29#include "ResolvExpr/typeops.h"
30#include "InitTweak/GenInit.h"
31
32namespace Tuples {
33 namespace {
34 class MemberTupleExpander final : public Mutator {
35 public:
36 typedef Mutator Parent;
37 using Parent::mutate;
38
39 virtual Expression * mutate( UntypedMemberExpr * memberExpr ) override;
40 };
41
42 class UniqueExprExpander final : public GenPoly::DeclMutator {
43 public:
44 typedef GenPoly::DeclMutator Parent;
45 using Parent::mutate;
46
47 virtual Expression * mutate( UniqueExpr * unqExpr ) override;
48
49 std::map< int, Expression * > decls; // not vector, because order added may not be increasing order
50
51 ~UniqueExprExpander() {
52 for ( std::pair<const int, Expression *> & p : decls ) {
53 delete p.second;
54 }
55 }
56 };
57
58 class TupleAssignExpander : public Mutator {
59 public:
60 typedef Mutator Parent;
61 using Parent::mutate;
62
63 virtual Expression * mutate( TupleAssignExpr * tupleExpr );
64 };
65
66 class TupleTypeReplacer : public GenPoly::DeclMutator {
67 public:
68 typedef GenPoly::DeclMutator Parent;
69 using Parent::mutate;
70
71 virtual Type * mutate( TupleType * tupleType ) override;
72
73 virtual CompoundStmt * mutate( CompoundStmt * stmt ) override {
74 typeMap.beginScope();
75 stmt = Parent::mutate( stmt );
76 typeMap.endScope();
77 return stmt;
78 }
79 private:
80 ScopedMap< std::string, StructDecl * > typeMap;
81 };
82
83 class TupleIndexExpander final : public Mutator {
84 public:
85 typedef Mutator Parent;
86 using Parent::mutate;
87
88 virtual Expression * mutate( TupleIndexExpr * tupleExpr ) override;
89 };
90
91 class TupleExprExpander final : public Mutator {
92 public:
93 typedef Mutator Parent;
94 using Parent::mutate;
95
96 virtual Expression * mutate( TupleExpr * tupleExpr ) override;
97 };
98 }
99
100 void expandMemberTuples( std::list< Declaration * > & translationUnit ) {
101 MemberTupleExpander expander;
102 mutateAll( translationUnit, expander );
103 }
104
105 void expandUniqueExpr( std::list< Declaration * > & translationUnit ) {
106 UniqueExprExpander unqExpander;
107 unqExpander.mutateDeclarationList( translationUnit );
108 }
109
110 void expandTuples( std::list< Declaration * > & translationUnit ) {
111 TupleAssignExpander assnExpander;
112 mutateAll( translationUnit, assnExpander );
113
114 TupleTypeReplacer replacer;
115 replacer.mutateDeclarationList( translationUnit );
116
117 TupleIndexExpander idxExpander;
118 mutateAll( translationUnit, idxExpander );
119
120 TupleExprExpander exprExpander;
121 mutateAll( translationUnit, exprExpander );
122 }
123
124 namespace {
125 /// given a expression representing the member and an expression representing the aggregate,
126 /// reconstructs a flattened UntypedMemberExpr with the right precedence
127 Expression * reconstructMemberExpr( Expression * member, Expression * aggr ) {
128 if ( UntypedMemberExpr * memberExpr = dynamic_cast< UntypedMemberExpr * >( member ) ) {
129 // construct a new UntypedMemberExpr with the correct structure , and recursively
130 // expand that member expression.
131 MemberTupleExpander expander;
132 UntypedMemberExpr * newMemberExpr = new UntypedMemberExpr( memberExpr->get_member(), new UntypedMemberExpr( memberExpr->get_aggregate(), aggr->clone() ) );
133
134 memberExpr->set_member(nullptr);
135 memberExpr->set_aggregate(nullptr);
136 delete memberExpr;
137 return newMemberExpr->acceptMutator( expander );
138 } else {
139 // not a member expression, so there is nothing to do but attach and return
140 return new UntypedMemberExpr( member, aggr->clone() );
141 }
142 }
143 }
144
145 Expression * MemberTupleExpander::mutate( UntypedMemberExpr * memberExpr ) {
146 if ( TupleExpr * tupleExpr = dynamic_cast< TupleExpr * > ( memberExpr->get_member() ) ) {
147 Expression * aggr = memberExpr->get_aggregate()->clone()->acceptMutator( *this );
148 // aggregate expressions which might be impure must be wrapped in unique expressions
149 // xxx - if there's a member-tuple expression nested in the aggregate, this currently generates the wrong code if a UniqueExpr is not used, and it's purely an optimization to remove the UniqueExpr
150 // if ( Tuples::maybeImpure( memberExpr->get_aggregate() ) ) aggr = new UniqueExpr( aggr );
151 aggr = new UniqueExpr( aggr );
152 for ( Expression *& expr : tupleExpr->get_exprs() ) {
153 expr = reconstructMemberExpr( expr, aggr );
154 }
155 delete aggr;
156 return tupleExpr;
157 } else {
158 // there may be a tuple expr buried in the aggregate
159 // xxx - this is a memory leak
160 return new UntypedMemberExpr( memberExpr->get_member()->clone(), memberExpr->get_aggregate()->acceptMutator( *this ) );
161 }
162 }
163
164 Expression * UniqueExprExpander::mutate( UniqueExpr * unqExpr ) {
165 unqExpr = safe_dynamic_cast< UniqueExpr * > ( Parent::mutate( unqExpr ) );
166 const int id = unqExpr->get_id();
167
168 // on first time visiting a unique expr with a particular ID, generate the expression that replaces all UniqueExprs with that ID,
169 // and lookup on subsequent hits. This ensures that all unique exprs with the same ID reference the same variable.
170 if ( ! decls.count( id ) ) {
171 Expression * assignUnq;
172 Expression * var = unqExpr->get_var();
173 if ( unqExpr->get_object() ) {
174 // an object was generated to represent this unique expression -- it should be added to the list of declarations now
175 addDeclaration( unqExpr->get_object() );
176 unqExpr->set_object( nullptr );
177 // steal the expr from the unqExpr
178 assignUnq = UntypedExpr::createAssign( unqExpr->get_var()->clone(), unqExpr->get_expr() );
179 unqExpr->set_expr( nullptr );
180 } else {
181 // steal the already generated assignment to var from the unqExpr - this has been generated by FixInit
182 Expression * expr = unqExpr->get_expr();
183 CommaExpr * commaExpr = safe_dynamic_cast< CommaExpr * >( expr );
184 assignUnq = commaExpr->get_arg1();
185 commaExpr->set_arg1( nullptr );
186 }
187 BasicType * boolType = new BasicType( Type::Qualifiers(), BasicType::Bool );
188 ObjectDecl * finished = new ObjectDecl( toString( "_unq_expr_finished_", id ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, nullptr, new BasicType( Type::Qualifiers(), BasicType::Bool ), new SingleInit( new ConstantExpr( Constant( boolType->clone(), "0" ) ), noDesignators ) );
189 addDeclaration( finished );
190 // (finished ? _unq_expr_N : (_unq_expr_N = <unqExpr->get_expr()>, finished = 1, _unq_expr_N))
191 // This pattern ensures that each unique expression is evaluated once, regardless of evaluation order of the generated C code.
192 Expression * assignFinished = UntypedExpr::createAssign( new VariableExpr(finished), new ConstantExpr( Constant( boolType->clone(), "1" ) ) );
193 ConditionalExpr * condExpr = new ConditionalExpr( new VariableExpr( finished ), var->clone(),
194 new CommaExpr( new CommaExpr( assignUnq, assignFinished ), var->clone() ) );
195 condExpr->set_result( var->get_result()->clone() );
196 decls[id] = condExpr;
197 }
198 delete unqExpr;
199 return decls[id]->clone();
200 }
201
202 Expression * TupleAssignExpander::mutate( TupleAssignExpr * assnExpr ) {
203 assnExpr = safe_dynamic_cast< TupleAssignExpr * >( Parent::mutate( assnExpr ) );
204 CompoundStmt * compoundStmt = new CompoundStmt( noLabels );
205 std::list< Statement * > & stmts = compoundStmt->get_kids();
206 for ( ObjectDecl * obj : assnExpr->get_tempDecls() ) {
207 stmts.push_back( new DeclStmt( noLabels, obj ) );
208 }
209 TupleExpr * tupleExpr = new TupleExpr( assnExpr->get_assigns() );
210 assert( tupleExpr->get_result() );
211 stmts.push_back( new ExprStmt( noLabels, tupleExpr ) );
212 assnExpr->get_tempDecls().clear();
213 assnExpr->get_assigns().clear();
214 delete assnExpr;
215 return new StmtExpr( compoundStmt );
216 }
217
218 Type * TupleTypeReplacer::mutate( TupleType * tupleType ) {
219 std::string mangleName = SymTab::Mangler::mangleType( tupleType );
220 TupleType * newType = safe_dynamic_cast< TupleType * > ( Parent::mutate( tupleType ) );
221 if ( ! typeMap.count( mangleName ) ) {
222 // generate struct type to replace tuple type
223 StructDecl * decl = new StructDecl( "_tuple_type_" + mangleName );
224 decl->set_body( true );
225 int cnt = 0;
226 for ( Type * t : *newType ) {
227 decl->get_members().push_back( new ObjectDecl( toString("field_", cnt++), DeclarationNode::NoStorageClass, LinkageSpec::C, nullptr, t->clone(), nullptr ) );
228 }
229 typeMap[mangleName] = decl;
230 addDeclaration( decl );
231 }
232 Type::Qualifiers qualifiers = newType->get_qualifiers();
233 delete newType;
234 return new StructInstType( qualifiers, typeMap[mangleName] );
235 }
236
237 Expression * TupleIndexExpander::mutate( TupleIndexExpr * tupleExpr ) {
238 Expression * tuple = maybeMutate( tupleExpr->get_tuple(), *this );
239 assert( tuple );
240 tupleExpr->set_tuple( nullptr );
241 unsigned int idx = tupleExpr->get_index();
242 delete tupleExpr;
243
244 StructInstType * type = safe_dynamic_cast< StructInstType * >( tuple->get_result() );
245 StructDecl * structDecl = type->get_baseStruct();
246 assert( structDecl->get_members().size() > idx );
247 Declaration * member = *std::next(structDecl->get_members().begin(), idx);
248 return new MemberExpr( safe_dynamic_cast< DeclarationWithType * >( member ), tuple );
249 }
250
251 Expression * replaceTupleExpr( Type * result, const std::list< Expression * > & exprs ) {
252 if ( result->isVoid() ) {
253 // void result - don't need to produce a value for cascading - just output a chain of comma exprs
254 assert( ! exprs.empty() );
255 std::list< Expression * >::const_iterator iter = exprs.begin();
256 Expression * expr = *iter++;
257 for ( ; iter != exprs.end(); ++iter ) {
258 expr = new CommaExpr( expr, *iter );
259 }
260 return expr;
261 } else {
262 // typed tuple expression - produce a compound literal which performs each of the expressions
263 // as a distinct part of its initializer - the produced compound literal may be used as part of
264 // another expression
265 std::list< Initializer * > inits;
266 for ( Expression * expr : exprs ) {
267 inits.push_back( new SingleInit( expr ) );
268 }
269 return new CompoundLiteralExpr( result, new ListInit( inits ) );
270 }
271 }
272
273 Expression * TupleExprExpander::mutate( TupleExpr * tupleExpr ) {
274 // recursively expand sub-tuple-expressions
275 tupleExpr = safe_dynamic_cast<TupleExpr *>(Parent::mutate(tupleExpr));
276 Type * result = tupleExpr->get_result();
277 std::list< Expression * > exprs = tupleExpr->get_exprs();
278 assert( result );
279
280 // remove data from shell and delete it
281 tupleExpr->set_result( nullptr );
282 tupleExpr->get_exprs().clear();
283 delete tupleExpr;
284
285 return replaceTupleExpr( result, exprs );
286 }
287
288 Type * makeTupleType( const std::list< Expression * > & exprs ) {
289 // produce the TupleType which aggregates the types of the exprs
290 TupleType *tupleType = new TupleType( Type::Qualifiers(true, true, true, true, true, false) );
291 Type::Qualifiers &qualifiers = tupleType->get_qualifiers();
292 for ( Expression * expr : exprs ) {
293 assert( expr->get_result() );
294 if ( expr->get_result()->isVoid() ) {
295 // if the type of any expr is void, the type of the entire tuple is void
296 delete tupleType;
297 return new VoidType( Type::Qualifiers() );
298 }
299 Type * type = expr->get_result()->clone();
300 tupleType->get_types().push_back( type );
301 // the qualifiers on the tuple type are the qualifiers that exist on all component types
302 qualifiers &= type->get_qualifiers();
303 } // for
304 return tupleType;
305 }
306
307 namespace {
308 /// determines if impurity (read: side-effects) may exist in a piece of code. Currently gives a very crude approximation, wherein any function call expression means the code may be impure
309 class ImpurityDetector : public Visitor {
310 public:
311 typedef Visitor Parent;
312 virtual void visit( ApplicationExpr * appExpr ) { maybeImpure = true; }
313 virtual void visit( UntypedExpr * untypedExpr ) { maybeImpure = true; }
314 bool maybeImpure = false;
315 };
316 } // namespace
317
318 bool maybeImpure( Expression * expr ) {
319 ImpurityDetector detector;
320 expr->accept( detector );
321 return detector.maybeImpure;
322 }
323} // namespace Tuples
324
325// Local Variables: //
326// tab-width: 4 //
327// mode: c++ //
328// compile-command: "make install" //
329// End: //
Note: See TracBrowser for help on using the repository browser.