source: src/Tuples/TupleExpansion.cc@ c84e80a

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors deferred_resn demangler enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum resolv-new with_gc
Last change on this file since c84e80a was 4c8621ac, checked in by Rob Schluntz <rschlunt@…>, 9 years ago

allow construction, destruction, and assignment for empty tuples, allow matching a ttype parameter with an empty tuple, fix specialization to work with empty tuples and void functions

  • Property mode set to 100644
File size: 13.6 KB
RevLine 
[6eb8948]1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// TupleAssignment.cc --
8//
9// Author : Rodolfo G. Esteves
10// Created On : Mon May 18 07:44:20 2015
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Mon May 18 15:02:53 2015
13// Update Count : 2
14//
15
16#include <iterator>
17#include <iostream>
18#include <cassert>
19#include "Tuples.h"
[f006f01]20#include "GenPoly/DeclMutator.h"
21#include "SynTree/Mutator.h"
[6eb8948]22#include "SynTree/Statement.h"
[f006f01]23#include "SynTree/Declaration.h"
24#include "SynTree/Type.h"
[3c13c03]25#include "SynTree/Expression.h"
26#include "SynTree/Initializer.h"
[f006f01]27#include "SymTab/Mangler.h"
28#include "Common/ScopedMap.h"
[1132b62]29#include "ResolvExpr/typeops.h"
[f0121d7]30#include "InitTweak/GenInit.h"
[6eb8948]31
32namespace Tuples {
[3c13c03]33 namespace {
[5f5083e]34 class MemberTupleExpander final : public Mutator {
[bf32bb8]35 public:
36 typedef Mutator Parent;
[5f5083e]37 using Parent::mutate;
38
39 virtual Expression * mutate( UntypedMemberExpr * memberExpr ) override;
[bf32bb8]40 };
41
[5f5083e]42 class UniqueExprExpander final : public GenPoly::DeclMutator {
[3c13c03]43 public:
44 typedef GenPoly::DeclMutator Parent;
[5f5083e]45 using Parent::mutate;
[141b786]46
[5f5083e]47 virtual Expression * mutate( UniqueExpr * unqExpr ) override;
[141b786]48
49 std::map< int, Expression * > decls; // not vector, because order added may not be increasing order
50
51 ~UniqueExprExpander() {
52 for ( std::pair<const int, Expression *> & p : decls ) {
53 delete p.second;
54 }
55 }
[3c13c03]56 };
57
58 class TupleAssignExpander : public Mutator {
59 public:
60 typedef Mutator Parent;
[5f5083e]61 using Parent::mutate;
62
[3c13c03]63 virtual Expression * mutate( TupleAssignExpr * tupleExpr );
64 };
65
66 class TupleTypeReplacer : public GenPoly::DeclMutator {
67 public:
68 typedef GenPoly::DeclMutator Parent;
[5f5083e]69 using Parent::mutate;
[3c13c03]70
[5f5083e]71 virtual Type * mutate( TupleType * tupleType ) override;
[3c13c03]72
[5f5083e]73 virtual CompoundStmt * mutate( CompoundStmt * stmt ) override {
[3c13c03]74 typeMap.beginScope();
75 stmt = Parent::mutate( stmt );
76 typeMap.endScope();
77 return stmt;
78 }
79 private:
80 ScopedMap< std::string, StructDecl * > typeMap;
81 };
82
[5f5083e]83 class TupleIndexExpander final : public Mutator {
[3c13c03]84 public:
85 typedef Mutator Parent;
[5f5083e]86 using Parent::mutate;
87
88 virtual Expression * mutate( TupleIndexExpr * tupleExpr ) override;
[3c13c03]89 };
90
[5f5083e]91 class TupleExprExpander final : public Mutator {
[3c13c03]92 public:
93 typedef Mutator Parent;
[5f5083e]94 using Parent::mutate;
[d9fa60a]95
[5f5083e]96 virtual Expression * mutate( TupleExpr * tupleExpr ) override;
[3c13c03]97 };
98 }
[f006f01]99
[bf32bb8]100 void expandMemberTuples( std::list< Declaration * > & translationUnit ) {
101 MemberTupleExpander expander;
102 mutateAll( translationUnit, expander );
103 }
104
[aefcc3b]105 void expandUniqueExpr( std::list< Declaration * > & translationUnit ) {
[3c13c03]106 UniqueExprExpander unqExpander;
107 unqExpander.mutateDeclarationList( translationUnit );
[aefcc3b]108 }
[3c13c03]109
[aefcc3b]110 void expandTuples( std::list< Declaration * > & translationUnit ) {
[3c13c03]111 TupleAssignExpander assnExpander;
112 mutateAll( translationUnit, assnExpander );
[f006f01]113
114 TupleTypeReplacer replacer;
115 replacer.mutateDeclarationList( translationUnit );
[3c13c03]116
117 TupleIndexExpander idxExpander;
118 mutateAll( translationUnit, idxExpander );
119
120 TupleExprExpander exprExpander;
121 mutateAll( translationUnit, exprExpander );
122 }
123
[bf32bb8]124 namespace {
125 /// given a expression representing the member and an expression representing the aggregate,
126 /// reconstructs a flattened UntypedMemberExpr with the right precedence
[141b786]127 Expression * reconstructMemberExpr( Expression * member, Expression * aggr ) {
[bf32bb8]128 if ( UntypedMemberExpr * memberExpr = dynamic_cast< UntypedMemberExpr * >( member ) ) {
129 // construct a new UntypedMemberExpr with the correct structure , and recursively
130 // expand that member expression.
131 MemberTupleExpander expander;
132 UntypedMemberExpr * newMemberExpr = new UntypedMemberExpr( memberExpr->get_member(), new UntypedMemberExpr( memberExpr->get_aggregate(), aggr->clone() ) );
133
134 memberExpr->set_member(nullptr);
135 memberExpr->set_aggregate(nullptr);
136 delete memberExpr;
137 return newMemberExpr->acceptMutator( expander );
138 } else {
139 // not a member expression, so there is nothing to do but attach and return
140 return new UntypedMemberExpr( member, aggr->clone() );
141 }
142 }
143 }
144
145 Expression * MemberTupleExpander::mutate( UntypedMemberExpr * memberExpr ) {
[907eccb]146 if ( UntypedTupleExpr * tupleExpr = dynamic_cast< UntypedTupleExpr * > ( memberExpr->get_member() ) ) {
[141b786]147 Expression * aggr = memberExpr->get_aggregate()->clone()->acceptMutator( *this );
148 // aggregate expressions which might be impure must be wrapped in unique expressions
149 // xxx - if there's a member-tuple expression nested in the aggregate, this currently generates the wrong code if a UniqueExpr is not used, and it's purely an optimization to remove the UniqueExpr
150 // if ( Tuples::maybeImpure( memberExpr->get_aggregate() ) ) aggr = new UniqueExpr( aggr );
151 aggr = new UniqueExpr( aggr );
[bf32bb8]152 for ( Expression *& expr : tupleExpr->get_exprs() ) {
[141b786]153 expr = reconstructMemberExpr( expr, aggr );
[bf32bb8]154 }
[141b786]155 delete aggr;
[bf32bb8]156 return tupleExpr;
157 } else {
[f0121d7]158 // there may be a tuple expr buried in the aggregate
159 // xxx - this is a memory leak
160 return new UntypedMemberExpr( memberExpr->get_member()->clone(), memberExpr->get_aggregate()->acceptMutator( *this ) );
[bf32bb8]161 }
162 }
163
[3c13c03]164 Expression * UniqueExprExpander::mutate( UniqueExpr * unqExpr ) {
165 unqExpr = safe_dynamic_cast< UniqueExpr * > ( Parent::mutate( unqExpr ) );
[141b786]166 const int id = unqExpr->get_id();
167
168 // on first time visiting a unique expr with a particular ID, generate the expression that replaces all UniqueExprs with that ID,
169 // and lookup on subsequent hits. This ensures that all unique exprs with the same ID reference the same variable.
170 if ( ! decls.count( id ) ) {
171 Expression * assignUnq;
172 Expression * var = unqExpr->get_var();
173 if ( unqExpr->get_object() ) {
174 // an object was generated to represent this unique expression -- it should be added to the list of declarations now
175 addDeclaration( unqExpr->get_object() );
176 unqExpr->set_object( nullptr );
177 // steal the expr from the unqExpr
178 assignUnq = UntypedExpr::createAssign( unqExpr->get_var()->clone(), unqExpr->get_expr() );
179 unqExpr->set_expr( nullptr );
180 } else {
181 // steal the already generated assignment to var from the unqExpr - this has been generated by FixInit
182 Expression * expr = unqExpr->get_expr();
183 CommaExpr * commaExpr = safe_dynamic_cast< CommaExpr * >( expr );
184 assignUnq = commaExpr->get_arg1();
185 commaExpr->set_arg1( nullptr );
186 }
187 BasicType * boolType = new BasicType( Type::Qualifiers(), BasicType::Bool );
188 ObjectDecl * finished = new ObjectDecl( toString( "_unq_expr_finished_", id ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, nullptr, new BasicType( Type::Qualifiers(), BasicType::Bool ), new SingleInit( new ConstantExpr( Constant( boolType->clone(), "0" ) ), noDesignators ) );
189 addDeclaration( finished );
190 // (finished ? _unq_expr_N : (_unq_expr_N = <unqExpr->get_expr()>, finished = 1, _unq_expr_N))
191 // This pattern ensures that each unique expression is evaluated once, regardless of evaluation order of the generated C code.
192 Expression * assignFinished = UntypedExpr::createAssign( new VariableExpr(finished), new ConstantExpr( Constant( boolType->clone(), "1" ) ) );
193 ConditionalExpr * condExpr = new ConditionalExpr( new VariableExpr( finished ), var->clone(),
194 new CommaExpr( new CommaExpr( assignUnq, assignFinished ), var->clone() ) );
195 condExpr->set_result( var->get_result()->clone() );
[d5556a3]196 condExpr->set_env( maybeClone( unqExpr->get_env() ) );
[141b786]197 decls[id] = condExpr;
[3c13c03]198 }
[141b786]199 delete unqExpr;
200 return decls[id]->clone();
[6eb8948]201 }
202
[3c13c03]203 Expression * TupleAssignExpander::mutate( TupleAssignExpr * assnExpr ) {
[141b786]204 assnExpr = safe_dynamic_cast< TupleAssignExpr * >( Parent::mutate( assnExpr ) );
[d5556a3]205 StmtExpr * ret = assnExpr->get_stmtExpr();
206 assnExpr->set_stmtExpr( nullptr );
207 // move env to StmtExpr
208 ret->set_env( assnExpr->get_env() );
209 assnExpr->set_env( nullptr );
[3c13c03]210 delete assnExpr;
[d5556a3]211 return ret;
[6eb8948]212 }
213
[f006f01]214 Type * TupleTypeReplacer::mutate( TupleType * tupleType ) {
215 std::string mangleName = SymTab::Mangler::mangleType( tupleType );
[d9fa60a]216 tupleType = safe_dynamic_cast< TupleType * > ( Parent::mutate( tupleType ) );
[f006f01]217 if ( ! typeMap.count( mangleName ) ) {
218 // generate struct type to replace tuple type
[d5556a3]219 // xxx - should fix this to only generate one tuple struct for each number of type parameters
[f006f01]220 StructDecl * decl = new StructDecl( "_tuple_type_" + mangleName );
221 decl->set_body( true );
[d9fa60a]222 for ( size_t i = 0; i < tupleType->size(); ++i ) {
223 TypeDecl * tyParam = new TypeDecl( toString("tuple_param_", i), DeclarationNode::NoStorageClass, nullptr, TypeDecl::Any );
224 decl->get_members().push_back( new ObjectDecl( toString("field_", i), DeclarationNode::NoStorageClass, LinkageSpec::C, nullptr, new TypeInstType( Type::Qualifiers(), tyParam->get_name(), tyParam ), nullptr ) );
225 decl->get_parameters().push_back( tyParam );
[f006f01]226 }
[4c8621ac]227 if ( tupleType->size() == 0 ) {
228 // empty structs are not standard C. Add a dummy field to empty tuples to silence warnings when a compound literal Tuple0 is created.
229 decl->get_members().push_back( new ObjectDecl( "dummy", DeclarationNode::NoStorageClass, LinkageSpec::C, nullptr, new BasicType( Type::Qualifiers(), BasicType::SignedInt ), nullptr ) );
230 }
[f006f01]231 typeMap[mangleName] = decl;
232 addDeclaration( decl );
233 }
[d9fa60a]234 Type::Qualifiers qualifiers = tupleType->get_qualifiers();
235
236 StructDecl * decl = typeMap[mangleName];
237 StructInstType * newType = new StructInstType( qualifiers, decl );
238 for ( Type * t : *tupleType ) {
239 newType->get_parameters().push_back( new TypeExpr( t->clone() ) );
240 }
241 delete tupleType;
242 return newType;
[f006f01]243 }
244
[3c13c03]245 Expression * TupleIndexExpander::mutate( TupleIndexExpr * tupleExpr ) {
246 Expression * tuple = maybeMutate( tupleExpr->get_tuple(), *this );
247 assert( tuple );
248 tupleExpr->set_tuple( nullptr );
249 unsigned int idx = tupleExpr->get_index();
[d5556a3]250 TypeSubstitution * env = tupleExpr->get_env();
251 tupleExpr->set_env( nullptr );
[3c13c03]252 delete tupleExpr;
253
254 StructInstType * type = safe_dynamic_cast< StructInstType * >( tuple->get_result() );
255 StructDecl * structDecl = type->get_baseStruct();
256 assert( structDecl->get_members().size() > idx );
257 Declaration * member = *std::next(structDecl->get_members().begin(), idx);
[d5556a3]258 MemberExpr * memExpr = new MemberExpr( safe_dynamic_cast< DeclarationWithType * >( member ), tuple );
259 memExpr->set_env( env );
260 return memExpr;
[3c13c03]261 }
262
[d5556a3]263 Expression * replaceTupleExpr( Type * result, const std::list< Expression * > & exprs, TypeSubstitution * env ) {
[65660bd]264 if ( result->isVoid() ) {
265 // void result - don't need to produce a value for cascading - just output a chain of comma exprs
266 assert( ! exprs.empty() );
267 std::list< Expression * >::const_iterator iter = exprs.begin();
[d5556a3]268 Expression * expr = new CastExpr( *iter++ );
[65660bd]269 for ( ; iter != exprs.end(); ++iter ) {
[d5556a3]270 expr = new CommaExpr( expr, new CastExpr( *iter ) );
[65660bd]271 }
[d5556a3]272 expr->set_env( env );
[65660bd]273 return expr;
274 } else {
275 // typed tuple expression - produce a compound literal which performs each of the expressions
276 // as a distinct part of its initializer - the produced compound literal may be used as part of
277 // another expression
278 std::list< Initializer * > inits;
279 for ( Expression * expr : exprs ) {
280 inits.push_back( new SingleInit( expr ) );
281 }
[d5556a3]282 Expression * expr = new CompoundLiteralExpr( result, new ListInit( inits ) );
283 expr->set_env( env );
284 return expr;
[3c13c03]285 }
286 }
287
[65660bd]288 Expression * TupleExprExpander::mutate( TupleExpr * tupleExpr ) {
[bf32bb8]289 // recursively expand sub-tuple-expressions
290 tupleExpr = safe_dynamic_cast<TupleExpr *>(Parent::mutate(tupleExpr));
[65660bd]291 Type * result = tupleExpr->get_result();
292 std::list< Expression * > exprs = tupleExpr->get_exprs();
293 assert( result );
[d5556a3]294 TypeSubstitution * env = tupleExpr->get_env();
[65660bd]295
[bf32bb8]296 // remove data from shell and delete it
[65660bd]297 tupleExpr->set_result( nullptr );
298 tupleExpr->get_exprs().clear();
[d5556a3]299 tupleExpr->set_env( nullptr );
[65660bd]300 delete tupleExpr;
301
[d5556a3]302 return replaceTupleExpr( result, exprs, env );
[65660bd]303 }
304
305 Type * makeTupleType( const std::list< Expression * > & exprs ) {
306 // produce the TupleType which aggregates the types of the exprs
[3c13c03]307 TupleType *tupleType = new TupleType( Type::Qualifiers(true, true, true, true, true, false) );
308 Type::Qualifiers &qualifiers = tupleType->get_qualifiers();
309 for ( Expression * expr : exprs ) {
310 assert( expr->get_result() );
[65660bd]311 if ( expr->get_result()->isVoid() ) {
312 // if the type of any expr is void, the type of the entire tuple is void
313 delete tupleType;
314 return new VoidType( Type::Qualifiers() );
315 }
[3c13c03]316 Type * type = expr->get_result()->clone();
317 tupleType->get_types().push_back( type );
[65660bd]318 // the qualifiers on the tuple type are the qualifiers that exist on all component types
[3c13c03]319 qualifiers &= type->get_qualifiers();
320 } // for
[907eccb]321 if ( exprs.empty() ) qualifiers = Type::Qualifiers();
[3c13c03]322 return tupleType;
323 }
[65660bd]324
[8bf784a]325 TypeInstType * isTtype( Type * type ) {
326 if ( TypeInstType * inst = dynamic_cast< TypeInstType * >( type ) ) {
327 if ( inst->get_baseType()->get_kind() == TypeDecl::Ttype ) {
328 return inst;
329 }
330 }
331 return nullptr;
332 }
333
[65660bd]334 namespace {
335 /// determines if impurity (read: side-effects) may exist in a piece of code. Currently gives a very crude approximation, wherein any function call expression means the code may be impure
336 class ImpurityDetector : public Visitor {
337 public:
338 typedef Visitor Parent;
339 virtual void visit( ApplicationExpr * appExpr ) { maybeImpure = true; }
340 virtual void visit( UntypedExpr * untypedExpr ) { maybeImpure = true; }
341 bool maybeImpure = false;
342 };
343 } // namespace
344
345 bool maybeImpure( Expression * expr ) {
346 ImpurityDetector detector;
347 expr->accept( detector );
348 return detector.maybeImpure;
349 }
[6eb8948]350} // namespace Tuples
351
352// Local Variables: //
353// tab-width: 4 //
354// mode: c++ //
355// compile-command: "make install" //
356// End: //
Note: See TracBrowser for help on using the repository browser.