source: src/SynTree/Expression.h@ c3acf0aa

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors deferred_resn demangler enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum resolv-new with_gc
Last change on this file since c3acf0aa was 65cdc1e, checked in by Andrew Beach <ajbeach@…>, 8 years ago

Syntax Nodes give public access to the fields with effective public access.X

  • Property mode set to 100644
File size: 31.7 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Expression.h --
8//
9// Author : Richard C. Bilson
10// Created On : Mon May 18 07:44:20 2015
11// Last Modified By : Andrew Beach
12// Last Modified On : Fri Aug 8 11:54:00 2017
13// Update Count : 44
14//
15
16#pragma once
17
18#include <map>
19#include <memory>
20
21#include "BaseSyntaxNode.h"
22#include "Constant.h"
23#include "Mutator.h"
24#include "SynTree.h"
25#include "Visitor.h"
26#include "Common/UniqueName.h"
27
28/// Expression is the root type for all expressions
29class Expression : public BaseSyntaxNode{
30 public:
31 Type * result;
32 TypeSubstitution * env;
33 Expression * argName; // if expression is used as an argument, it can be "designated" by this name
34 bool extension = false;
35
36 Expression( Expression * _aname = nullptr );
37 Expression( const Expression & other );
38 virtual ~Expression();
39
40 Type *& get_result() { return result; }
41 const Type * get_result() const { return result; }
42 void set_result( Type * newValue ) { result = newValue; }
43 bool has_result() const { return result != nullptr; }
44
45 TypeSubstitution * get_env() const { return env; }
46 void set_env( TypeSubstitution * newValue ) { env = newValue; }
47 Expression * get_argName() const { return argName; }
48 void set_argName( Expression * name ) { argName = name; }
49 bool get_extension() const { return extension; }
50 Expression * set_extension( bool exten ) { extension = exten; return this; }
51
52 virtual Expression * clone() const = 0;
53 virtual void accept( Visitor & v ) = 0;
54 virtual Expression * acceptMutator( Mutator & m ) = 0;
55 virtual void print( std::ostream & os, int indent = 0 ) const;
56};
57
58struct ParamEntry;
59typedef std::map< UniqueId, ParamEntry > InferredParams;
60
61/// ParamEntry contains the i.d. of a declaration and a type that is derived from that declaration,
62/// but subject to decay-to-pointer and type parameter renaming
63struct ParamEntry {
64 ParamEntry(): decl( 0 ), actualType( 0 ), formalType( 0 ), expr( 0 ), inferParams( new InferredParams ) {}
65 ParamEntry( UniqueId decl, Type * actualType, Type * formalType, Expression* expr ): decl( decl ), actualType( actualType ), formalType( formalType ), expr( expr ), inferParams( new InferredParams ) {}
66 ParamEntry( const ParamEntry & other );
67 ~ParamEntry();
68 ParamEntry & operator=( const ParamEntry & other );
69
70 UniqueId decl;
71 Type * actualType;
72 Type * formalType;
73 Expression* expr;
74 std::unique_ptr< InferredParams > inferParams;
75};
76
77/// ApplicationExpr represents the application of a function to a set of parameters. This is the result of running an
78/// UntypedExpr through the expression analyzer.
79class ApplicationExpr : public Expression {
80 public:
81 Expression * function;
82
83 ApplicationExpr( Expression * function, const std::list<Expression *> & args = std::list< Expression * >() );
84 ApplicationExpr( const ApplicationExpr & other );
85 virtual ~ApplicationExpr();
86
87 Expression * get_function() const { return function; }
88 void set_function( Expression * newValue ) { function = newValue; }
89 std::list<Expression *>& get_args() { return args; }
90 InferredParams & get_inferParams() { return inferParams; }
91
92 virtual ApplicationExpr * clone() const { return new ApplicationExpr( * this ); }
93 virtual void accept( Visitor & v ) { v.visit( this ); }
94 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
95 virtual void print( std::ostream & os, int indent = 0 ) const;
96
97 private:
98 std::list<Expression *> args;
99 InferredParams inferParams;
100};
101
102/// UntypedExpr represents the application of a function to a set of parameters, but where the particular overload for
103/// the function name has not yet been determined. Most operators are converted into functional form automatically, to
104/// permit operator overloading.
105class UntypedExpr : public Expression {
106 public:
107 Expression * function;
108 std::list<Expression*> args;
109
110 UntypedExpr( Expression * function, const std::list<Expression *> & args = std::list< Expression * >(), Expression *_aname = nullptr );
111 UntypedExpr( const UntypedExpr & other );
112 virtual ~UntypedExpr();
113
114 Expression * get_function() const { return function; }
115 void set_function( Expression * newValue ) { function = newValue; }
116
117 void set_args( std::list<Expression *> & listArgs ) { args = listArgs; }
118 std::list<Expression*>::iterator begin_args() { return args.begin(); }
119 std::list<Expression*>::iterator end_args() { return args.end(); }
120 std::list<Expression*>& get_args() { return args; }
121
122 static UntypedExpr * createDeref( Expression * arg );
123 static UntypedExpr * createAssign( Expression * arg1, Expression * arg2 );
124
125 virtual UntypedExpr * clone() const { return new UntypedExpr( * this ); }
126 virtual void accept( Visitor & v ) { v.visit( this ); }
127 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
128 virtual void print( std::ostream & os, int indent = 0 ) const;
129 virtual void printArgs(std::ostream & os, int indent = 0) const;
130};
131
132/// NameExpr contains a name whose meaning is still not determined
133class NameExpr : public Expression {
134 public:
135 std::string name;
136
137 NameExpr( std::string name, Expression *_aname = nullptr );
138 NameExpr( const NameExpr & other );
139 virtual ~NameExpr();
140
141 const std::string & get_name() const { return name; }
142 void set_name( std::string newValue ) { name = newValue; }
143
144 virtual NameExpr * clone() const { return new NameExpr( * this ); }
145 virtual void accept( Visitor & v ) { v.visit( this ); }
146 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
147 virtual void print( std::ostream & os, int indent = 0 ) const;
148};
149
150// The following classes are used to represent expression types that cannot be converted into
151// function-call format.
152
153/// AddressExpr represents a address-of expression, e.g. & e
154class AddressExpr : public Expression {
155 public:
156 Expression * arg;
157
158 AddressExpr( Expression * arg, Expression *_aname = nullptr );
159 AddressExpr( const AddressExpr & other );
160 virtual ~AddressExpr();
161
162 Expression * get_arg() const { return arg; }
163 void set_arg(Expression * newValue ) { arg = newValue; }
164
165 virtual AddressExpr * clone() const { return new AddressExpr( * this ); }
166 virtual void accept( Visitor & v ) { v.visit( this ); }
167 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
168 virtual void print( std::ostream & os, int indent = 0 ) const;
169};
170
171// xxx - this doesn't appear to actually be hooked in anywhere. We should use this instead of the "&&"" UntypedExpr hack
172class LabelAddressExpr : public Expression {
173 public:
174 Expression * arg;
175
176 LabelAddressExpr( Expression * arg );
177 LabelAddressExpr( const LabelAddressExpr & other );
178 virtual ~LabelAddressExpr();
179
180 Expression * get_arg() const { return arg; }
181 void set_arg(Expression * newValue ) { arg = newValue; }
182
183 virtual LabelAddressExpr * clone() const { return new LabelAddressExpr( * this ); }
184 virtual void accept( Visitor & v ) { v.visit( this ); }
185 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
186 virtual void print( std::ostream & os, int indent = 0 ) const;
187};
188
189/// CastExpr represents a type cast expression, e.g. (int)e
190class CastExpr : public Expression {
191 public:
192 Expression * arg;
193
194 CastExpr( Expression * arg, Expression *_aname = nullptr );
195 CastExpr( Expression * arg, Type * toType, Expression *_aname = nullptr );
196 CastExpr( const CastExpr & other );
197 virtual ~CastExpr();
198
199 Expression * get_arg() const { return arg; }
200 void set_arg( Expression * newValue ) { arg = newValue; }
201
202 virtual CastExpr * clone() const { return new CastExpr( * this ); }
203 virtual void accept( Visitor & v ) { v.visit( this ); }
204 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
205 virtual void print( std::ostream & os, int indent = 0 ) const;
206};
207
208/// VirtualCastExpr repersents a virtual dynamic cast, e.g. (virtual exception)e
209class VirtualCastExpr : public Expression {
210 public:
211 Expression * arg;
212
213 VirtualCastExpr( Expression * arg, Type * toType );
214 VirtualCastExpr( const VirtualCastExpr & other );
215 virtual ~VirtualCastExpr();
216
217 Expression * get_arg() const { return arg; }
218 void set_arg( Expression * newValue ) { arg = newValue; }
219
220 virtual VirtualCastExpr * clone() const { return new VirtualCastExpr( * this ); }
221 virtual void accept( Visitor & v ) { v.visit( this ); }
222 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
223 virtual void print( std::ostream & os, int indent = 0 ) const;
224};
225
226/// UntypedMemberExpr represents a member selection operation, e.g. q.p before processing by the expression analyzer
227class UntypedMemberExpr : public Expression {
228 public:
229 Expression * member;
230 Expression * aggregate;
231
232 UntypedMemberExpr( Expression * member, Expression * aggregate, Expression *_aname = nullptr );
233 UntypedMemberExpr( const UntypedMemberExpr & other );
234 virtual ~UntypedMemberExpr();
235
236 Expression * get_member() const { return member; }
237 void set_member( Expression * newValue ) { member = newValue; }
238 Expression * get_aggregate() const { return aggregate; }
239 void set_aggregate( Expression * newValue ) { aggregate = newValue; }
240
241 virtual UntypedMemberExpr * clone() const { return new UntypedMemberExpr( * this ); }
242 virtual void accept( Visitor & v ) { v.visit( this ); }
243 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
244 virtual void print( std::ostream & os, int indent = 0 ) const;
245};
246
247/// MemberExpr represents a member selection operation, e.g. q.p after processing by the expression analyzer.
248/// Does not take ownership of member.
249class MemberExpr : public Expression {
250 public:
251 DeclarationWithType * member;
252 Expression * aggregate;
253
254 MemberExpr( DeclarationWithType * member, Expression * aggregate, Expression *_aname = nullptr );
255 MemberExpr( const MemberExpr & other );
256 virtual ~MemberExpr();
257
258 DeclarationWithType * get_member() const { return member; }
259 void set_member( DeclarationWithType * newValue ) { member = newValue; }
260 Expression * get_aggregate() const { return aggregate; }
261 void set_aggregate( Expression * newValue ) { aggregate = newValue; }
262
263 virtual MemberExpr * clone() const { return new MemberExpr( * this ); }
264 virtual void accept( Visitor & v ) { v.visit( this ); }
265 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
266 virtual void print( std::ostream & os, int indent = 0 ) const;
267};
268
269/// VariableExpr represents an expression that simply refers to the value of a named variable.
270/// Does not take ownership of var.
271class VariableExpr : public Expression {
272 public:
273 DeclarationWithType * var;
274
275 VariableExpr( DeclarationWithType * var, Expression *_aname = nullptr );
276 VariableExpr( const VariableExpr & other );
277 virtual ~VariableExpr();
278
279 DeclarationWithType * get_var() const { return var; }
280 void set_var( DeclarationWithType * newValue ) { var = newValue; }
281
282 virtual VariableExpr * clone() const { return new VariableExpr( * this ); }
283 virtual void accept( Visitor & v ) { v.visit( this ); }
284 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
285 virtual void print( std::ostream & os, int indent = 0 ) const;
286};
287
288/// ConstantExpr represents an expression that simply refers to the value of a constant
289class ConstantExpr : public Expression {
290 public:
291 Constant constant;
292
293 ConstantExpr( Constant constant, Expression *_aname = nullptr );
294 ConstantExpr( const ConstantExpr & other );
295 virtual ~ConstantExpr();
296
297 Constant * get_constant() { return & constant; }
298 void set_constant( const Constant & newValue ) { constant = newValue; }
299
300 virtual ConstantExpr * clone() const { return new ConstantExpr( * this ); }
301 virtual void accept( Visitor & v ) { v.visit( this ); }
302 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
303 virtual void print( std::ostream & os, int indent = 0 ) const;
304};
305
306/// SizeofExpr represents a sizeof expression (could be sizeof(int) or sizeof 3+4)
307class SizeofExpr : public Expression {
308 public:
309 Expression * expr;
310 Type * type;
311 bool isType;
312
313 SizeofExpr( Expression * expr, Expression *_aname = nullptr );
314 SizeofExpr( const SizeofExpr & other );
315 SizeofExpr( Type * type, Expression *_aname = nullptr );
316 virtual ~SizeofExpr();
317
318 Expression * get_expr() const { return expr; }
319 void set_expr( Expression * newValue ) { expr = newValue; }
320 Type * get_type() const { return type; }
321 void set_type( Type * newValue ) { type = newValue; }
322 bool get_isType() const { return isType; }
323 void set_isType( bool newValue ) { isType = newValue; }
324
325 virtual SizeofExpr * clone() const { return new SizeofExpr( * this ); }
326 virtual void accept( Visitor & v ) { v.visit( this ); }
327 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
328 virtual void print( std::ostream & os, int indent = 0 ) const;
329};
330
331/// AlignofExpr represents an alignof expression
332class AlignofExpr : public Expression {
333 public:
334 Expression * expr;
335 Type * type;
336 bool isType;
337
338 AlignofExpr( Expression * expr, Expression *_aname = nullptr );
339 AlignofExpr( const AlignofExpr & other );
340 AlignofExpr( Type * type, Expression *_aname = nullptr );
341 virtual ~AlignofExpr();
342
343 Expression * get_expr() const { return expr; }
344 void set_expr( Expression * newValue ) { expr = newValue; }
345 Type * get_type() const { return type; }
346 void set_type( Type * newValue ) { type = newValue; }
347 bool get_isType() const { return isType; }
348 void set_isType( bool newValue ) { isType = newValue; }
349
350 virtual AlignofExpr * clone() const { return new AlignofExpr( * this ); }
351 virtual void accept( Visitor & v ) { v.visit( this ); }
352 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
353 virtual void print( std::ostream & os, int indent = 0 ) const;
354};
355
356/// UntypedOffsetofExpr represents an offsetof expression before resolution
357class UntypedOffsetofExpr : public Expression {
358 public:
359 Type * type;
360 std::string member;
361
362 UntypedOffsetofExpr( Type * type, const std::string & member, Expression *_aname = nullptr );
363 UntypedOffsetofExpr( const UntypedOffsetofExpr & other );
364 virtual ~UntypedOffsetofExpr();
365
366 std::string get_member() const { return member; }
367 void set_member( const std::string & newValue ) { member = newValue; }
368 Type * get_type() const { return type; }
369 void set_type( Type * newValue ) { type = newValue; }
370
371 virtual UntypedOffsetofExpr * clone() const { return new UntypedOffsetofExpr( * this ); }
372 virtual void accept( Visitor & v ) { v.visit( this ); }
373 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
374 virtual void print( std::ostream & os, int indent = 0 ) const;
375};
376
377/// OffsetofExpr represents an offsetof expression
378class OffsetofExpr : public Expression {
379 public:
380 Type * type;
381 DeclarationWithType * member;
382
383 OffsetofExpr( Type * type, DeclarationWithType * member, Expression *_aname = nullptr );
384 OffsetofExpr( const OffsetofExpr & other );
385 virtual ~OffsetofExpr();
386
387 Type * get_type() const { return type; }
388 void set_type( Type * newValue ) { type = newValue; }
389 DeclarationWithType * get_member() const { return member; }
390 void set_member( DeclarationWithType * newValue ) { member = newValue; }
391
392 virtual OffsetofExpr * clone() const { return new OffsetofExpr( * this ); }
393 virtual void accept( Visitor & v ) { v.visit( this ); }
394 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
395 virtual void print( std::ostream & os, int indent = 0 ) const;
396};
397
398/// Expression representing a pack of field-offsets for a generic type
399class OffsetPackExpr : public Expression {
400public:
401 StructInstType * type;
402
403 OffsetPackExpr( StructInstType * type_, Expression * aname_ = 0 );
404 OffsetPackExpr( const OffsetPackExpr & other );
405 virtual ~OffsetPackExpr();
406
407 StructInstType * get_type() const { return type; }
408 void set_type( StructInstType * newValue ) { type = newValue; }
409
410 virtual OffsetPackExpr * clone() const { return new OffsetPackExpr( * this ); }
411 virtual void accept( Visitor & v ) { v.visit( this ); }
412 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
413 virtual void print( std::ostream & os, int indent = 0 ) const;
414};
415
416/// AttrExpr represents an @attribute expression (like sizeof, but user-defined)
417class AttrExpr : public Expression {
418 public:
419 Expression * attr;
420 Expression * expr;
421 Type * type;
422 bool isType;
423
424 AttrExpr(Expression * attr, Expression * expr, Expression *_aname = nullptr );
425 AttrExpr( const AttrExpr & other );
426 AttrExpr( Expression * attr, Type * type, Expression *_aname = nullptr );
427 virtual ~AttrExpr();
428
429 Expression * get_attr() const { return attr; }
430 void set_attr( Expression * newValue ) { attr = newValue; }
431 Expression * get_expr() const { return expr; }
432 void set_expr( Expression * newValue ) { expr = newValue; }
433 Type * get_type() const { return type; }
434 void set_type( Type * newValue ) { type = newValue; }
435 bool get_isType() const { return isType; }
436 void set_isType( bool newValue ) { isType = newValue; }
437
438 virtual AttrExpr * clone() const { return new AttrExpr( * this ); }
439 virtual void accept( Visitor & v ) { v.visit( this ); }
440 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
441 virtual void print( std::ostream & os, int indent = 0 ) const;
442};
443
444/// LogicalExpr represents a short-circuit boolean expression (&& or ||)
445class LogicalExpr : public Expression {
446 public:
447 Expression * arg1;
448 Expression * arg2;
449
450 LogicalExpr( Expression * arg1, Expression * arg2, bool andp = true, Expression *_aname = nullptr );
451 LogicalExpr( const LogicalExpr & other );
452 virtual ~LogicalExpr();
453
454 bool get_isAnd() const { return isAnd; }
455 Expression * get_arg1() { return arg1; }
456 void set_arg1( Expression * newValue ) { arg1 = newValue; }
457 Expression * get_arg2() const { return arg2; }
458 void set_arg2( Expression * newValue ) { arg2 = newValue; }
459
460 virtual LogicalExpr * clone() const { return new LogicalExpr( * this ); }
461 virtual void accept( Visitor & v ) { v.visit( this ); }
462 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
463 virtual void print( std::ostream & os, int indent = 0 ) const;
464
465 private:
466 bool isAnd;
467};
468
469/// ConditionalExpr represents the three-argument conditional ( p ? a : b )
470class ConditionalExpr : public Expression {
471 public:
472 Expression * arg1;
473 Expression * arg2;
474 Expression * arg3;
475
476 ConditionalExpr( Expression * arg1, Expression * arg2, Expression * arg3, Expression *_aname = nullptr );
477 ConditionalExpr( const ConditionalExpr & other );
478 virtual ~ConditionalExpr();
479
480 Expression * get_arg1() const { return arg1; }
481 void set_arg1( Expression * newValue ) { arg1 = newValue; }
482 Expression * get_arg2() const { return arg2; }
483 void set_arg2( Expression * newValue ) { arg2 = newValue; }
484 Expression * get_arg3() const { return arg3; }
485 void set_arg3( Expression * newValue ) { arg3 = newValue; }
486
487 virtual ConditionalExpr * clone() const { return new ConditionalExpr( * this ); }
488 virtual void accept( Visitor & v ) { v.visit( this ); }
489 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
490 virtual void print( std::ostream & os, int indent = 0 ) const;
491};
492
493/// CommaExpr represents the sequence operator ( a, b )
494class CommaExpr : public Expression {
495 public:
496 Expression * arg1;
497 Expression * arg2;
498
499 CommaExpr( Expression * arg1, Expression * arg2, Expression *_aname = nullptr );
500 CommaExpr( const CommaExpr & other );
501 virtual ~CommaExpr();
502
503 Expression * get_arg1() const { return arg1; }
504 void set_arg1( Expression * newValue ) { arg1 = newValue; }
505 Expression * get_arg2() const { return arg2; }
506 void set_arg2( Expression * newValue ) { arg2 = newValue; }
507
508 virtual CommaExpr * clone() const { return new CommaExpr( * this ); }
509 virtual void accept( Visitor & v ) { v.visit( this ); }
510 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
511 virtual void print( std::ostream & os, int indent = 0 ) const;
512};
513
514/// TypeExpr represents a type used in an expression (e.g. as a type generator parameter)
515class TypeExpr : public Expression {
516 public:
517 Type * type;
518
519 TypeExpr( Type * type );
520 TypeExpr( const TypeExpr & other );
521 virtual ~TypeExpr();
522
523 Type * get_type() const { return type; }
524 void set_type( Type * newValue ) { type = newValue; }
525
526 virtual TypeExpr * clone() const { return new TypeExpr( * this ); }
527 virtual void accept( Visitor & v ) { v.visit( this ); }
528 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
529 virtual void print( std::ostream & os, int indent = 0 ) const;
530};
531
532/// AsmExpr represents a GCC 'asm constraint operand' used in an asm statement: [output] "=f" (result)
533class AsmExpr : public Expression {
534 public:
535 Expression * inout;
536 ConstantExpr * constraint;
537 Expression * operand;
538
539 AsmExpr( Expression * inout, ConstantExpr * constraint, Expression * operand ) : inout( inout ), constraint( constraint ), operand( operand ) {}
540 AsmExpr( const AsmExpr & other );
541 virtual ~AsmExpr() { delete inout; delete constraint; delete operand; };
542
543 Expression * get_inout() const { return inout; }
544 void set_inout( Expression * newValue ) { inout = newValue; }
545
546 ConstantExpr * get_constraint() const { return constraint; }
547 void set_constraint( ConstantExpr * newValue ) { constraint = newValue; }
548
549 Expression * get_operand() const { return operand; }
550 void set_operand( Expression * newValue ) { operand = newValue; }
551
552 virtual AsmExpr * clone() const { return new AsmExpr( * this ); }
553 virtual void accept( Visitor & v ) { v.visit( this ); }
554 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
555 virtual void print( std::ostream & os, int indent = 0 ) const;
556
557 // https://gcc.gnu.org/onlinedocs/gcc-4.7.1/gcc/Machine-Constraints.html#Machine-Constraints
558};
559
560/// ImplicitCopyCtorExpr represents the application of a function to a set of parameters,
561/// along with a set of copy constructor calls, one for each argument.
562class ImplicitCopyCtorExpr : public Expression {
563public:
564 ApplicationExpr * callExpr;
565 std::list< ObjectDecl * > tempDecls;
566 std::list< ObjectDecl * > returnDecls;
567 std::list< Expression * > dtors;
568
569 ImplicitCopyCtorExpr( ApplicationExpr * callExpr );
570 ImplicitCopyCtorExpr( const ImplicitCopyCtorExpr & other );
571 virtual ~ImplicitCopyCtorExpr();
572
573 ApplicationExpr * get_callExpr() const { return callExpr; }
574 void set_callExpr( ApplicationExpr * newValue ) { callExpr = newValue; }
575
576 std::list< ObjectDecl * > & get_tempDecls() { return tempDecls; }
577 std::list< ObjectDecl * > & get_returnDecls() { return returnDecls; }
578 std::list< Expression * > & get_dtors() { return dtors; }
579
580 virtual ImplicitCopyCtorExpr * clone() const { return new ImplicitCopyCtorExpr( * this ); }
581 virtual void accept( Visitor & v ) { v.visit( this ); }
582 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
583 virtual void print( std::ostream & os, int indent = 0 ) const;
584};
585
586/// ConstructorExpr represents the use of a constructor in an expression context, e.g. int * x = malloc() { 5 };
587class ConstructorExpr : public Expression {
588public:
589 Expression * callExpr;
590
591 ConstructorExpr( Expression * callExpr );
592 ConstructorExpr( const ConstructorExpr & other );
593 ~ConstructorExpr();
594
595 Expression * get_callExpr() const { return callExpr; }
596 void set_callExpr( Expression * newValue ) { callExpr = newValue; }
597
598 virtual ConstructorExpr * clone() const { return new ConstructorExpr( * this ); }
599 virtual void accept( Visitor & v ) { v.visit( this ); }
600 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
601 virtual void print( std::ostream & os, int indent = 0 ) const;
602};
603
604/// CompoundLiteralExpr represents a C99 'compound literal'
605class CompoundLiteralExpr : public Expression {
606 public:
607 Initializer * initializer;
608
609 CompoundLiteralExpr( Type * type, Initializer * initializer );
610 CompoundLiteralExpr( const CompoundLiteralExpr & other );
611 virtual ~CompoundLiteralExpr();
612
613 Initializer * get_initializer() const { return initializer; }
614 void set_initializer( Initializer * i ) { initializer = i; }
615
616 virtual CompoundLiteralExpr * clone() const { return new CompoundLiteralExpr( * this ); }
617 virtual void accept( Visitor & v ) { v.visit( this ); }
618 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
619 virtual void print( std::ostream & os, int indent = 0 ) const;
620};
621
622/// RangeExpr represents a range e.g. '3 ... 5' or '1~10'
623class RangeExpr : public Expression {
624 public:
625 Expression * low, * high;
626
627 RangeExpr( Expression * low, Expression * high );
628 RangeExpr( const RangeExpr & other );
629
630 Expression * get_low() const { return low; }
631 Expression * get_high() const { return high; }
632 RangeExpr * set_low( Expression * low ) { RangeExpr::low = low; return this; }
633 RangeExpr * set_high( Expression * high ) { RangeExpr::high = high; return this; }
634
635 virtual RangeExpr * clone() const { return new RangeExpr( * this ); }
636 virtual void accept( Visitor & v ) { v.visit( this ); }
637 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
638 virtual void print( std::ostream & os, int indent = 0 ) const;
639};
640
641/// UntypedTupleExpr represents a tuple expression ( [a, b, c] ) before resolution
642class UntypedTupleExpr : public Expression {
643 public:
644 std::list<Expression*> exprs;
645
646 UntypedTupleExpr( const std::list< Expression * > & exprs, Expression *_aname = nullptr );
647 UntypedTupleExpr( const UntypedTupleExpr & other );
648 virtual ~UntypedTupleExpr();
649
650 std::list<Expression*>& get_exprs() { return exprs; }
651
652 virtual UntypedTupleExpr * clone() const { return new UntypedTupleExpr( * this ); }
653 virtual void accept( Visitor & v ) { v.visit( this ); }
654 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
655 virtual void print( std::ostream & os, int indent = 0 ) const;
656};
657
658/// TupleExpr represents a tuple expression ( [a, b, c] )
659class TupleExpr : public Expression {
660 public:
661 std::list<Expression*> exprs;
662
663 TupleExpr( const std::list< Expression * > & exprs, Expression *_aname = nullptr );
664 TupleExpr( const TupleExpr & other );
665 virtual ~TupleExpr();
666
667 std::list<Expression*>& get_exprs() { return exprs; }
668
669 virtual TupleExpr * clone() const { return new TupleExpr( * this ); }
670 virtual void accept( Visitor & v ) { v.visit( this ); }
671 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
672 virtual void print( std::ostream & os, int indent = 0 ) const;
673};
674
675/// TupleIndexExpr represents an element selection operation on a tuple value, e.g. t.3 after processing by the expression analyzer
676class TupleIndexExpr : public Expression {
677 public:
678 Expression * tuple;
679 unsigned int index;
680
681 TupleIndexExpr( Expression * tuple, unsigned int index );
682 TupleIndexExpr( const TupleIndexExpr & other );
683 virtual ~TupleIndexExpr();
684
685 Expression * get_tuple() const { return tuple; }
686 int get_index() const { return index; }
687 TupleIndexExpr * set_tuple( Expression * newValue ) { tuple = newValue; return this; }
688 TupleIndexExpr * set_index( unsigned int newValue ) { index = newValue; return this; }
689
690 virtual TupleIndexExpr * clone() const { return new TupleIndexExpr( * this ); }
691 virtual void accept( Visitor & v ) { v.visit( this ); }
692 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
693 virtual void print( std::ostream & os, int indent = 0 ) const;
694};
695
696/// TupleAssignExpr represents a multiple assignment operation, where both sides of the assignment have tuple type, e.g. [a, b, c] = [d, e, f];, a mass assignment operation, where the left hand side has tuple type and the right hand side does not, e.g. [a, b, c] = 5.0;, or a tuple ctor/dtor expression
697class TupleAssignExpr : public Expression {
698 public:
699 StmtExpr * stmtExpr = nullptr;
700
701 TupleAssignExpr( const std::list< Expression * > & assigns, const std::list< ObjectDecl * > & tempDecls, Expression * _aname = nullptr );
702 TupleAssignExpr( const TupleAssignExpr & other );
703 virtual ~TupleAssignExpr();
704
705 TupleAssignExpr * set_stmtExpr( StmtExpr * newValue ) { stmtExpr = newValue; return this; }
706 StmtExpr * get_stmtExpr() const { return stmtExpr; }
707
708 virtual TupleAssignExpr * clone() const { return new TupleAssignExpr( * this ); }
709 virtual void accept( Visitor & v ) { v.visit( this ); }
710 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
711 virtual void print( std::ostream & os, int indent = 0 ) const;
712};
713
714/// StmtExpr represents a GCC 'statement expression', e.g. ({ int x = 5; x; })
715class StmtExpr : public Expression {
716public:
717 CompoundStmt * statements;
718 std::list< ObjectDecl * > returnDecls; // return variable(s) for stmt expression
719 std::list< Expression * > dtors; // destructor(s) for return variable(s)
720
721 StmtExpr( CompoundStmt * statements );
722 StmtExpr( const StmtExpr & other );
723 virtual ~StmtExpr();
724
725 CompoundStmt * get_statements() const { return statements; }
726 StmtExpr * set_statements( CompoundStmt * newValue ) { statements = newValue; return this; }
727
728 std::list< ObjectDecl * > & get_returnDecls() { return returnDecls; }
729 std::list< Expression * > & get_dtors() { return dtors; }
730
731 virtual StmtExpr * clone() const { return new StmtExpr( * this ); }
732 virtual void accept( Visitor & v ) { v.visit( this ); }
733 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
734 virtual void print( std::ostream & os, int indent = 0 ) const;
735};
736
737class UniqueExpr : public Expression {
738public:
739 Expression * expr;
740 ObjectDecl * object;
741 VariableExpr * var;
742
743 UniqueExpr( Expression * expr, long long idVal = -1 );
744 UniqueExpr( const UniqueExpr & other );
745 ~UniqueExpr();
746
747 Expression * get_expr() const { return expr; }
748 UniqueExpr * set_expr( Expression * newValue ) { expr = newValue; return this; }
749
750 ObjectDecl * get_object() const { return object; }
751 UniqueExpr * set_object( ObjectDecl * newValue ) { object = newValue; return this; }
752
753 VariableExpr * get_var() const { return var; }
754 UniqueExpr * set_var( VariableExpr * newValue ) { var = newValue; return this; }
755
756 int get_id() const { return id; }
757
758 virtual UniqueExpr * clone() const { return new UniqueExpr( * this ); }
759 virtual void accept( Visitor & v ) { v.visit( this ); }
760 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
761 virtual void print( std::ostream & os, int indent = 0 ) const;
762
763private:
764 int id;
765 static long long count;
766};
767
768struct InitAlternative {
769public:
770 Type * type = nullptr;
771 Designation * designation = nullptr;
772 InitAlternative( Type * type, Designation * designation );
773 InitAlternative( const InitAlternative & other );
774 InitAlternative & operator=( const Initializer & other ) = delete; // at the moment this isn't used, and I don't want to implement it
775 ~InitAlternative();
776};
777
778class UntypedInitExpr : public Expression {
779public:
780 Expression * expr;
781 std::list<InitAlternative> initAlts;
782
783 UntypedInitExpr( Expression * expr, const std::list<InitAlternative> & initAlts );
784 UntypedInitExpr( const UntypedInitExpr & other );
785 ~UntypedInitExpr();
786
787 Expression * get_expr() const { return expr; }
788 UntypedInitExpr * set_expr( Expression * newValue ) { expr = newValue; return this; }
789
790 std::list<InitAlternative> & get_initAlts() { return initAlts; }
791
792 virtual UntypedInitExpr * clone() const { return new UntypedInitExpr( * this ); }
793 virtual void accept( Visitor & v ) { v.visit( this ); }
794 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
795 virtual void print( std::ostream & os, int indent = 0 ) const;
796};
797
798class InitExpr : public Expression {
799public:
800 Expression * expr;
801 Designation * designation;
802
803 InitExpr( Expression * expr, Designation * designation );
804 InitExpr( const InitExpr & other );
805 ~InitExpr();
806
807 Expression * get_expr() const { return expr; }
808 InitExpr * set_expr( Expression * newValue ) { expr = newValue; return this; }
809
810 Designation * get_designation() const { return designation; }
811 InitExpr * set_designation( Designation * newValue ) { designation = newValue; return this; }
812
813 virtual InitExpr * clone() const { return new InitExpr( * this ); }
814 virtual void accept( Visitor & v ) { v.visit( this ); }
815 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
816 virtual void print( std::ostream & os, int indent = 0 ) const;
817};
818
819
820std::ostream & operator<<( std::ostream & out, const Expression * expr );
821
822// Local Variables: //
823// tab-width: 4 //
824// mode: c++ //
825// compile-command: "make install" //
826// End: //
Note: See TracBrowser for help on using the repository browser.