source: src/SynTree/Expression.h@ eff03a94

new-env
Last change on this file since eff03a94 was 28f3a19, checked in by Aaron Moss <a3moss@…>, 7 years ago

Merge branch 'master' into with_gc

  • Property mode set to 100644
File size: 33.6 KB
RevLine 
[0dd3a2f]1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
[3be261a]7// Expression.h --
[0dd3a2f]8//
9// Author : Richard C. Bilson
10// Created On : Mon May 18 07:44:20 2015
[e612146c]11// Last Modified By : Peter A. Buhr
12// Last Modified On : Sun Sep 3 19:23:46 2017
13// Update Count : 48
[0dd3a2f]14//
[e612146c]15
[6b0b624]16#pragma once
[51b73452]17
[ea6332d]18#include <iosfwd> // for ostream
19#include <list> // for list, list<>::iterator
20#include <map> // for map, map<>::value_compare
21#include <memory> // for allocator, unique_ptr
22#include <string> // for string
23
24#include "BaseSyntaxNode.h" // for BaseSyntaxNode
25#include "Constant.h" // for Constant
26#include "Initializer.h" // for Designation (ptr only), Initializer
[5809461]27#include "Label.h" // for Label
[ea6332d]28#include "Mutator.h" // for Mutator
29#include "SynTree.h" // for UniqueId
30#include "Visitor.h" // for Visitor
[294647b]31
[51b73452]32
[df626eb]33struct ParamEntry;
34
35typedef std::map< UniqueId, ParamEntry > InferredParams;
36
37/// ParamEntry contains the i.d. of a declaration and a type that is derived from that declaration,
38/// but subject to decay-to-pointer and type parameter renaming
39struct ParamEntry {
40 ParamEntry(): decl( 0 ), actualType( 0 ), formalType( 0 ), expr( 0 ), inferParams( new InferredParams ) {}
41 ParamEntry( UniqueId decl, Type * actualType, Type * formalType, Expression* expr ): decl( decl ), actualType( actualType ), formalType( formalType ), expr( expr ), inferParams( new InferredParams ) {}
42 ParamEntry( const ParamEntry & other );
[eba74ba]43 ParamEntry( ParamEntry&& other );
[df626eb]44 ParamEntry & operator=( const ParamEntry & other );
[4d6d62e]45 ParamEntry & operator=( ParamEntry && other );
[df626eb]46
47 UniqueId decl;
48 Type * actualType;
49 Type * formalType;
50 Expression * expr;
51 std::unique_ptr< InferredParams > inferParams;
52};
53
[47534159]54/// Expression is the root type for all expressions
[df626eb]55class Expression : public BaseSyntaxNode {
[68f9c43]56 protected:
57 virtual ~Expression();
58
[0dd3a2f]59 public:
[65cdc1e]60 Type * result;
61 TypeSubstitution * env;
62 bool extension = false;
[df626eb]63 InferredParams inferParams;
[65cdc1e]64
[bf4b4cf]65 Expression();
[5ded739]66 Expression( const Expression & other );
[0dd3a2f]67
[906e24d]68 Type *& get_result() { return result; }
[fbcde64]69 const Type * get_result() const { return result; }
[5ded739]70 void set_result( Type * newValue ) { result = newValue; }
[0dd3a2f]71
[5ded739]72 TypeSubstitution * get_env() const { return env; }
73 void set_env( TypeSubstitution * newValue ) { env = newValue; }
[e04ef3a]74 bool get_extension() const { return extension; }
[8e9cbb2]75 Expression * set_extension( bool exten ) { extension = exten; return this; }
[0dd3a2f]76
[df626eb]77 InferredParams & get_inferParams() { return inferParams; }
78
[cdb990a]79 // move other's inferParams to this
80 void spliceInferParams( Expression * other );
81
[fa16264]82 virtual Expression * clone() const override = 0;
83 virtual void accept( Visitor & v ) override = 0;
84 virtual Expression * acceptMutator( Mutator & m ) override = 0;
[50377a4]85 virtual void print( std::ostream & os, Indenter indent = {} ) const override;
[51b73452]86};
87
[9706554]88/// ApplicationExpr represents the application of a function to a set of parameters. This is the result of running an
89/// UntypedExpr through the expression analyzer.
[0dd3a2f]90class ApplicationExpr : public Expression {
91 public:
[65cdc1e]92 Expression * function;
[871cdb4]93 std::list<Expression *> args;
[65cdc1e]94
[a5f0529]95 ApplicationExpr( Expression * function, const std::list<Expression *> & args = std::list< Expression * >() );
[5ded739]96 ApplicationExpr( const ApplicationExpr & other );
[0dd3a2f]97
[5ded739]98 Expression * get_function() const { return function; }
99 void set_function( Expression * newValue ) { function = newValue; }
[0dd3a2f]100 std::list<Expression *>& get_args() { return args; }
101
[5ded739]102 virtual ApplicationExpr * clone() const { return new ApplicationExpr( * this ); }
103 virtual void accept( Visitor & v ) { v.visit( this ); }
104 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
[50377a4]105 virtual void print( std::ostream & os, Indenter indent = {} ) const;
[51b73452]106};
107
[9706554]108/// UntypedExpr represents the application of a function to a set of parameters, but where the particular overload for
109/// the function name has not yet been determined. Most operators are converted into functional form automatically, to
110/// permit operator overloading.
[0dd3a2f]111class UntypedExpr : public Expression {
112 public:
[65cdc1e]113 Expression * function;
114 std::list<Expression*> args;
115
[bf4b4cf]116 UntypedExpr( Expression * function, const std::list<Expression *> & args = std::list< Expression * >() );
[5ded739]117 UntypedExpr( const UntypedExpr & other );
[0dd3a2f]118
[5ded739]119 Expression * get_function() const { return function; }
120 void set_function( Expression * newValue ) { function = newValue; }
[0dd3a2f]121
122 std::list<Expression*>::iterator begin_args() { return args.begin(); }
123 std::list<Expression*>::iterator end_args() { return args.end(); }
124 std::list<Expression*>& get_args() { return args; }
125
[b3b2077]126 static UntypedExpr * createDeref( Expression * arg );
127 static UntypedExpr * createAssign( Expression * arg1, Expression * arg2 );
128
[5ded739]129 virtual UntypedExpr * clone() const { return new UntypedExpr( * this ); }
130 virtual void accept( Visitor & v ) { v.visit( this ); }
131 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
[50377a4]132 virtual void print( std::ostream & os, Indenter indent = {} ) const;
[51b73452]133};
134
[47534159]135/// NameExpr contains a name whose meaning is still not determined
[0dd3a2f]136class NameExpr : public Expression {
137 public:
[65cdc1e]138 std::string name;
139
[bf4b4cf]140 NameExpr( std::string name );
[5ded739]141 NameExpr( const NameExpr & other );
[0dd3a2f]142
[5ded739]143 const std::string & get_name() const { return name; }
[0dd3a2f]144 void set_name( std::string newValue ) { name = newValue; }
145
[5ded739]146 virtual NameExpr * clone() const { return new NameExpr( * this ); }
147 virtual void accept( Visitor & v ) { v.visit( this ); }
148 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
[50377a4]149 virtual void print( std::ostream & os, Indenter indent = {} ) const;
[51b73452]150};
151
152// The following classes are used to represent expression types that cannot be converted into
153// function-call format.
154
[5ded739]155/// AddressExpr represents a address-of expression, e.g. & e
[0dd3a2f]156class AddressExpr : public Expression {
157 public:
[65cdc1e]158 Expression * arg;
159
[bf4b4cf]160 AddressExpr( Expression * arg );
[5ded739]161 AddressExpr( const AddressExpr & other );
[0dd3a2f]162
[5ded739]163 Expression * get_arg() const { return arg; }
164 void set_arg(Expression * newValue ) { arg = newValue; }
[0dd3a2f]165
[5ded739]166 virtual AddressExpr * clone() const { return new AddressExpr( * this ); }
167 virtual void accept( Visitor & v ) { v.visit( this ); }
168 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
[50377a4]169 virtual void print( std::ostream & os, Indenter indent = {} ) const;
[51b73452]170};
171
[5809461]172// GCC &&label
173// https://gcc.gnu.org/onlinedocs/gcc-3.4.2/gcc/Labels-as-Values.html
[0dd3a2f]174class LabelAddressExpr : public Expression {
175 public:
[5809461]176 Label arg;
[65cdc1e]177
[5809461]178 LabelAddressExpr( const Label &arg );
[5ded739]179 LabelAddressExpr( const LabelAddressExpr & other );
[0dd3a2f]180
[5ded739]181 virtual LabelAddressExpr * clone() const { return new LabelAddressExpr( * this ); }
182 virtual void accept( Visitor & v ) { v.visit( this ); }
183 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
[50377a4]184 virtual void print( std::ostream & os, Indenter indent = {} ) const;
[51b73452]185};
186
[47534159]187/// CastExpr represents a type cast expression, e.g. (int)e
[0dd3a2f]188class CastExpr : public Expression {
189 public:
[65cdc1e]190 Expression * arg;
[c0bf94e]191 bool isGenerated = true; // whether this cast appeared in the source program
[65cdc1e]192
[c0bf94e]193 CastExpr( Expression * arg, bool isGenerated = true );
194 CastExpr( Expression * arg, Type * toType, bool isGenerated = true );
[9a705dc8]195 CastExpr( Expression * arg, void * ) = delete; // prevent accidentally passing pointers for isGenerated in the first constructor
[5ded739]196 CastExpr( const CastExpr & other );
[0dd3a2f]197
[5ded739]198 Expression * get_arg() const { return arg; }
[a5f0529]199 void set_arg( Expression * newValue ) { arg = newValue; }
[0dd3a2f]200
[5ded739]201 virtual CastExpr * clone() const { return new CastExpr( * this ); }
202 virtual void accept( Visitor & v ) { v.visit( this ); }
203 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
[50377a4]204 virtual void print( std::ostream & os, Indenter indent = {} ) const;
[51b73452]205};
206
[9a705dc8]207/// KeywordCastExpr represents a cast to 'keyword types', e.g. (thread &)t
208class KeywordCastExpr : public Expression {
209public:
210 Expression * arg;
211 enum Target {
212 Coroutine, Thread, Monitor, NUMBER_OF_TARGETS
213 } target;
214
215 KeywordCastExpr( Expression * arg, Target target );
216 KeywordCastExpr( const KeywordCastExpr & other );
217
218 const std::string & targetString() const;
219
220 virtual KeywordCastExpr * clone() const { return new KeywordCastExpr( * this ); }
221 virtual void accept( Visitor & v ) { v.visit( this ); }
222 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
223 virtual void print( std::ostream & os, Indenter indent = {} ) const;
224};
225
[a5f0529]226/// VirtualCastExpr repersents a virtual dynamic cast, e.g. (virtual exception)e
227class VirtualCastExpr : public Expression {
228 public:
[5ded739]229 Expression * arg;
[65cdc1e]230
[a5f0529]231 VirtualCastExpr( Expression * arg, Type * toType );
232 VirtualCastExpr( const VirtualCastExpr & other );
233
234 Expression * get_arg() const { return arg; }
235 void set_arg( Expression * newValue ) { arg = newValue; }
236
237 virtual VirtualCastExpr * clone() const { return new VirtualCastExpr( * this ); }
238 virtual void accept( Visitor & v ) { v.visit( this ); }
239 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
[50377a4]240 virtual void print( std::ostream & os, Indenter indent = {} ) const;
[51b73452]241};
242
[47534159]243/// UntypedMemberExpr represents a member selection operation, e.g. q.p before processing by the expression analyzer
[0dd3a2f]244class UntypedMemberExpr : public Expression {
245 public:
[65cdc1e]246 Expression * member;
247 Expression * aggregate;
248
[bf4b4cf]249 UntypedMemberExpr( Expression * member, Expression * aggregate );
[5ded739]250 UntypedMemberExpr( const UntypedMemberExpr & other );
[0dd3a2f]251
[3b58d91]252 Expression * get_member() const { return member; }
253 void set_member( Expression * newValue ) { member = newValue; }
[5ded739]254 Expression * get_aggregate() const { return aggregate; }
255 void set_aggregate( Expression * newValue ) { aggregate = newValue; }
[0dd3a2f]256
[5ded739]257 virtual UntypedMemberExpr * clone() const { return new UntypedMemberExpr( * this ); }
258 virtual void accept( Visitor & v ) { v.visit( this ); }
259 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
[50377a4]260 virtual void print( std::ostream & os, Indenter indent = {} ) const;
[51b73452]261};
262
[4551a6e]263/// MemberExpr represents a member selection operation, e.g. q.p after processing by the expression analyzer.
264/// Does not take ownership of member.
[0dd3a2f]265class MemberExpr : public Expression {
266 public:
[65cdc1e]267 DeclarationWithType * member;
268 Expression * aggregate;
269
[bf4b4cf]270 MemberExpr( DeclarationWithType * member, Expression * aggregate );
[5ded739]271 MemberExpr( const MemberExpr & other );
[0dd3a2f]272
[5ded739]273 DeclarationWithType * get_member() const { return member; }
274 void set_member( DeclarationWithType * newValue ) { member = newValue; }
275 Expression * get_aggregate() const { return aggregate; }
276 void set_aggregate( Expression * newValue ) { aggregate = newValue; }
[0dd3a2f]277
[5ded739]278 virtual MemberExpr * clone() const { return new MemberExpr( * this ); }
279 virtual void accept( Visitor & v ) { v.visit( this ); }
280 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
[50377a4]281 virtual void print( std::ostream & os, Indenter indent = {} ) const;
[51b73452]282};
283
[4551a6e]284/// VariableExpr represents an expression that simply refers to the value of a named variable.
285/// Does not take ownership of var.
[0dd3a2f]286class VariableExpr : public Expression {
287 public:
[65cdc1e]288 DeclarationWithType * var;
289
[bf4b4cf]290 VariableExpr( DeclarationWithType * var );
[5ded739]291 VariableExpr( const VariableExpr & other );
[0dd3a2f]292
[5ded739]293 DeclarationWithType * get_var() const { return var; }
294 void set_var( DeclarationWithType * newValue ) { var = newValue; }
[0dd3a2f]295
[8a6cf7e]296 static VariableExpr * functionPointer( FunctionDecl * decl );
297
[5ded739]298 virtual VariableExpr * clone() const { return new VariableExpr( * this ); }
299 virtual void accept( Visitor & v ) { v.visit( this ); }
300 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
[50377a4]301 virtual void print( std::ostream & os, Indenter indent = {} ) const;
[51b73452]302};
303
[3be261a]304/// ConstantExpr represents an expression that simply refers to the value of a constant
[0dd3a2f]305class ConstantExpr : public Expression {
306 public:
[65cdc1e]307 Constant constant;
308
[bf4b4cf]309 ConstantExpr( Constant constant );
[5ded739]310 ConstantExpr( const ConstantExpr & other );
[0dd3a2f]311
[5ded739]312 Constant * get_constant() { return & constant; }
[ddb80bd]313 const Constant * get_constant() const { return & constant; }
[5ded739]314 void set_constant( const Constant & newValue ) { constant = newValue; }
[0dd3a2f]315
[ddb80bd]316 long long int intValue() const;
317
[5ded739]318 virtual ConstantExpr * clone() const { return new ConstantExpr( * this ); }
319 virtual void accept( Visitor & v ) { v.visit( this ); }
320 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
[50377a4]321 virtual void print( std::ostream & os, Indenter indent = {} ) const;
[51b73452]322};
323
[47534159]324/// SizeofExpr represents a sizeof expression (could be sizeof(int) or sizeof 3+4)
[0dd3a2f]325class SizeofExpr : public Expression {
326 public:
[65cdc1e]327 Expression * expr;
328 Type * type;
329 bool isType;
330
[bf4b4cf]331 SizeofExpr( Expression * expr );
[5ded739]332 SizeofExpr( const SizeofExpr & other );
[bf4b4cf]333 SizeofExpr( Type * type );
[0dd3a2f]334
[5ded739]335 Expression * get_expr() const { return expr; }
336 void set_expr( Expression * newValue ) { expr = newValue; }
337 Type * get_type() const { return type; }
338 void set_type( Type * newValue ) { type = newValue; }
[0dd3a2f]339 bool get_isType() const { return isType; }
340 void set_isType( bool newValue ) { isType = newValue; }
341
[5ded739]342 virtual SizeofExpr * clone() const { return new SizeofExpr( * this ); }
343 virtual void accept( Visitor & v ) { v.visit( this ); }
344 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
[50377a4]345 virtual void print( std::ostream & os, Indenter indent = {} ) const;
[51b73452]346};
347
[47534159]348/// AlignofExpr represents an alignof expression
349class AlignofExpr : public Expression {
350 public:
[65cdc1e]351 Expression * expr;
352 Type * type;
353 bool isType;
354
[bf4b4cf]355 AlignofExpr( Expression * expr );
[5ded739]356 AlignofExpr( const AlignofExpr & other );
[bf4b4cf]357 AlignofExpr( Type * type );
[47534159]358
[5ded739]359 Expression * get_expr() const { return expr; }
360 void set_expr( Expression * newValue ) { expr = newValue; }
361 Type * get_type() const { return type; }
362 void set_type( Type * newValue ) { type = newValue; }
[47534159]363 bool get_isType() const { return isType; }
364 void set_isType( bool newValue ) { isType = newValue; }
365
[5ded739]366 virtual AlignofExpr * clone() const { return new AlignofExpr( * this ); }
367 virtual void accept( Visitor & v ) { v.visit( this ); }
368 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
[50377a4]369 virtual void print( std::ostream & os, Indenter indent = {} ) const;
[47534159]370};
371
[2a4b088]372/// UntypedOffsetofExpr represents an offsetof expression before resolution
373class UntypedOffsetofExpr : public Expression {
374 public:
[65cdc1e]375 Type * type;
376 std::string member;
377
[bf4b4cf]378 UntypedOffsetofExpr( Type * type, const std::string & member );
[5ded739]379 UntypedOffsetofExpr( const UntypedOffsetofExpr & other );
[2a4b088]380
381 std::string get_member() const { return member; }
[5ded739]382 void set_member( const std::string & newValue ) { member = newValue; }
383 Type * get_type() const { return type; }
384 void set_type( Type * newValue ) { type = newValue; }
385
386 virtual UntypedOffsetofExpr * clone() const { return new UntypedOffsetofExpr( * this ); }
387 virtual void accept( Visitor & v ) { v.visit( this ); }
388 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
[50377a4]389 virtual void print( std::ostream & os, Indenter indent = {} ) const;
[2a4b088]390};
391
[25a054f]392/// OffsetofExpr represents an offsetof expression
393class OffsetofExpr : public Expression {
394 public:
[65cdc1e]395 Type * type;
396 DeclarationWithType * member;
397
[bf4b4cf]398 OffsetofExpr( Type * type, DeclarationWithType * member );
[5ded739]399 OffsetofExpr( const OffsetofExpr & other );
[25a054f]400
[5ded739]401 Type * get_type() const { return type; }
402 void set_type( Type * newValue ) { type = newValue; }
403 DeclarationWithType * get_member() const { return member; }
404 void set_member( DeclarationWithType * newValue ) { member = newValue; }
405
406 virtual OffsetofExpr * clone() const { return new OffsetofExpr( * this ); }
407 virtual void accept( Visitor & v ) { v.visit( this ); }
408 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
[50377a4]409 virtual void print( std::ostream & os, Indenter indent = {} ) const;
[25a054f]410};
411
[afc1045]412/// Expression representing a pack of field-offsets for a generic type
413class OffsetPackExpr : public Expression {
414public:
[65cdc1e]415 StructInstType * type;
416
[bf4b4cf]417 OffsetPackExpr( StructInstType * type );
[5ded739]418 OffsetPackExpr( const OffsetPackExpr & other );
[afc1045]419
[5ded739]420 StructInstType * get_type() const { return type; }
421 void set_type( StructInstType * newValue ) { type = newValue; }
[afc1045]422
[5ded739]423 virtual OffsetPackExpr * clone() const { return new OffsetPackExpr( * this ); }
424 virtual void accept( Visitor & v ) { v.visit( this ); }
425 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
[50377a4]426 virtual void print( std::ostream & os, Indenter indent = {} ) const;
[afc1045]427};
428
[47534159]429/// AttrExpr represents an @attribute expression (like sizeof, but user-defined)
[0dd3a2f]430class AttrExpr : public Expression {
431 public:
[65cdc1e]432 Expression * attr;
433 Expression * expr;
434 Type * type;
435 bool isType;
436
[bf4b4cf]437 AttrExpr(Expression * attr, Expression * expr );
[5ded739]438 AttrExpr( const AttrExpr & other );
[bf4b4cf]439 AttrExpr( Expression * attr, Type * type );
[0dd3a2f]440
[5ded739]441 Expression * get_attr() const { return attr; }
442 void set_attr( Expression * newValue ) { attr = newValue; }
443 Expression * get_expr() const { return expr; }
444 void set_expr( Expression * newValue ) { expr = newValue; }
445 Type * get_type() const { return type; }
446 void set_type( Type * newValue ) { type = newValue; }
[0dd3a2f]447 bool get_isType() const { return isType; }
448 void set_isType( bool newValue ) { isType = newValue; }
449
[5ded739]450 virtual AttrExpr * clone() const { return new AttrExpr( * this ); }
451 virtual void accept( Visitor & v ) { v.visit( this ); }
452 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
[50377a4]453 virtual void print( std::ostream & os, Indenter indent = {} ) const;
[51b73452]454};
455
[47534159]456/// LogicalExpr represents a short-circuit boolean expression (&& or ||)
[0dd3a2f]457class LogicalExpr : public Expression {
458 public:
[65cdc1e]459 Expression * arg1;
460 Expression * arg2;
461
[bf4b4cf]462 LogicalExpr( Expression * arg1, Expression * arg2, bool andp = true );
[5ded739]463 LogicalExpr( const LogicalExpr & other );
[0dd3a2f]464
465 bool get_isAnd() const { return isAnd; }
[5ded739]466 Expression * get_arg1() { return arg1; }
467 void set_arg1( Expression * newValue ) { arg1 = newValue; }
468 Expression * get_arg2() const { return arg2; }
469 void set_arg2( Expression * newValue ) { arg2 = newValue; }
470
471 virtual LogicalExpr * clone() const { return new LogicalExpr( * this ); }
472 virtual void accept( Visitor & v ) { v.visit( this ); }
473 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
[50377a4]474 virtual void print( std::ostream & os, Indenter indent = {} ) const;
[65cdc1e]475
[0dd3a2f]476 private:
477 bool isAnd;
[51b73452]478};
479
[47534159]480/// ConditionalExpr represents the three-argument conditional ( p ? a : b )
[0dd3a2f]481class ConditionalExpr : public Expression {
482 public:
[65cdc1e]483 Expression * arg1;
484 Expression * arg2;
485 Expression * arg3;
486
[bf4b4cf]487 ConditionalExpr( Expression * arg1, Expression * arg2, Expression * arg3 );
[5ded739]488 ConditionalExpr( const ConditionalExpr & other );
[0dd3a2f]489
[5ded739]490 Expression * get_arg1() const { return arg1; }
491 void set_arg1( Expression * newValue ) { arg1 = newValue; }
492 Expression * get_arg2() const { return arg2; }
493 void set_arg2( Expression * newValue ) { arg2 = newValue; }
494 Expression * get_arg3() const { return arg3; }
495 void set_arg3( Expression * newValue ) { arg3 = newValue; }
496
497 virtual ConditionalExpr * clone() const { return new ConditionalExpr( * this ); }
498 virtual void accept( Visitor & v ) { v.visit( this ); }
499 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
[50377a4]500 virtual void print( std::ostream & os, Indenter indent = {} ) const;
[51b73452]501};
502
[47534159]503/// CommaExpr represents the sequence operator ( a, b )
[0dd3a2f]504class CommaExpr : public Expression {
505 public:
[65cdc1e]506 Expression * arg1;
507 Expression * arg2;
508
[bf4b4cf]509 CommaExpr( Expression * arg1, Expression * arg2 );
[5ded739]510 CommaExpr( const CommaExpr & other );
[0dd3a2f]511
[5ded739]512 Expression * get_arg1() const { return arg1; }
513 void set_arg1( Expression * newValue ) { arg1 = newValue; }
514 Expression * get_arg2() const { return arg2; }
515 void set_arg2( Expression * newValue ) { arg2 = newValue; }
[0dd3a2f]516
[5ded739]517 virtual CommaExpr * clone() const { return new CommaExpr( * this ); }
518 virtual void accept( Visitor & v ) { v.visit( this ); }
519 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
[50377a4]520 virtual void print( std::ostream & os, Indenter indent = {} ) const;
[51b73452]521};
522
[47534159]523/// TypeExpr represents a type used in an expression (e.g. as a type generator parameter)
[0dd3a2f]524class TypeExpr : public Expression {
525 public:
[65cdc1e]526 Type * type;
527
[5ded739]528 TypeExpr( Type * type );
529 TypeExpr( const TypeExpr & other );
[0dd3a2f]530
[5ded739]531 Type * get_type() const { return type; }
532 void set_type( Type * newValue ) { type = newValue; }
[0dd3a2f]533
[5ded739]534 virtual TypeExpr * clone() const { return new TypeExpr( * this ); }
535 virtual void accept( Visitor & v ) { v.visit( this ); }
536 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
[50377a4]537 virtual void print( std::ostream & os, Indenter indent = {} ) const;
[51b73452]538};
539
[47534159]540/// AsmExpr represents a GCC 'asm constraint operand' used in an asm statement: [output] "=f" (result)
[7f5566b]541class AsmExpr : public Expression {
542 public:
[65cdc1e]543 Expression * inout;
[e612146c]544 Expression * constraint;
[65cdc1e]545 Expression * operand;
546
[e612146c]547 AsmExpr( Expression * inout, Expression * constraint, Expression * operand ) : inout( inout ), constraint( constraint ), operand( operand ) {}
[3be261a]548 AsmExpr( const AsmExpr & other );
[7f5566b]549
[5ded739]550 Expression * get_inout() const { return inout; }
551 void set_inout( Expression * newValue ) { inout = newValue; }
[7f5566b]552
[e612146c]553 Expression * get_constraint() const { return constraint; }
554 void set_constraint( Expression * newValue ) { constraint = newValue; }
[7f5566b]555
[5ded739]556 Expression * get_operand() const { return operand; }
557 void set_operand( Expression * newValue ) { operand = newValue; }
[7f5566b]558
[5ded739]559 virtual AsmExpr * clone() const { return new AsmExpr( * this ); }
560 virtual void accept( Visitor & v ) { v.visit( this ); }
561 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
[50377a4]562 virtual void print( std::ostream & os, Indenter indent = {} ) const;
[65cdc1e]563
[7f5566b]564 // https://gcc.gnu.org/onlinedocs/gcc-4.7.1/gcc/Machine-Constraints.html#Machine-Constraints
565};
566
[db4ecc5]567/// ImplicitCopyCtorExpr represents the application of a function to a set of parameters,
568/// along with a set of copy constructor calls, one for each argument.
569class ImplicitCopyCtorExpr : public Expression {
[68f9c43]570protected:
571 virtual ~ImplicitCopyCtorExpr();
572
[db4ecc5]573public:
[65cdc1e]574 ApplicationExpr * callExpr;
575 std::list< ObjectDecl * > tempDecls;
576 std::list< ObjectDecl * > returnDecls;
577 std::list< Expression * > dtors;
578
[db4ecc5]579 ImplicitCopyCtorExpr( ApplicationExpr * callExpr );
580 ImplicitCopyCtorExpr( const ImplicitCopyCtorExpr & other );
581
[5ded739]582 ApplicationExpr * get_callExpr() const { return callExpr; }
583 void set_callExpr( ApplicationExpr * newValue ) { callExpr = newValue; }
[db4ecc5]584
585 std::list< ObjectDecl * > & get_tempDecls() { return tempDecls; }
586 std::list< ObjectDecl * > & get_returnDecls() { return returnDecls; }
587 std::list< Expression * > & get_dtors() { return dtors; }
588
[5ded739]589 virtual ImplicitCopyCtorExpr * clone() const { return new ImplicitCopyCtorExpr( * this ); }
590 virtual void accept( Visitor & v ) { v.visit( this ); }
591 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
[50377a4]592 virtual void print( std::ostream & os, Indenter indent = {} ) const;
[db4ecc5]593};
594
[b6fe7e6]595/// ConstructorExpr represents the use of a constructor in an expression context, e.g. int * x = malloc() { 5 };
596class ConstructorExpr : public Expression {
597public:
[65cdc1e]598 Expression * callExpr;
599
[b6fe7e6]600 ConstructorExpr( Expression * callExpr );
601 ConstructorExpr( const ConstructorExpr & other );
[0dd3a2f]602
[5ded739]603 Expression * get_callExpr() const { return callExpr; }
604 void set_callExpr( Expression * newValue ) { callExpr = newValue; }
[0dd3a2f]605
[5ded739]606 virtual ConstructorExpr * clone() const { return new ConstructorExpr( * this ); }
607 virtual void accept( Visitor & v ) { v.visit( this ); }
608 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
[50377a4]609 virtual void print( std::ostream & os, Indenter indent = {} ) const;
[51b73452]610};
611
[630a82a]612/// CompoundLiteralExpr represents a C99 'compound literal'
613class CompoundLiteralExpr : public Expression {
614 public:
[65cdc1e]615 Initializer * initializer;
616
[630a82a]617 CompoundLiteralExpr( Type * type, Initializer * initializer );
[5ded739]618 CompoundLiteralExpr( const CompoundLiteralExpr & other );
[630a82a]619
620 Initializer * get_initializer() const { return initializer; }
621 void set_initializer( Initializer * i ) { initializer = i; }
622
[5ded739]623 virtual CompoundLiteralExpr * clone() const { return new CompoundLiteralExpr( * this ); }
624 virtual void accept( Visitor & v ) { v.visit( this ); }
625 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
[50377a4]626 virtual void print( std::ostream & os, Indenter indent = {} ) const;
[630a82a]627};
628
[b6fe7e6]629/// RangeExpr represents a range e.g. '3 ... 5' or '1~10'
[8688ce1]630class RangeExpr : public Expression {
631 public:
[65cdc1e]632 Expression * low, * high;
633
[5ded739]634 RangeExpr( Expression * low, Expression * high );
635 RangeExpr( const RangeExpr & other );
[8688ce1]636
[d9e2280]637 Expression * get_low() const { return low; }
638 Expression * get_high() const { return high; }
[5ded739]639 RangeExpr * set_low( Expression * low ) { RangeExpr::low = low; return this; }
640 RangeExpr * set_high( Expression * high ) { RangeExpr::high = high; return this; }
[8688ce1]641
[5ded739]642 virtual RangeExpr * clone() const { return new RangeExpr( * this ); }
643 virtual void accept( Visitor & v ) { v.visit( this ); }
644 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
[50377a4]645 virtual void print( std::ostream & os, Indenter indent = {} ) const;
[8688ce1]646};
647
[907eccb]648/// UntypedTupleExpr represents a tuple expression ( [a, b, c] ) before resolution
649class UntypedTupleExpr : public Expression {
650 public:
[65cdc1e]651 std::list<Expression*> exprs;
652
[bf4b4cf]653 UntypedTupleExpr( const std::list< Expression * > & exprs );
[5ded739]654 UntypedTupleExpr( const UntypedTupleExpr & other );
[907eccb]655
656 std::list<Expression*>& get_exprs() { return exprs; }
657
[5ded739]658 virtual UntypedTupleExpr * clone() const { return new UntypedTupleExpr( * this ); }
659 virtual void accept( Visitor & v ) { v.visit( this ); }
660 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
[50377a4]661 virtual void print( std::ostream & os, Indenter indent = {} ) const;
[907eccb]662};
663
[6eb8948]664/// TupleExpr represents a tuple expression ( [a, b, c] )
665class TupleExpr : public Expression {
666 public:
[65cdc1e]667 std::list<Expression*> exprs;
668
[bf4b4cf]669 TupleExpr( const std::list< Expression * > & exprs );
[5ded739]670 TupleExpr( const TupleExpr & other );
[6eb8948]671
672 std::list<Expression*>& get_exprs() { return exprs; }
673
[5ded739]674 virtual TupleExpr * clone() const { return new TupleExpr( * this ); }
675 virtual void accept( Visitor & v ) { v.visit( this ); }
676 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
[50377a4]677 virtual void print( std::ostream & os, Indenter indent = {} ) const;
[6eb8948]678};
679
[3b58d91]680/// TupleIndexExpr represents an element selection operation on a tuple value, e.g. t.3 after processing by the expression analyzer
681class TupleIndexExpr : public Expression {
682 public:
[65cdc1e]683 Expression * tuple;
684 unsigned int index;
685
[3b58d91]686 TupleIndexExpr( Expression * tuple, unsigned int index );
[5ded739]687 TupleIndexExpr( const TupleIndexExpr & other );
[3b58d91]688
689 Expression * get_tuple() const { return tuple; }
690 int get_index() const { return index; }
[5ded739]691 TupleIndexExpr * set_tuple( Expression * newValue ) { tuple = newValue; return this; }
[3b58d91]692 TupleIndexExpr * set_index( unsigned int newValue ) { index = newValue; return this; }
693
[5ded739]694 virtual TupleIndexExpr * clone() const { return new TupleIndexExpr( * this ); }
695 virtual void accept( Visitor & v ) { v.visit( this ); }
696 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
[50377a4]697 virtual void print( std::ostream & os, Indenter indent = {} ) const;
[3b58d91]698};
699
[65660bd]700/// TupleAssignExpr represents a multiple assignment operation, where both sides of the assignment have tuple type, e.g. [a, b, c] = [d, e, f];, a mass assignment operation, where the left hand side has tuple type and the right hand side does not, e.g. [a, b, c] = 5.0;, or a tuple ctor/dtor expression
[6eb8948]701class TupleAssignExpr : public Expression {
[3b58d91]702 public:
[65cdc1e]703 StmtExpr * stmtExpr = nullptr;
704
[bf4b4cf]705 TupleAssignExpr( const std::list< Expression * > & assigns, const std::list< ObjectDecl * > & tempDecls );
[5ded739]706 TupleAssignExpr( const TupleAssignExpr & other );
[3b58d91]707
[d5556a3]708 TupleAssignExpr * set_stmtExpr( StmtExpr * newValue ) { stmtExpr = newValue; return this; }
709 StmtExpr * get_stmtExpr() const { return stmtExpr; }
[3b58d91]710
[5ded739]711 virtual TupleAssignExpr * clone() const { return new TupleAssignExpr( * this ); }
712 virtual void accept( Visitor & v ) { v.visit( this ); }
713 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
[50377a4]714 virtual void print( std::ostream & os, Indenter indent = {} ) const;
[3b58d91]715};
716
[6eb8948]717/// StmtExpr represents a GCC 'statement expression', e.g. ({ int x = 5; x; })
718class StmtExpr : public Expression {
719public:
[65cdc1e]720 CompoundStmt * statements;
721 std::list< ObjectDecl * > returnDecls; // return variable(s) for stmt expression
722 std::list< Expression * > dtors; // destructor(s) for return variable(s)
723
[5ded739]724 StmtExpr( CompoundStmt * statements );
[6eb8948]725 StmtExpr( const StmtExpr & other );
[3b58d91]726
[6eb8948]727 CompoundStmt * get_statements() const { return statements; }
728 StmtExpr * set_statements( CompoundStmt * newValue ) { statements = newValue; return this; }
[3b58d91]729
[5e2c348]730 // call to set the result type of this StmtExpr based on its body
731 void computeResult();
732
[d5556a3]733 std::list< ObjectDecl * > & get_returnDecls() { return returnDecls; }
734 std::list< Expression * > & get_dtors() { return dtors; }
735
[5ded739]736 virtual StmtExpr * clone() const { return new StmtExpr( * this ); }
737 virtual void accept( Visitor & v ) { v.visit( this ); }
738 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
[50377a4]739 virtual void print( std::ostream & os, Indenter indent = {} ) const;
[3b58d91]740};
741
[3c13c03]742class UniqueExpr : public Expression {
743public:
[65cdc1e]744 Expression * expr;
745 ObjectDecl * object;
746 VariableExpr * var;
747
[bf32bb8]748 UniqueExpr( Expression * expr, long long idVal = -1 );
[3c13c03]749 UniqueExpr( const UniqueExpr & other );
750
[141b786]751 Expression * get_expr() const { return expr; }
752 UniqueExpr * set_expr( Expression * newValue ) { expr = newValue; return this; }
[3c13c03]753
[141b786]754 ObjectDecl * get_object() const { return object; }
755 UniqueExpr * set_object( ObjectDecl * newValue ) { object = newValue; return this; }
756
757 VariableExpr * get_var() const { return var; }
758 UniqueExpr * set_var( VariableExpr * newValue ) { var = newValue; return this; }
[77971f6]759
[bf32bb8]760 int get_id() const { return id; }
761
[5ded739]762 virtual UniqueExpr * clone() const { return new UniqueExpr( * this ); }
763 virtual void accept( Visitor & v ) { v.visit( this ); }
764 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
[50377a4]765 virtual void print( std::ostream & os, Indenter indent = {} ) const;
[65cdc1e]766
[3c13c03]767private:
[bf32bb8]768 int id;
769 static long long count;
[3c13c03]770};
771
[e4d829b]772struct InitAlternative {
773public:
774 Type * type = nullptr;
775 Designation * designation = nullptr;
776 InitAlternative( Type * type, Designation * designation );
777 InitAlternative( const InitAlternative & other );
778 InitAlternative & operator=( const Initializer & other ) = delete; // at the moment this isn't used, and I don't want to implement it
779};
780
781class UntypedInitExpr : public Expression {
782public:
[65cdc1e]783 Expression * expr;
784 std::list<InitAlternative> initAlts;
785
[e4d829b]786 UntypedInitExpr( Expression * expr, const std::list<InitAlternative> & initAlts );
787 UntypedInitExpr( const UntypedInitExpr & other );
788
789 Expression * get_expr() const { return expr; }
790 UntypedInitExpr * set_expr( Expression * newValue ) { expr = newValue; return this; }
791
792 std::list<InitAlternative> & get_initAlts() { return initAlts; }
793
794 virtual UntypedInitExpr * clone() const { return new UntypedInitExpr( * this ); }
795 virtual void accept( Visitor & v ) { v.visit( this ); }
796 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
[50377a4]797 virtual void print( std::ostream & os, Indenter indent = {} ) const;
[e4d829b]798};
799
800class InitExpr : public Expression {
801public:
[65cdc1e]802 Expression * expr;
803 Designation * designation;
804
[62423350]805 InitExpr( Expression * expr, Designation * designation );
[e4d829b]806 InitExpr( const InitExpr & other );
807
808 Expression * get_expr() const { return expr; }
809 InitExpr * set_expr( Expression * newValue ) { expr = newValue; return this; }
810
811 Designation * get_designation() const { return designation; }
812 InitExpr * set_designation( Designation * newValue ) { designation = newValue; return this; }
813
814 virtual InitExpr * clone() const { return new InitExpr( * this ); }
815 virtual void accept( Visitor & v ) { v.visit( this ); }
816 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
[50377a4]817 virtual void print( std::ostream & os, Indenter indent = {} ) const;
[e4d829b]818};
819
[44b4114]820/// expression that contains a deleted identifier - should never make it past the resolver.
821class DeletedExpr : public Expression {
822public:
823 Expression * expr;
824 BaseSyntaxNode * deleteStmt;
825
826 DeletedExpr( Expression * expr, BaseSyntaxNode * deleteStmt );
827 DeletedExpr( const DeletedExpr & other );
828
829 virtual DeletedExpr * clone() const { return new DeletedExpr( * this ); }
830 virtual void accept( Visitor & v ) { v.visit( this ); }
831 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
832 virtual void print( std::ostream & os, Indenter indent = {} ) const;
833};
834
[0f79853]835/// expression wrapping the use of a default argument - should never make it past the resolver.
836class DefaultArgExpr : public Expression {
837public:
838 Expression * expr;
839
840 DefaultArgExpr( Expression * expr );
841 DefaultArgExpr( const DefaultArgExpr & other );
842
843 virtual DefaultArgExpr * clone() const { return new DefaultArgExpr( * this ); }
844 virtual void accept( Visitor & v ) { v.visit( this ); }
845 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
846 virtual void print( std::ostream & os, Indenter indent = {} ) const;
847};
848
[d807ca28]849/// C11 _Generic expression
850class GenericExpr : public Expression {
851public:
852 struct Association {
853 Type * type = nullptr;
854 Expression * expr = nullptr;
855 bool isDefault = false;
856
857 Association( Type * type, Expression * expr );
858 Association( Expression * expr );
859 Association( const Association & other );
860 Association & operator=( const Association & other ) = delete; // at the moment this isn't used, and I don't want to implement it
861 };
862
863 Expression * control;
864 std::list<Association> associations;
865
866 GenericExpr( Expression * control, const std::list<Association> & assoc );
867 GenericExpr( const GenericExpr & other );
[28f3a19]868 ~GenericExpr();
[d807ca28]869
870 virtual GenericExpr * clone() const { return new GenericExpr( * this ); }
871 virtual void accept( Visitor & v ) { v.visit( this ); }
872 virtual Expression * acceptMutator( Mutator & m ) { return m.mutate( this ); }
873 virtual void print( std::ostream & os, Indenter indent = {} ) const;
874};
875
[0dd3a2f]876// Local Variables: //
877// tab-width: 4 //
878// mode: c++ //
879// compile-command: "make install" //
880// End: //
Note: See TracBrowser for help on using the repository browser.