source: src/SymTab/Validate.cc@ f57f6ea0

ADT ast-experimental enum forall-pointer-decay pthread-emulation qualifiedEnum
Last change on this file since f57f6ea0 was 5dcb881, checked in by Andrew Beach <ajbeach@…>, 4 years ago

Split up the validate pass. (Some statistics code is repeated, but this does not effect regular runs.)

  • Property mode set to 100644
File size: 78.8 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Validate.cc --
8//
9// Author : Richard C. Bilson
10// Created On : Sun May 17 21:50:04 2015
11// Last Modified By : Andrew Beach
12// Last Modified On : Fri Nov 12 11:00:00 2021
13// Update Count : 364
14//
15
16// The "validate" phase of translation is used to take a syntax tree and convert it into a standard form that aims to be
17// as regular in structure as possible. Some assumptions can be made regarding the state of the tree after this pass is
18// complete, including:
19//
20// - No nested structure or union definitions; any in the input are "hoisted" to the level of the containing struct or
21// union.
22//
23// - All enumeration constants have type EnumInstType.
24//
25// - The type "void" never occurs in lists of function parameter or return types. A function
26// taking no arguments has no argument types.
27//
28// - No context instances exist; they are all replaced by the set of declarations signified by the context, instantiated
29// by the particular set of type arguments.
30//
31// - Every declaration is assigned a unique id.
32//
33// - No typedef declarations or instances exist; the actual type is substituted for each instance.
34//
35// - Each type, struct, and union definition is followed by an appropriate assignment operator.
36//
37// - Each use of a struct or union is connected to a complete definition of that struct or union, even if that
38// definition occurs later in the input.
39
40#include "Validate.h"
41
42#include <cassert> // for assertf, assert
43#include <cstddef> // for size_t
44#include <list> // for list
45#include <string> // for string
46#include <unordered_map> // for unordered_map
47#include <utility> // for pair
48
49#include "AST/Chain.hpp"
50#include "AST/Decl.hpp"
51#include "AST/Node.hpp"
52#include "AST/Pass.hpp"
53#include "AST/SymbolTable.hpp"
54#include "AST/Type.hpp"
55#include "AST/TypeSubstitution.hpp"
56#include "CodeGen/CodeGenerator.h" // for genName
57#include "CodeGen/OperatorTable.h" // for isCtorDtor, isCtorDtorAssign
58#include "ControlStruct/Mutate.h" // for ForExprMutator
59#include "Common/CodeLocation.h" // for CodeLocation
60#include "Common/Stats.h" // for Stats::Heap
61#include "Common/PassVisitor.h" // for PassVisitor, WithDeclsToAdd
62#include "Common/ScopedMap.h" // for ScopedMap
63#include "Common/SemanticError.h" // for SemanticError
64#include "Common/UniqueName.h" // for UniqueName
65#include "Common/utility.h" // for operator+, cloneAll, deleteAll
66#include "CompilationState.h" // skip some passes in new-ast build
67#include "Concurrency/Keywords.h" // for applyKeywords
68#include "FixFunction.h" // for FixFunction
69#include "Indexer.h" // for Indexer
70#include "InitTweak/GenInit.h" // for fixReturnStatements
71#include "InitTweak/InitTweak.h" // for isCtorDtorAssign
72#include "ResolvExpr/typeops.h" // for typesCompatible
73#include "ResolvExpr/Resolver.h" // for findSingleExpression
74#include "ResolvExpr/ResolveTypeof.h" // for resolveTypeof
75#include "SymTab/Autogen.h" // for SizeType
76#include "SynTree/LinkageSpec.h" // for C
77#include "SynTree/Attribute.h" // for noAttributes, Attribute
78#include "SynTree/Constant.h" // for Constant
79#include "SynTree/Declaration.h" // for ObjectDecl, DeclarationWithType
80#include "SynTree/Expression.h" // for CompoundLiteralExpr, Expressio...
81#include "SynTree/Initializer.h" // for ListInit, Initializer
82#include "SynTree/Label.h" // for operator==, Label
83#include "SynTree/Mutator.h" // for Mutator
84#include "SynTree/Type.h" // for Type, TypeInstType, EnumInstType
85#include "SynTree/TypeSubstitution.h" // for TypeSubstitution
86#include "SynTree/Visitor.h" // for Visitor
87#include "Validate/HandleAttributes.h" // for handleAttributes
88#include "Validate/FindSpecialDecls.h" // for FindSpecialDecls
89
90class CompoundStmt;
91class ReturnStmt;
92class SwitchStmt;
93
94#define debugPrint( x ) if ( doDebug ) x
95
96namespace SymTab {
97 /// hoists declarations that are difficult to hoist while parsing
98 struct HoistTypeDecls final : public WithDeclsToAdd {
99 void previsit( SizeofExpr * );
100 void previsit( AlignofExpr * );
101 void previsit( UntypedOffsetofExpr * );
102 void previsit( CompoundLiteralExpr * );
103 void handleType( Type * );
104 };
105
106 struct FixQualifiedTypes final : public WithIndexer {
107 FixQualifiedTypes() : WithIndexer(false) {}
108 Type * postmutate( QualifiedType * );
109 };
110
111 struct HoistStruct final : public WithDeclsToAdd, public WithGuards {
112 /// Flattens nested struct types
113 static void hoistStruct( std::list< Declaration * > &translationUnit );
114
115 void previsit( StructDecl * aggregateDecl );
116 void previsit( UnionDecl * aggregateDecl );
117 void previsit( StaticAssertDecl * assertDecl );
118 void previsit( StructInstType * type );
119 void previsit( UnionInstType * type );
120 void previsit( EnumInstType * type );
121
122 private:
123 template< typename AggDecl > void handleAggregate( AggDecl * aggregateDecl );
124
125 AggregateDecl * parentAggr = nullptr;
126 };
127
128 /// Fix return types so that every function returns exactly one value
129 struct ReturnTypeFixer {
130 static void fix( std::list< Declaration * > &translationUnit );
131
132 void postvisit( FunctionDecl * functionDecl );
133 void postvisit( FunctionType * ftype );
134 };
135
136 /// Replaces enum types by int, and function or array types in function parameter and return lists by appropriate pointers.
137 struct EnumAndPointerDecay_old {
138 void previsit( EnumDecl * aggregateDecl );
139 void previsit( FunctionType * func );
140 };
141
142 /// Associates forward declarations of aggregates with their definitions
143 struct LinkReferenceToTypes_old final : public WithIndexer, public WithGuards, public WithVisitorRef<LinkReferenceToTypes_old>, public WithShortCircuiting {
144 LinkReferenceToTypes_old( const Indexer * indexer );
145 void postvisit( TypeInstType * typeInst );
146
147 void postvisit( EnumInstType * enumInst );
148 void postvisit( StructInstType * structInst );
149 void postvisit( UnionInstType * unionInst );
150 void postvisit( TraitInstType * traitInst );
151 void previsit( QualifiedType * qualType );
152 void postvisit( QualifiedType * qualType );
153
154 void postvisit( EnumDecl * enumDecl );
155 void postvisit( StructDecl * structDecl );
156 void postvisit( UnionDecl * unionDecl );
157 void postvisit( TraitDecl * traitDecl );
158
159 void previsit( StructDecl * structDecl );
160 void previsit( UnionDecl * unionDecl );
161
162 void renameGenericParams( std::list< TypeDecl * > & params );
163
164 private:
165 const Indexer * local_indexer;
166
167 typedef std::map< std::string, std::list< EnumInstType * > > ForwardEnumsType;
168 typedef std::map< std::string, std::list< StructInstType * > > ForwardStructsType;
169 typedef std::map< std::string, std::list< UnionInstType * > > ForwardUnionsType;
170 ForwardEnumsType forwardEnums;
171 ForwardStructsType forwardStructs;
172 ForwardUnionsType forwardUnions;
173 /// true if currently in a generic type body, so that type parameter instances can be renamed appropriately
174 bool inGeneric = false;
175 };
176
177 /// Does early resolution on the expressions that give enumeration constants their values
178 struct ResolveEnumInitializers final : public WithIndexer, public WithGuards, public WithVisitorRef<ResolveEnumInitializers>, public WithShortCircuiting {
179 ResolveEnumInitializers( const Indexer * indexer );
180 void postvisit( EnumDecl * enumDecl );
181
182 private:
183 const Indexer * local_indexer;
184
185 };
186
187 /// Replaces array and function types in forall lists by appropriate pointer type and assigns each Object and Function declaration a unique ID.
188 struct ForallPointerDecay_old final {
189 void previsit( ObjectDecl * object );
190 void previsit( FunctionDecl * func );
191 void previsit( FunctionType * ftype );
192 void previsit( StructDecl * aggrDecl );
193 void previsit( UnionDecl * aggrDecl );
194 };
195
196 struct ReturnChecker : public WithGuards {
197 /// Checks that return statements return nothing if their return type is void
198 /// and return something if the return type is non-void.
199 static void checkFunctionReturns( std::list< Declaration * > & translationUnit );
200
201 void previsit( FunctionDecl * functionDecl );
202 void previsit( ReturnStmt * returnStmt );
203
204 typedef std::list< DeclarationWithType * > ReturnVals;
205 ReturnVals returnVals;
206 };
207
208 struct ReplaceTypedef final : public WithVisitorRef<ReplaceTypedef>, public WithGuards, public WithShortCircuiting, public WithDeclsToAdd {
209 ReplaceTypedef() : scopeLevel( 0 ) {}
210 /// Replaces typedefs by forward declarations
211 static void replaceTypedef( std::list< Declaration * > &translationUnit );
212
213 void premutate( QualifiedType * );
214 Type * postmutate( QualifiedType * qualType );
215 Type * postmutate( TypeInstType * aggregateUseType );
216 Declaration * postmutate( TypedefDecl * typeDecl );
217 void premutate( TypeDecl * typeDecl );
218 void premutate( FunctionDecl * funcDecl );
219 void premutate( ObjectDecl * objDecl );
220 DeclarationWithType * postmutate( ObjectDecl * objDecl );
221
222 void premutate( CastExpr * castExpr );
223
224 void premutate( CompoundStmt * compoundStmt );
225
226 void premutate( StructDecl * structDecl );
227 void premutate( UnionDecl * unionDecl );
228 void premutate( EnumDecl * enumDecl );
229 void premutate( TraitDecl * );
230
231 void premutate( FunctionType * ftype );
232
233 private:
234 template<typename AggDecl>
235 void addImplicitTypedef( AggDecl * aggDecl );
236 template< typename AggDecl >
237 void handleAggregate( AggDecl * aggr );
238
239 typedef std::unique_ptr<TypedefDecl> TypedefDeclPtr;
240 typedef ScopedMap< std::string, std::pair< TypedefDeclPtr, int > > TypedefMap;
241 typedef ScopedMap< std::string, TypeDecl * > TypeDeclMap;
242 TypedefMap typedefNames;
243 TypeDeclMap typedeclNames;
244 int scopeLevel;
245 bool inFunctionType = false;
246 };
247
248 struct EliminateTypedef {
249 /// removes TypedefDecls from the AST
250 static void eliminateTypedef( std::list< Declaration * > &translationUnit );
251
252 template<typename AggDecl>
253 void handleAggregate( AggDecl * aggregateDecl );
254
255 void previsit( StructDecl * aggregateDecl );
256 void previsit( UnionDecl * aggregateDecl );
257 void previsit( CompoundStmt * compoundStmt );
258 };
259
260 struct VerifyCtorDtorAssign {
261 /// ensure that constructors, destructors, and assignment have at least one
262 /// parameter, the first of which must be a pointer, and that ctor/dtors have no
263 /// return values.
264 static void verify( std::list< Declaration * > &translationUnit );
265
266 void previsit( FunctionDecl * funcDecl );
267 };
268
269 /// ensure that generic types have the correct number of type arguments
270 struct ValidateGenericParameters {
271 void previsit( StructInstType * inst );
272 void previsit( UnionInstType * inst );
273 };
274
275 /// desugar declarations and uses of dimension paramaters like [N],
276 /// from type-system managed values, to tunnneling via ordinary types,
277 /// as char[-] in and sizeof(-) out
278 struct TranslateDimensionGenericParameters : public WithIndexer, public WithGuards {
279 static void translateDimensions( std::list< Declaration * > &translationUnit );
280 TranslateDimensionGenericParameters();
281
282 bool nextVisitedNodeIsChildOfSUIT = false; // SUIT = Struct or Union -Inst Type
283 bool visitingChildOfSUIT = false;
284 void changeState_ChildOfSUIT( bool newVal );
285 void premutate( StructInstType * sit );
286 void premutate( UnionInstType * uit );
287 void premutate( BaseSyntaxNode * node );
288
289 TypeDecl * postmutate( TypeDecl * td );
290 Expression * postmutate( DimensionExpr * de );
291 Expression * postmutate( Expression * e );
292 };
293
294 struct FixObjectType : public WithIndexer {
295 /// resolves typeof type in object, function, and type declarations
296 static void fix( std::list< Declaration * > & translationUnit );
297
298 void previsit( ObjectDecl * );
299 void previsit( FunctionDecl * );
300 void previsit( TypeDecl * );
301 };
302
303 struct InitializerLength {
304 /// for array types without an explicit length, compute the length and store it so that it
305 /// is known to the rest of the phases. For example,
306 /// int x[] = { 1, 2, 3 };
307 /// int y[][2] = { { 1, 2, 3 }, { 1, 2, 3 } };
308 /// here x and y are known at compile-time to have length 3, so change this into
309 /// int x[3] = { 1, 2, 3 };
310 /// int y[3][2] = { { 1, 2, 3 }, { 1, 2, 3 } };
311 static void computeLength( std::list< Declaration * > & translationUnit );
312
313 void previsit( ObjectDecl * objDecl );
314 };
315
316 struct ArrayLength : public WithIndexer {
317 static void computeLength( std::list< Declaration * > & translationUnit );
318
319 void previsit( ArrayType * arrayType );
320 };
321
322 struct CompoundLiteral final : public WithDeclsToAdd, public WithVisitorRef<CompoundLiteral> {
323 Type::StorageClasses storageClasses;
324
325 void premutate( ObjectDecl * objectDecl );
326 Expression * postmutate( CompoundLiteralExpr * compLitExpr );
327 };
328
329 struct LabelAddressFixer final : public WithGuards {
330 std::set< Label > labels;
331
332 void premutate( FunctionDecl * funcDecl );
333 Expression * postmutate( AddressExpr * addrExpr );
334 };
335
336 void validate_A( std::list< Declaration * > & translationUnit ) {
337 PassVisitor<EnumAndPointerDecay_old> epc;
338 PassVisitor<HoistTypeDecls> hoistDecls;
339 {
340 Stats::Heap::newPass("validate-A");
341 Stats::Time::BlockGuard guard("validate-A");
342 VerifyCtorDtorAssign::verify( translationUnit ); // must happen before autogen, because autogen examines existing ctor/dtors
343 acceptAll( translationUnit, hoistDecls );
344 ReplaceTypedef::replaceTypedef( translationUnit );
345 ReturnTypeFixer::fix( translationUnit ); // must happen before autogen
346 acceptAll( translationUnit, epc ); // must happen before VerifyCtorDtorAssign, because void return objects should not exist; before LinkReferenceToTypes_old because it is an indexer and needs correct types for mangling
347 }
348 }
349
350 void validate_B( std::list< Declaration * > & translationUnit ) {
351 PassVisitor<LinkReferenceToTypes_old> lrt( nullptr );
352 PassVisitor<FixQualifiedTypes> fixQual;
353 {
354 Stats::Heap::newPass("validate-B");
355 Stats::Time::BlockGuard guard("validate-B");
356 acceptAll( translationUnit, lrt ); // must happen before autogen, because sized flag needs to propagate to generated functions
357 mutateAll( translationUnit, fixQual ); // must happen after LinkReferenceToTypes_old, because aggregate members are accessed
358 HoistStruct::hoistStruct( translationUnit );
359 EliminateTypedef::eliminateTypedef( translationUnit );
360 }
361 }
362
363 void validate_C( std::list< Declaration * > & translationUnit ) {
364 PassVisitor<ValidateGenericParameters> genericParams;
365 PassVisitor<ResolveEnumInitializers> rei( nullptr );
366 {
367 Stats::Heap::newPass("validate-C");
368 Stats::Time::BlockGuard guard("validate-C");
369 Stats::Time::TimeBlock("Validate Generic Parameters", [&]() {
370 acceptAll( translationUnit, genericParams ); // check as early as possible - can't happen before LinkReferenceToTypes_old; observed failing when attempted before eliminateTypedef
371 });
372 Stats::Time::TimeBlock("Translate Dimensions", [&]() {
373 TranslateDimensionGenericParameters::translateDimensions( translationUnit );
374 });
375 Stats::Time::TimeBlock("Resolve Enum Initializers", [&]() {
376 acceptAll( translationUnit, rei ); // must happen after translateDimensions because rei needs identifier lookup, which needs name mangling
377 });
378 Stats::Time::TimeBlock("Check Function Returns", [&]() {
379 ReturnChecker::checkFunctionReturns( translationUnit );
380 });
381 Stats::Time::TimeBlock("Fix Return Statements", [&]() {
382 InitTweak::fixReturnStatements( translationUnit ); // must happen before autogen
383 });
384 }
385 }
386
387 void validate_D( std::list< Declaration * > & translationUnit ) {
388 PassVisitor<ForallPointerDecay_old> fpd;
389 {
390 Stats::Heap::newPass("validate-D");
391 Stats::Time::BlockGuard guard("validate-D");
392 Stats::Time::TimeBlock("Apply Concurrent Keywords", [&]() {
393 Concurrency::applyKeywords( translationUnit );
394 });
395 Stats::Time::TimeBlock("Forall Pointer Decay", [&]() {
396 acceptAll( translationUnit, fpd ); // must happen before autogenerateRoutines, after Concurrency::applyKeywords because uniqueIds must be set on declaration before resolution
397 });
398 Stats::Time::TimeBlock("Hoist Control Declarations", [&]() {
399 ControlStruct::hoistControlDecls( translationUnit ); // hoist initialization out of for statements; must happen before autogenerateRoutines
400 });
401 Stats::Time::TimeBlock("Generate Autogen routines", [&]() {
402 autogenerateRoutines( translationUnit ); // moved up, used to be below compoundLiteral - currently needs EnumAndPointerDecay_old
403 });
404 }
405 }
406
407 void validate_E( std::list< Declaration * > & translationUnit ) {
408 PassVisitor<CompoundLiteral> compoundliteral;
409 {
410 Stats::Heap::newPass("validate-E");
411 Stats::Time::BlockGuard guard("validate-E");
412 Stats::Time::TimeBlock("Implement Mutex Func", [&]() {
413 Concurrency::implementMutexFuncs( translationUnit );
414 });
415 Stats::Time::TimeBlock("Implement Thread Start", [&]() {
416 Concurrency::implementThreadStarter( translationUnit );
417 });
418 Stats::Time::TimeBlock("Compound Literal", [&]() {
419 mutateAll( translationUnit, compoundliteral );
420 });
421 if (!useNewAST) {
422 Stats::Time::TimeBlock("Resolve With Expressions", [&]() {
423 ResolvExpr::resolveWithExprs( translationUnit ); // must happen before FixObjectType because user-code is resolved and may contain with variables
424 });
425 }
426 }
427 }
428
429 void validate_F( std::list< Declaration * > & translationUnit ) {
430 PassVisitor<LabelAddressFixer> labelAddrFixer;
431 {
432 Stats::Heap::newPass("validate-F");
433 Stats::Time::BlockGuard guard("validate-F");
434 if (!useNewAST) {
435 Stats::Time::TimeCall("Fix Object Type",
436 FixObjectType::fix, translationUnit);
437 }
438 Stats::Time::TimeCall("Initializer Length",
439 InitializerLength::computeLength, translationUnit);
440 if (!useNewAST) {
441 Stats::Time::TimeCall("Array Length",
442 ArrayLength::computeLength, translationUnit);
443 }
444 Stats::Time::TimeCall("Find Special Declarations",
445 Validate::findSpecialDecls, translationUnit);
446 Stats::Time::TimeCall("Fix Label Address",
447 mutateAll<LabelAddressFixer>, translationUnit, labelAddrFixer);
448 if (!useNewAST) {
449 Stats::Time::TimeCall("Handle Attributes",
450 Validate::handleAttributes, translationUnit);
451 }
452 }
453 }
454
455 void validate( std::list< Declaration * > &translationUnit, __attribute__((unused)) bool doDebug ) {
456 validate_A( translationUnit );
457 validate_B( translationUnit );
458 validate_C( translationUnit );
459 validate_D( translationUnit );
460 validate_E( translationUnit );
461 validate_F( translationUnit );
462 }
463
464 void validateType( Type * type, const Indexer * indexer ) {
465 PassVisitor<EnumAndPointerDecay_old> epc;
466 PassVisitor<LinkReferenceToTypes_old> lrt( indexer );
467 PassVisitor<ForallPointerDecay_old> fpd;
468 type->accept( epc );
469 type->accept( lrt );
470 type->accept( fpd );
471 }
472
473
474 void HoistTypeDecls::handleType( Type * type ) {
475 // some type declarations are buried in expressions and not easy to hoist during parsing; hoist them here
476 AggregateDecl * aggr = nullptr;
477 if ( StructInstType * inst = dynamic_cast< StructInstType * >( type ) ) {
478 aggr = inst->baseStruct;
479 } else if ( UnionInstType * inst = dynamic_cast< UnionInstType * >( type ) ) {
480 aggr = inst->baseUnion;
481 } else if ( EnumInstType * inst = dynamic_cast< EnumInstType * >( type ) ) {
482 aggr = inst->baseEnum;
483 }
484 if ( aggr && aggr->body ) {
485 declsToAddBefore.push_front( aggr );
486 }
487 }
488
489 void HoistTypeDecls::previsit( SizeofExpr * expr ) {
490 handleType( expr->type );
491 }
492
493 void HoistTypeDecls::previsit( AlignofExpr * expr ) {
494 handleType( expr->type );
495 }
496
497 void HoistTypeDecls::previsit( UntypedOffsetofExpr * expr ) {
498 handleType( expr->type );
499 }
500
501 void HoistTypeDecls::previsit( CompoundLiteralExpr * expr ) {
502 handleType( expr->result );
503 }
504
505
506 Type * FixQualifiedTypes::postmutate( QualifiedType * qualType ) {
507 Type * parent = qualType->parent;
508 Type * child = qualType->child;
509 if ( dynamic_cast< GlobalScopeType * >( qualType->parent ) ) {
510 // .T => lookup T at global scope
511 if ( TypeInstType * inst = dynamic_cast< TypeInstType * >( child ) ) {
512 auto td = indexer.globalLookupType( inst->name );
513 if ( ! td ) {
514 SemanticError( qualType->location, toString("Use of undefined global type ", inst->name) );
515 }
516 auto base = td->base;
517 assert( base );
518 Type * ret = base->clone();
519 ret->get_qualifiers() = qualType->get_qualifiers();
520 return ret;
521 } else {
522 // .T => T is not a type name
523 assertf( false, "unhandled global qualified child type: %s", toCString(child) );
524 }
525 } else {
526 // S.T => S must be an aggregate type, find the declaration for T in S.
527 AggregateDecl * aggr = nullptr;
528 if ( StructInstType * inst = dynamic_cast< StructInstType * >( parent ) ) {
529 aggr = inst->baseStruct;
530 } else if ( UnionInstType * inst = dynamic_cast< UnionInstType * > ( parent ) ) {
531 aggr = inst->baseUnion;
532 } else {
533 SemanticError( qualType->location, toString("Qualified type requires an aggregate on the left, but has: ", parent) );
534 }
535 assert( aggr ); // TODO: need to handle forward declarations
536 for ( Declaration * member : aggr->members ) {
537 if ( TypeInstType * inst = dynamic_cast< TypeInstType * >( child ) ) {
538 // name on the right is a typedef
539 if ( NamedTypeDecl * aggr = dynamic_cast< NamedTypeDecl * > ( member ) ) {
540 if ( aggr->name == inst->name ) {
541 assert( aggr->base );
542 Type * ret = aggr->base->clone();
543 ret->get_qualifiers() = qualType->get_qualifiers();
544 TypeSubstitution sub = parent->genericSubstitution();
545 sub.apply(ret);
546 return ret;
547 }
548 }
549 } else {
550 // S.T - S is not an aggregate => error
551 assertf( false, "unhandled qualified child type: %s", toCString(qualType) );
552 }
553 }
554 // failed to find a satisfying definition of type
555 SemanticError( qualType->location, toString("Undefined type in qualified type: ", qualType) );
556 }
557
558 // ... may want to link canonical SUE definition to each forward decl so that it becomes easier to lookup?
559 }
560
561
562 void HoistStruct::hoistStruct( std::list< Declaration * > &translationUnit ) {
563 PassVisitor<HoistStruct> hoister;
564 acceptAll( translationUnit, hoister );
565 }
566
567 bool shouldHoist( Declaration * decl ) {
568 return dynamic_cast< StructDecl * >( decl ) || dynamic_cast< UnionDecl * >( decl ) || dynamic_cast< StaticAssertDecl * >( decl );
569 }
570
571 namespace {
572 void qualifiedName( AggregateDecl * aggr, std::ostringstream & ss ) {
573 if ( aggr->parent ) qualifiedName( aggr->parent, ss );
574 ss << "__" << aggr->name;
575 }
576
577 // mangle nested type names using entire parent chain
578 std::string qualifiedName( AggregateDecl * aggr ) {
579 std::ostringstream ss;
580 qualifiedName( aggr, ss );
581 return ss.str();
582 }
583 }
584
585 template< typename AggDecl >
586 void HoistStruct::handleAggregate( AggDecl * aggregateDecl ) {
587 if ( parentAggr ) {
588 aggregateDecl->parent = parentAggr;
589 aggregateDecl->name = qualifiedName( aggregateDecl );
590 // Add elements in stack order corresponding to nesting structure.
591 declsToAddBefore.push_front( aggregateDecl );
592 } else {
593 GuardValue( parentAggr );
594 parentAggr = aggregateDecl;
595 } // if
596 // Always remove the hoisted aggregate from the inner structure.
597 GuardAction( [aggregateDecl]() { filter( aggregateDecl->members, shouldHoist, false ); } );
598 }
599
600 void HoistStruct::previsit( StaticAssertDecl * assertDecl ) {
601 if ( parentAggr ) {
602 declsToAddBefore.push_back( assertDecl );
603 }
604 }
605
606 void HoistStruct::previsit( StructDecl * aggregateDecl ) {
607 handleAggregate( aggregateDecl );
608 }
609
610 void HoistStruct::previsit( UnionDecl * aggregateDecl ) {
611 handleAggregate( aggregateDecl );
612 }
613
614 void HoistStruct::previsit( StructInstType * type ) {
615 // need to reset type name after expanding to qualified name
616 assert( type->baseStruct );
617 type->name = type->baseStruct->name;
618 }
619
620 void HoistStruct::previsit( UnionInstType * type ) {
621 assert( type->baseUnion );
622 type->name = type->baseUnion->name;
623 }
624
625 void HoistStruct::previsit( EnumInstType * type ) {
626 assert( type->baseEnum );
627 type->name = type->baseEnum->name;
628 }
629
630
631 bool isTypedef( Declaration * decl ) {
632 return dynamic_cast< TypedefDecl * >( decl );
633 }
634
635 void EliminateTypedef::eliminateTypedef( std::list< Declaration * > &translationUnit ) {
636 PassVisitor<EliminateTypedef> eliminator;
637 acceptAll( translationUnit, eliminator );
638 filter( translationUnit, isTypedef, true );
639 }
640
641 template< typename AggDecl >
642 void EliminateTypedef::handleAggregate( AggDecl * aggregateDecl ) {
643 filter( aggregateDecl->members, isTypedef, true );
644 }
645
646 void EliminateTypedef::previsit( StructDecl * aggregateDecl ) {
647 handleAggregate( aggregateDecl );
648 }
649
650 void EliminateTypedef::previsit( UnionDecl * aggregateDecl ) {
651 handleAggregate( aggregateDecl );
652 }
653
654 void EliminateTypedef::previsit( CompoundStmt * compoundStmt ) {
655 // remove and delete decl stmts
656 filter( compoundStmt->kids, [](Statement * stmt) {
657 if ( DeclStmt * declStmt = dynamic_cast< DeclStmt * >( stmt ) ) {
658 if ( dynamic_cast< TypedefDecl * >( declStmt->decl ) ) {
659 return true;
660 } // if
661 } // if
662 return false;
663 }, true);
664 }
665
666 void EnumAndPointerDecay_old::previsit( EnumDecl * enumDecl ) {
667 // Set the type of each member of the enumeration to be EnumConstant
668 for ( std::list< Declaration * >::iterator i = enumDecl->members.begin(); i != enumDecl->members.end(); ++i ) {
669 ObjectDecl * obj = dynamic_cast< ObjectDecl * >( * i );
670 assert( obj );
671 obj->set_type( new EnumInstType( Type::Qualifiers( Type::Const ), enumDecl->name ) );
672 } // for
673 }
674
675 namespace {
676 template< typename DWTList >
677 void fixFunctionList( DWTList & dwts, bool isVarArgs, FunctionType * func ) {
678 auto nvals = dwts.size();
679 bool containsVoid = false;
680 for ( auto & dwt : dwts ) {
681 // fix each DWT and record whether a void was found
682 containsVoid |= fixFunction( dwt );
683 }
684
685 // the only case in which "void" is valid is where it is the only one in the list
686 if ( containsVoid && ( nvals > 1 || isVarArgs ) ) {
687 SemanticError( func, "invalid type void in function type " );
688 }
689
690 // one void is the only thing in the list; remove it.
691 if ( containsVoid ) {
692 delete dwts.front();
693 dwts.clear();
694 }
695 }
696 }
697
698 void EnumAndPointerDecay_old::previsit( FunctionType * func ) {
699 // Fix up parameters and return types
700 fixFunctionList( func->parameters, func->isVarArgs, func );
701 fixFunctionList( func->returnVals, false, func );
702 }
703
704 LinkReferenceToTypes_old::LinkReferenceToTypes_old( const Indexer * other_indexer ) : WithIndexer( false ) {
705 if ( other_indexer ) {
706 local_indexer = other_indexer;
707 } else {
708 local_indexer = &indexer;
709 } // if
710 }
711
712 void LinkReferenceToTypes_old::postvisit( EnumInstType * enumInst ) {
713 const EnumDecl * st = local_indexer->lookupEnum( enumInst->name );
714 // it's not a semantic error if the enum is not found, just an implicit forward declaration
715 if ( st ) {
716 enumInst->baseEnum = const_cast<EnumDecl *>(st); // Just linking in the node
717 } // if
718 if ( ! st || ! st->body ) {
719 // use of forward declaration
720 forwardEnums[ enumInst->name ].push_back( enumInst );
721 } // if
722 }
723
724 void LinkReferenceToTypes_old::postvisit( StructInstType * structInst ) {
725 const StructDecl * st = local_indexer->lookupStruct( structInst->name );
726 // it's not a semantic error if the struct is not found, just an implicit forward declaration
727 if ( st ) {
728 structInst->baseStruct = const_cast<StructDecl *>(st); // Just linking in the node
729 } // if
730 if ( ! st || ! st->body ) {
731 // use of forward declaration
732 forwardStructs[ structInst->name ].push_back( structInst );
733 } // if
734 }
735
736 void LinkReferenceToTypes_old::postvisit( UnionInstType * unionInst ) {
737 const UnionDecl * un = local_indexer->lookupUnion( unionInst->name );
738 // it's not a semantic error if the union is not found, just an implicit forward declaration
739 if ( un ) {
740 unionInst->baseUnion = const_cast<UnionDecl *>(un); // Just linking in the node
741 } // if
742 if ( ! un || ! un->body ) {
743 // use of forward declaration
744 forwardUnions[ unionInst->name ].push_back( unionInst );
745 } // if
746 }
747
748 void LinkReferenceToTypes_old::previsit( QualifiedType * ) {
749 visit_children = false;
750 }
751
752 void LinkReferenceToTypes_old::postvisit( QualifiedType * qualType ) {
753 // linking only makes sense for the 'oldest ancestor' of the qualified type
754 qualType->parent->accept( * visitor );
755 }
756
757 template< typename Decl >
758 void normalizeAssertions( std::list< Decl * > & assertions ) {
759 // ensure no duplicate trait members after the clone
760 auto pred = [](Decl * d1, Decl * d2) {
761 // only care if they're equal
762 DeclarationWithType * dwt1 = dynamic_cast<DeclarationWithType *>( d1 );
763 DeclarationWithType * dwt2 = dynamic_cast<DeclarationWithType *>( d2 );
764 if ( dwt1 && dwt2 ) {
765 if ( dwt1->name == dwt2->name && ResolvExpr::typesCompatible( dwt1->get_type(), dwt2->get_type(), SymTab::Indexer() ) ) {
766 // std::cerr << "=========== equal:" << std::endl;
767 // std::cerr << "d1: " << d1 << std::endl;
768 // std::cerr << "d2: " << d2 << std::endl;
769 return false;
770 }
771 }
772 return d1 < d2;
773 };
774 std::set<Decl *, decltype(pred)> unique_members( assertions.begin(), assertions.end(), pred );
775 // if ( unique_members.size() != assertions.size() ) {
776 // std::cerr << "============different" << std::endl;
777 // std::cerr << unique_members.size() << " " << assertions.size() << std::endl;
778 // }
779
780 std::list< Decl * > order;
781 order.splice( order.end(), assertions );
782 std::copy_if( order.begin(), order.end(), back_inserter( assertions ), [&]( Decl * decl ) {
783 return unique_members.count( decl );
784 });
785 }
786
787 // expand assertions from trait instance, performing the appropriate type variable substitutions
788 template< typename Iterator >
789 void expandAssertions( TraitInstType * inst, Iterator out ) {
790 assertf( inst->baseTrait, "Trait instance not linked to base trait: %s", toCString( inst ) );
791 std::list< DeclarationWithType * > asserts;
792 for ( Declaration * decl : inst->baseTrait->members ) {
793 asserts.push_back( strict_dynamic_cast<DeclarationWithType *>( decl->clone() ) );
794 }
795 // substitute trait decl parameters for instance parameters
796 applySubstitution( inst->baseTrait->parameters.begin(), inst->baseTrait->parameters.end(), inst->parameters.begin(), asserts.begin(), asserts.end(), out );
797 }
798
799 void LinkReferenceToTypes_old::postvisit( TraitDecl * traitDecl ) {
800 if ( traitDecl->name == "sized" ) {
801 // "sized" is a special trait - flick the sized status on for the type variable
802 assertf( traitDecl->parameters.size() == 1, "Built-in trait 'sized' has incorrect number of parameters: %zd", traitDecl->parameters.size() );
803 TypeDecl * td = traitDecl->parameters.front();
804 td->set_sized( true );
805 }
806
807 // move assertions from type parameters into the body of the trait
808 for ( TypeDecl * td : traitDecl->parameters ) {
809 for ( DeclarationWithType * assert : td->assertions ) {
810 if ( TraitInstType * inst = dynamic_cast< TraitInstType * >( assert->get_type() ) ) {
811 expandAssertions( inst, back_inserter( traitDecl->members ) );
812 } else {
813 traitDecl->members.push_back( assert->clone() );
814 }
815 }
816 deleteAll( td->assertions );
817 td->assertions.clear();
818 } // for
819 }
820
821 void LinkReferenceToTypes_old::postvisit( TraitInstType * traitInst ) {
822 // handle other traits
823 const TraitDecl * traitDecl = local_indexer->lookupTrait( traitInst->name );
824 if ( ! traitDecl ) {
825 SemanticError( traitInst->location, "use of undeclared trait " + traitInst->name );
826 } // if
827 if ( traitDecl->parameters.size() != traitInst->parameters.size() ) {
828 SemanticError( traitInst, "incorrect number of trait parameters: " );
829 } // if
830 traitInst->baseTrait = const_cast<TraitDecl *>(traitDecl); // Just linking in the node
831
832 // need to carry over the 'sized' status of each decl in the instance
833 for ( auto p : group_iterate( traitDecl->parameters, traitInst->parameters ) ) {
834 TypeExpr * expr = dynamic_cast< TypeExpr * >( std::get<1>(p) );
835 if ( ! expr ) {
836 SemanticError( std::get<1>(p), "Expression parameters for trait instances are currently unsupported: " );
837 }
838 if ( TypeInstType * inst = dynamic_cast< TypeInstType * >( expr->get_type() ) ) {
839 TypeDecl * formalDecl = std::get<0>(p);
840 TypeDecl * instDecl = inst->baseType;
841 if ( formalDecl->get_sized() ) instDecl->set_sized( true );
842 }
843 }
844 // normalizeAssertions( traitInst->members );
845 }
846
847 void LinkReferenceToTypes_old::postvisit( EnumDecl * enumDecl ) {
848 // visit enum members first so that the types of self-referencing members are updated properly
849 if ( enumDecl->body ) {
850 ForwardEnumsType::iterator fwds = forwardEnums.find( enumDecl->name );
851 if ( fwds != forwardEnums.end() ) {
852 for ( std::list< EnumInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) {
853 (* inst)->baseEnum = enumDecl;
854 } // for
855 forwardEnums.erase( fwds );
856 } // if
857 } // if
858 }
859
860 void LinkReferenceToTypes_old::renameGenericParams( std::list< TypeDecl * > & params ) {
861 // rename generic type parameters uniquely so that they do not conflict with user-defined function forall parameters, e.g.
862 // forall(otype T)
863 // struct Box {
864 // T x;
865 // };
866 // forall(otype T)
867 // void f(Box(T) b) {
868 // ...
869 // }
870 // The T in Box and the T in f are different, so internally the naming must reflect that.
871 GuardValue( inGeneric );
872 inGeneric = ! params.empty();
873 for ( TypeDecl * td : params ) {
874 td->name = "__" + td->name + "_generic_";
875 }
876 }
877
878 void LinkReferenceToTypes_old::previsit( StructDecl * structDecl ) {
879 renameGenericParams( structDecl->parameters );
880 }
881
882 void LinkReferenceToTypes_old::previsit( UnionDecl * unionDecl ) {
883 renameGenericParams( unionDecl->parameters );
884 }
885
886 void LinkReferenceToTypes_old::postvisit( StructDecl * structDecl ) {
887 // visit struct members first so that the types of self-referencing members are updated properly
888 // xxx - need to ensure that type parameters match up between forward declarations and definition (most importantly, number of type parameters and their defaults)
889 if ( structDecl->body ) {
890 ForwardStructsType::iterator fwds = forwardStructs.find( structDecl->name );
891 if ( fwds != forwardStructs.end() ) {
892 for ( std::list< StructInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) {
893 (* inst)->baseStruct = structDecl;
894 } // for
895 forwardStructs.erase( fwds );
896 } // if
897 } // if
898 }
899
900 void LinkReferenceToTypes_old::postvisit( UnionDecl * unionDecl ) {
901 if ( unionDecl->body ) {
902 ForwardUnionsType::iterator fwds = forwardUnions.find( unionDecl->name );
903 if ( fwds != forwardUnions.end() ) {
904 for ( std::list< UnionInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) {
905 (* inst)->baseUnion = unionDecl;
906 } // for
907 forwardUnions.erase( fwds );
908 } // if
909 } // if
910 }
911
912 void LinkReferenceToTypes_old::postvisit( TypeInstType * typeInst ) {
913 // ensure generic parameter instances are renamed like the base type
914 if ( inGeneric && typeInst->baseType ) typeInst->name = typeInst->baseType->name;
915 if ( const NamedTypeDecl * namedTypeDecl = local_indexer->lookupType( typeInst->name ) ) {
916 if ( const TypeDecl * typeDecl = dynamic_cast< const TypeDecl * >( namedTypeDecl ) ) {
917 typeInst->set_isFtype( typeDecl->kind == TypeDecl::Ftype );
918 } // if
919 } // if
920 }
921
922 ResolveEnumInitializers::ResolveEnumInitializers( const Indexer * other_indexer ) : WithIndexer( true ) {
923 if ( other_indexer ) {
924 local_indexer = other_indexer;
925 } else {
926 local_indexer = &indexer;
927 } // if
928 }
929
930 void ResolveEnumInitializers::postvisit( EnumDecl * enumDecl ) {
931 if ( enumDecl->body ) {
932 for ( Declaration * member : enumDecl->members ) {
933 ObjectDecl * field = strict_dynamic_cast<ObjectDecl *>( member );
934 if ( field->init ) {
935 // need to resolve enumerator initializers early so that other passes that determine if an expression is constexpr have the appropriate information.
936 SingleInit * init = strict_dynamic_cast<SingleInit *>( field->init );
937 ResolvExpr::findSingleExpression( init->value, new BasicType( Type::Qualifiers(), BasicType::SignedInt ), indexer );
938 }
939 }
940 } // if
941 }
942
943 /// Fix up assertions - flattens assertion lists, removing all trait instances
944 void forallFixer( std::list< TypeDecl * > & forall, BaseSyntaxNode * node ) {
945 for ( TypeDecl * type : forall ) {
946 std::list< DeclarationWithType * > asserts;
947 asserts.splice( asserts.end(), type->assertions );
948 // expand trait instances into their members
949 for ( DeclarationWithType * assertion : asserts ) {
950 if ( TraitInstType * traitInst = dynamic_cast< TraitInstType * >( assertion->get_type() ) ) {
951 // expand trait instance into all of its members
952 expandAssertions( traitInst, back_inserter( type->assertions ) );
953 delete traitInst;
954 } else {
955 // pass other assertions through
956 type->assertions.push_back( assertion );
957 } // if
958 } // for
959 // apply FixFunction to every assertion to check for invalid void type
960 for ( DeclarationWithType *& assertion : type->assertions ) {
961 bool isVoid = fixFunction( assertion );
962 if ( isVoid ) {
963 SemanticError( node, "invalid type void in assertion of function " );
964 } // if
965 } // for
966 // normalizeAssertions( type->assertions );
967 } // for
968 }
969
970 void ForallPointerDecay_old::previsit( ObjectDecl * object ) {
971 // ensure that operator names only apply to functions or function pointers
972 if ( CodeGen::isOperator( object->name ) && ! dynamic_cast< FunctionType * >( object->type->stripDeclarator() ) ) {
973 SemanticError( object->location, toCString( "operator ", object->name.c_str(), " is not a function or function pointer." ) );
974 }
975 object->fixUniqueId();
976 }
977
978 void ForallPointerDecay_old::previsit( FunctionDecl * func ) {
979 func->fixUniqueId();
980 }
981
982 void ForallPointerDecay_old::previsit( FunctionType * ftype ) {
983 forallFixer( ftype->forall, ftype );
984 }
985
986 void ForallPointerDecay_old::previsit( StructDecl * aggrDecl ) {
987 forallFixer( aggrDecl->parameters, aggrDecl );
988 }
989
990 void ForallPointerDecay_old::previsit( UnionDecl * aggrDecl ) {
991 forallFixer( aggrDecl->parameters, aggrDecl );
992 }
993
994 void ReturnChecker::checkFunctionReturns( std::list< Declaration * > & translationUnit ) {
995 PassVisitor<ReturnChecker> checker;
996 acceptAll( translationUnit, checker );
997 }
998
999 void ReturnChecker::previsit( FunctionDecl * functionDecl ) {
1000 GuardValue( returnVals );
1001 returnVals = functionDecl->get_functionType()->get_returnVals();
1002 }
1003
1004 void ReturnChecker::previsit( ReturnStmt * returnStmt ) {
1005 // Previously this also checked for the existence of an expr paired with no return values on
1006 // the function return type. This is incorrect, since you can have an expression attached to
1007 // a return statement in a void-returning function in C. The expression is treated as if it
1008 // were cast to void.
1009 if ( ! returnStmt->get_expr() && returnVals.size() != 0 ) {
1010 SemanticError( returnStmt, "Non-void function returns no values: " );
1011 }
1012 }
1013
1014
1015 void ReplaceTypedef::replaceTypedef( std::list< Declaration * > &translationUnit ) {
1016 PassVisitor<ReplaceTypedef> eliminator;
1017 mutateAll( translationUnit, eliminator );
1018 if ( eliminator.pass.typedefNames.count( "size_t" ) ) {
1019 // grab and remember declaration of size_t
1020 Validate::SizeType = eliminator.pass.typedefNames["size_t"].first->base->clone();
1021 } else {
1022 // xxx - missing global typedef for size_t - default to long unsigned int, even though that may be wrong
1023 // eventually should have a warning for this case.
1024 Validate::SizeType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
1025 }
1026 }
1027
1028 void ReplaceTypedef::premutate( QualifiedType * ) {
1029 visit_children = false;
1030 }
1031
1032 Type * ReplaceTypedef::postmutate( QualifiedType * qualType ) {
1033 // replacing typedefs only makes sense for the 'oldest ancestor' of the qualified type
1034 qualType->parent = qualType->parent->acceptMutator( * visitor );
1035 return qualType;
1036 }
1037
1038 static bool isNonParameterAttribute( Attribute * attr ) {
1039 static const std::vector<std::string> bad_names = {
1040 "aligned", "__aligned__",
1041 };
1042 for ( auto name : bad_names ) {
1043 if ( name == attr->name ) {
1044 return true;
1045 }
1046 }
1047 return false;
1048 }
1049
1050 Type * ReplaceTypedef::postmutate( TypeInstType * typeInst ) {
1051 // instances of typedef types will come here. If it is an instance
1052 // of a typdef type, link the instance to its actual type.
1053 TypedefMap::const_iterator def = typedefNames.find( typeInst->name );
1054 if ( def != typedefNames.end() ) {
1055 Type * ret = def->second.first->base->clone();
1056 ret->location = typeInst->location;
1057 ret->get_qualifiers() |= typeInst->get_qualifiers();
1058 // GCC ignores certain attributes if they arrive by typedef, this mimics that.
1059 if ( inFunctionType ) {
1060 ret->attributes.remove_if( isNonParameterAttribute );
1061 }
1062 ret->attributes.splice( ret->attributes.end(), typeInst->attributes );
1063 // place instance parameters on the typedef'd type
1064 if ( ! typeInst->parameters.empty() ) {
1065 ReferenceToType * rtt = dynamic_cast<ReferenceToType *>(ret);
1066 if ( ! rtt ) {
1067 SemanticError( typeInst->location, "Cannot apply type parameters to base type of " + typeInst->name );
1068 }
1069 rtt->parameters.clear();
1070 cloneAll( typeInst->parameters, rtt->parameters );
1071 mutateAll( rtt->parameters, * visitor ); // recursively fix typedefs on parameters
1072 } // if
1073 delete typeInst;
1074 return ret;
1075 } else {
1076 TypeDeclMap::const_iterator base = typedeclNames.find( typeInst->name );
1077 if ( base == typedeclNames.end() ) {
1078 SemanticError( typeInst->location, toString("Use of undefined type ", typeInst->name) );
1079 }
1080 typeInst->set_baseType( base->second );
1081 return typeInst;
1082 } // if
1083 assert( false );
1084 }
1085
1086 struct VarLenChecker : WithShortCircuiting {
1087 void previsit( FunctionType * ) { visit_children = false; }
1088 void previsit( ArrayType * at ) {
1089 isVarLen |= at->isVarLen;
1090 }
1091 bool isVarLen = false;
1092 };
1093
1094 bool isVariableLength( Type * t ) {
1095 PassVisitor<VarLenChecker> varLenChecker;
1096 maybeAccept( t, varLenChecker );
1097 return varLenChecker.pass.isVarLen;
1098 }
1099
1100 Declaration * ReplaceTypedef::postmutate( TypedefDecl * tyDecl ) {
1101 if ( typedefNames.count( tyDecl->name ) == 1 && typedefNames[ tyDecl->name ].second == scopeLevel ) {
1102 // typedef to the same name from the same scope
1103 // must be from the same type
1104
1105 Type * t1 = tyDecl->base;
1106 Type * t2 = typedefNames[ tyDecl->name ].first->base;
1107 if ( ! ResolvExpr::typesCompatible( t1, t2, Indexer() ) ) {
1108 SemanticError( tyDecl->location, "Cannot redefine typedef: " + tyDecl->name );
1109 }
1110 // Cannot redefine VLA typedefs. Note: this is slightly incorrect, because our notion of VLAs
1111 // at this point in the translator is imprecise. In particular, this will disallow redefining typedefs
1112 // with arrays whose dimension is an enumerator or a cast of a constant/enumerator. The effort required
1113 // to fix this corner case likely outweighs the utility of allowing it.
1114 if ( isVariableLength( t1 ) || isVariableLength( t2 ) ) {
1115 SemanticError( tyDecl->location, "Cannot redefine typedef: " + tyDecl->name );
1116 }
1117 } else {
1118 typedefNames[ tyDecl->name ] = std::make_pair( TypedefDeclPtr( tyDecl ), scopeLevel );
1119 } // if
1120
1121 // When a typedef is a forward declaration:
1122 // typedef struct screen SCREEN;
1123 // the declaration portion must be retained:
1124 // struct screen;
1125 // because the expansion of the typedef is:
1126 // void rtn( SCREEN * p ) => void rtn( struct screen * p )
1127 // hence the type-name "screen" must be defined.
1128 // Note, qualifiers on the typedef are superfluous for the forward declaration.
1129
1130 Type * designatorType = tyDecl->base->stripDeclarator();
1131 if ( StructInstType * aggDecl = dynamic_cast< StructInstType * >( designatorType ) ) {
1132 declsToAddBefore.push_back( new StructDecl( aggDecl->name, AggregateDecl::Struct, noAttributes, tyDecl->linkage ) );
1133 } else if ( UnionInstType * aggDecl = dynamic_cast< UnionInstType * >( designatorType ) ) {
1134 declsToAddBefore.push_back( new UnionDecl( aggDecl->name, noAttributes, tyDecl->linkage ) );
1135 } else if ( EnumInstType * enumDecl = dynamic_cast< EnumInstType * >( designatorType ) ) {
1136 declsToAddBefore.push_back( new EnumDecl( enumDecl->name, noAttributes, tyDecl->linkage ) );
1137 } // if
1138 return tyDecl->clone();
1139 }
1140
1141 void ReplaceTypedef::premutate( TypeDecl * typeDecl ) {
1142 TypedefMap::iterator i = typedefNames.find( typeDecl->name );
1143 if ( i != typedefNames.end() ) {
1144 typedefNames.erase( i ) ;
1145 } // if
1146
1147 typedeclNames.insert( typeDecl->name, typeDecl );
1148 }
1149
1150 void ReplaceTypedef::premutate( FunctionDecl * ) {
1151 GuardScope( typedefNames );
1152 GuardScope( typedeclNames );
1153 }
1154
1155 void ReplaceTypedef::premutate( ObjectDecl * ) {
1156 GuardScope( typedefNames );
1157 GuardScope( typedeclNames );
1158 }
1159
1160 DeclarationWithType * ReplaceTypedef::postmutate( ObjectDecl * objDecl ) {
1161 if ( FunctionType * funtype = dynamic_cast<FunctionType *>( objDecl->type ) ) { // function type?
1162 // replace the current object declaration with a function declaration
1163 FunctionDecl * newDecl = new FunctionDecl( objDecl->name, objDecl->get_storageClasses(), objDecl->linkage, funtype, 0, objDecl->attributes, objDecl->get_funcSpec() );
1164 objDecl->attributes.clear();
1165 objDecl->set_type( nullptr );
1166 delete objDecl;
1167 return newDecl;
1168 } // if
1169 return objDecl;
1170 }
1171
1172 void ReplaceTypedef::premutate( CastExpr * ) {
1173 GuardScope( typedefNames );
1174 GuardScope( typedeclNames );
1175 }
1176
1177 void ReplaceTypedef::premutate( CompoundStmt * ) {
1178 GuardScope( typedefNames );
1179 GuardScope( typedeclNames );
1180 scopeLevel += 1;
1181 GuardAction( [this](){ scopeLevel -= 1; } );
1182 }
1183
1184 template<typename AggDecl>
1185 void ReplaceTypedef::addImplicitTypedef( AggDecl * aggDecl ) {
1186 if ( typedefNames.count( aggDecl->get_name() ) == 0 ) {
1187 Type * type = nullptr;
1188 if ( StructDecl * newDeclStructDecl = dynamic_cast< StructDecl * >( aggDecl ) ) {
1189 type = new StructInstType( Type::Qualifiers(), newDeclStructDecl->get_name() );
1190 } else if ( UnionDecl * newDeclUnionDecl = dynamic_cast< UnionDecl * >( aggDecl ) ) {
1191 type = new UnionInstType( Type::Qualifiers(), newDeclUnionDecl->get_name() );
1192 } else if ( EnumDecl * newDeclEnumDecl = dynamic_cast< EnumDecl * >( aggDecl ) ) {
1193 type = new EnumInstType( Type::Qualifiers(), newDeclEnumDecl->get_name() );
1194 } // if
1195 TypedefDeclPtr tyDecl( new TypedefDecl( aggDecl->get_name(), aggDecl->location, Type::StorageClasses(), type, aggDecl->get_linkage() ) );
1196 typedefNames[ aggDecl->get_name() ] = std::make_pair( std::move( tyDecl ), scopeLevel );
1197 // add the implicit typedef to the AST
1198 declsToAddBefore.push_back( new TypedefDecl( aggDecl->get_name(), aggDecl->location, Type::StorageClasses(), type->clone(), aggDecl->get_linkage() ) );
1199 } // if
1200 }
1201
1202 template< typename AggDecl >
1203 void ReplaceTypedef::handleAggregate( AggDecl * aggr ) {
1204 SemanticErrorException errors;
1205
1206 ValueGuard< std::list<Declaration * > > oldBeforeDecls( declsToAddBefore );
1207 ValueGuard< std::list<Declaration * > > oldAfterDecls ( declsToAddAfter );
1208 declsToAddBefore.clear();
1209 declsToAddAfter.clear();
1210
1211 GuardScope( typedefNames );
1212 GuardScope( typedeclNames );
1213 mutateAll( aggr->parameters, * visitor );
1214 mutateAll( aggr->attributes, * visitor );
1215
1216 // unroll mutateAll for aggr->members so that implicit typedefs for nested types are added to the aggregate body.
1217 for ( std::list< Declaration * >::iterator i = aggr->members.begin(); i != aggr->members.end(); ++i ) {
1218 if ( !declsToAddAfter.empty() ) { aggr->members.splice( i, declsToAddAfter ); }
1219
1220 try {
1221 * i = maybeMutate( * i, * visitor );
1222 } catch ( SemanticErrorException &e ) {
1223 errors.append( e );
1224 }
1225
1226 if ( !declsToAddBefore.empty() ) { aggr->members.splice( i, declsToAddBefore ); }
1227 }
1228
1229 if ( !declsToAddAfter.empty() ) { aggr->members.splice( aggr->members.end(), declsToAddAfter ); }
1230 if ( !errors.isEmpty() ) { throw errors; }
1231 }
1232
1233 void ReplaceTypedef::premutate( StructDecl * structDecl ) {
1234 visit_children = false;
1235 addImplicitTypedef( structDecl );
1236 handleAggregate( structDecl );
1237 }
1238
1239 void ReplaceTypedef::premutate( UnionDecl * unionDecl ) {
1240 visit_children = false;
1241 addImplicitTypedef( unionDecl );
1242 handleAggregate( unionDecl );
1243 }
1244
1245 void ReplaceTypedef::premutate( EnumDecl * enumDecl ) {
1246 addImplicitTypedef( enumDecl );
1247 }
1248
1249 void ReplaceTypedef::premutate( FunctionType * ) {
1250 GuardValue( inFunctionType );
1251 inFunctionType = true;
1252 }
1253
1254 void ReplaceTypedef::premutate( TraitDecl * ) {
1255 GuardScope( typedefNames );
1256 GuardScope( typedeclNames);
1257 }
1258
1259 void VerifyCtorDtorAssign::verify( std::list< Declaration * > & translationUnit ) {
1260 PassVisitor<VerifyCtorDtorAssign> verifier;
1261 acceptAll( translationUnit, verifier );
1262 }
1263
1264 void VerifyCtorDtorAssign::previsit( FunctionDecl * funcDecl ) {
1265 FunctionType * funcType = funcDecl->get_functionType();
1266 std::list< DeclarationWithType * > &returnVals = funcType->get_returnVals();
1267 std::list< DeclarationWithType * > &params = funcType->get_parameters();
1268
1269 if ( CodeGen::isCtorDtorAssign( funcDecl->get_name() ) ) { // TODO: also check /=, etc.
1270 if ( params.size() == 0 ) {
1271 SemanticError( funcDecl->location, "Constructors, destructors, and assignment functions require at least one parameter." );
1272 }
1273 ReferenceType * refType = dynamic_cast< ReferenceType * >( params.front()->get_type() );
1274 if ( ! refType ) {
1275 SemanticError( funcDecl->location, "First parameter of a constructor, destructor, or assignment function must be a reference." );
1276 }
1277 if ( CodeGen::isCtorDtor( funcDecl->get_name() ) && returnVals.size() != 0 ) {
1278 if(!returnVals.front()->get_type()->isVoid()) {
1279 SemanticError( funcDecl->location, "Constructors and destructors cannot have explicit return values." );
1280 }
1281 }
1282 }
1283 }
1284
1285 // Test for special name on a generic parameter. Special treatment for the
1286 // special name is a bootstrapping hack. In most cases, the worlds of T's
1287 // and of N's don't overlap (normal treamtemt). The foundations in
1288 // array.hfa use tagging for both types and dimensions. Tagging treats
1289 // its subject parameter even more opaquely than T&, which assumes it is
1290 // possible to have a pointer/reference to such an object. Tagging only
1291 // seeks to identify the type-system resident at compile time. Both N's
1292 // and T's can make tags. The tag definition uses the special name, which
1293 // is treated as "an N or a T." This feature is not inteded to be used
1294 // outside of the definition and immediate uses of a tag.
1295 static inline bool isReservedTysysIdOnlyName( const std::string & name ) {
1296 // name's prefix was __CFA_tysys_id_only, before it got wrapped in __..._generic
1297 int foundAt = name.find("__CFA_tysys_id_only");
1298 if (foundAt == 0) return true;
1299 if (foundAt == 2 && name[0] == '_' && name[1] == '_') return true;
1300 return false;
1301 }
1302
1303 template< typename Aggr >
1304 void validateGeneric( Aggr * inst ) {
1305 std::list< TypeDecl * > * params = inst->get_baseParameters();
1306 if ( params ) {
1307 std::list< Expression * > & args = inst->get_parameters();
1308
1309 // insert defaults arguments when a type argument is missing (currently only supports missing arguments at the end of the list).
1310 // A substitution is used to ensure that defaults are replaced correctly, e.g.,
1311 // forall(otype T, otype alloc = heap_allocator(T)) struct vector;
1312 // vector(int) v;
1313 // after insertion of default values becomes
1314 // vector(int, heap_allocator(T))
1315 // and the substitution is built with T=int so that after substitution, the result is
1316 // vector(int, heap_allocator(int))
1317 TypeSubstitution sub;
1318 auto paramIter = params->begin();
1319 auto argIter = args.begin();
1320 for ( ; paramIter != params->end(); ++paramIter, ++argIter ) {
1321 if ( argIter != args.end() ) {
1322 TypeExpr * expr = dynamic_cast< TypeExpr * >( * argIter );
1323 if ( expr ) {
1324 sub.add( (* paramIter)->get_name(), expr->get_type()->clone() );
1325 }
1326 } else {
1327 Type * defaultType = (* paramIter)->get_init();
1328 if ( defaultType ) {
1329 args.push_back( new TypeExpr( defaultType->clone() ) );
1330 sub.add( (* paramIter)->get_name(), defaultType->clone() );
1331 argIter = std::prev(args.end());
1332 } else {
1333 SemanticError( inst, "Too few type arguments in generic type " );
1334 }
1335 }
1336 assert( argIter != args.end() );
1337 bool typeParamDeclared = (*paramIter)->kind != TypeDecl::Kind::Dimension;
1338 bool typeArgGiven;
1339 if ( isReservedTysysIdOnlyName( (*paramIter)->name ) ) {
1340 // coerce a match when declaration is reserved name, which means "either"
1341 typeArgGiven = typeParamDeclared;
1342 } else {
1343 typeArgGiven = dynamic_cast< TypeExpr * >( * argIter );
1344 }
1345 if ( ! typeParamDeclared && typeArgGiven ) SemanticError( inst, "Type argument given for value parameter: " );
1346 if ( typeParamDeclared && ! typeArgGiven ) SemanticError( inst, "Expression argument given for type parameter: " );
1347 }
1348
1349 sub.apply( inst );
1350 if ( args.size() > params->size() ) SemanticError( inst, "Too many type arguments in generic type " );
1351 }
1352 }
1353
1354 void ValidateGenericParameters::previsit( StructInstType * inst ) {
1355 validateGeneric( inst );
1356 }
1357
1358 void ValidateGenericParameters::previsit( UnionInstType * inst ) {
1359 validateGeneric( inst );
1360 }
1361
1362 void TranslateDimensionGenericParameters::translateDimensions( std::list< Declaration * > &translationUnit ) {
1363 PassVisitor<TranslateDimensionGenericParameters> translator;
1364 mutateAll( translationUnit, translator );
1365 }
1366
1367 TranslateDimensionGenericParameters::TranslateDimensionGenericParameters() : WithIndexer( false ) {}
1368
1369 // Declaration of type variable: forall( [N] ) -> forall( N & | sized( N ) )
1370 TypeDecl * TranslateDimensionGenericParameters::postmutate( TypeDecl * td ) {
1371 if ( td->kind == TypeDecl::Dimension ) {
1372 td->kind = TypeDecl::Dtype;
1373 if ( ! isReservedTysysIdOnlyName( td->name ) ) {
1374 td->sized = true;
1375 }
1376 }
1377 return td;
1378 }
1379
1380 // Situational awareness:
1381 // array( float, [[currentExpr]] ) has visitingChildOfSUIT == true
1382 // array( float, [[currentExpr]] - 1 ) has visitingChildOfSUIT == false
1383 // size_t x = [[currentExpr]] has visitingChildOfSUIT == false
1384 void TranslateDimensionGenericParameters::changeState_ChildOfSUIT( bool newVal ) {
1385 GuardValue( nextVisitedNodeIsChildOfSUIT );
1386 GuardValue( visitingChildOfSUIT );
1387 visitingChildOfSUIT = nextVisitedNodeIsChildOfSUIT;
1388 nextVisitedNodeIsChildOfSUIT = newVal;
1389 }
1390 void TranslateDimensionGenericParameters::premutate( StructInstType * sit ) {
1391 (void) sit;
1392 changeState_ChildOfSUIT(true);
1393 }
1394 void TranslateDimensionGenericParameters::premutate( UnionInstType * uit ) {
1395 (void) uit;
1396 changeState_ChildOfSUIT(true);
1397 }
1398 void TranslateDimensionGenericParameters::premutate( BaseSyntaxNode * node ) {
1399 (void) node;
1400 changeState_ChildOfSUIT(false);
1401 }
1402
1403 // Passing values as dimension arguments: array( float, 7 ) -> array( float, char[ 7 ] )
1404 // Consuming dimension parameters: size_t x = N - 1 ; -> size_t x = sizeof(N) - 1 ;
1405 // Intertwined reality: array( float, N ) -> array( float, N )
1406 // array( float, N - 1 ) -> array( float, char[ sizeof(N) - 1 ] )
1407 // Intertwined case 1 is not just an optimization.
1408 // Avoiding char[sizeof(-)] is necessary to enable the call of f to bind the value of N, in:
1409 // forall([N]) void f( array(float, N) & );
1410 // array(float, 7) a;
1411 // f(a);
1412
1413 Expression * TranslateDimensionGenericParameters::postmutate( DimensionExpr * de ) {
1414 // Expression de is an occurrence of N in LHS of above examples.
1415 // Look up the name that de references.
1416 // If we are in a struct body, then this reference can be to an entry of the stuct's forall list.
1417 // Whether or not we are in a struct body, this reference can be to an entry of a containing function's forall list.
1418 // If we are in a struct body, then the stuct's forall declarations are innermost (functions don't occur in structs).
1419 // Thus, a potential struct's declaration is highest priority.
1420 // A struct's forall declarations are already renamed with _generic_ suffix. Try that name variant first.
1421
1422 std::string useName = "__" + de->name + "_generic_";
1423 TypeDecl * namedParamDecl = const_cast<TypeDecl *>( strict_dynamic_cast<const TypeDecl *, nullptr >( indexer.lookupType( useName ) ) );
1424
1425 if ( ! namedParamDecl ) {
1426 useName = de->name;
1427 namedParamDecl = const_cast<TypeDecl *>( strict_dynamic_cast<const TypeDecl *, nullptr >( indexer.lookupType( useName ) ) );
1428 }
1429
1430 // Expect to find it always. A misspelled name would have been parsed as an identifier.
1431 assert( namedParamDecl && "Type-system-managed value name not found in symbol table" );
1432
1433 delete de;
1434
1435 TypeInstType * refToDecl = new TypeInstType( 0, useName, namedParamDecl );
1436
1437 if ( visitingChildOfSUIT ) {
1438 // As in postmutate( Expression * ), topmost expression needs a TypeExpr wrapper
1439 // But avoid ArrayType-Sizeof
1440 return new TypeExpr( refToDecl );
1441 } else {
1442 // the N occurrence is being used directly as a runtime value,
1443 // if we are in a type instantiation, then the N is within a bigger value computation
1444 return new SizeofExpr( refToDecl );
1445 }
1446 }
1447
1448 Expression * TranslateDimensionGenericParameters::postmutate( Expression * e ) {
1449 if ( visitingChildOfSUIT ) {
1450 // e is an expression used as an argument to instantiate a type
1451 if (! dynamic_cast< TypeExpr * >( e ) ) {
1452 // e is a value expression
1453 // but not a DimensionExpr, which has a distinct postmutate
1454 Type * typeExprContent = new ArrayType( 0, new BasicType( 0, BasicType::Char ), e, true, false );
1455 TypeExpr * result = new TypeExpr( typeExprContent );
1456 return result;
1457 }
1458 }
1459 return e;
1460 }
1461
1462 void CompoundLiteral::premutate( ObjectDecl * objectDecl ) {
1463 storageClasses = objectDecl->get_storageClasses();
1464 }
1465
1466 Expression * CompoundLiteral::postmutate( CompoundLiteralExpr * compLitExpr ) {
1467 // transform [storage_class] ... (struct S){ 3, ... };
1468 // into [storage_class] struct S temp = { 3, ... };
1469 static UniqueName indexName( "_compLit" );
1470
1471 ObjectDecl * tempvar = new ObjectDecl( indexName.newName(), storageClasses, LinkageSpec::C, nullptr, compLitExpr->get_result(), compLitExpr->get_initializer() );
1472 compLitExpr->set_result( nullptr );
1473 compLitExpr->set_initializer( nullptr );
1474 delete compLitExpr;
1475 declsToAddBefore.push_back( tempvar ); // add modified temporary to current block
1476 return new VariableExpr( tempvar );
1477 }
1478
1479 void ReturnTypeFixer::fix( std::list< Declaration * > &translationUnit ) {
1480 PassVisitor<ReturnTypeFixer> fixer;
1481 acceptAll( translationUnit, fixer );
1482 }
1483
1484 void ReturnTypeFixer::postvisit( FunctionDecl * functionDecl ) {
1485 FunctionType * ftype = functionDecl->get_functionType();
1486 std::list< DeclarationWithType * > & retVals = ftype->get_returnVals();
1487 assertf( retVals.size() == 0 || retVals.size() == 1, "Function %s has too many return values: %zu", functionDecl->get_name().c_str(), retVals.size() );
1488 if ( retVals.size() == 1 ) {
1489 // ensure all function return values have a name - use the name of the function to disambiguate (this also provides a nice bit of help for debugging).
1490 // ensure other return values have a name.
1491 DeclarationWithType * ret = retVals.front();
1492 if ( ret->get_name() == "" ) {
1493 ret->set_name( toString( "_retval_", CodeGen::genName( functionDecl ) ) );
1494 }
1495 ret->get_attributes().push_back( new Attribute( "unused" ) );
1496 }
1497 }
1498
1499 void ReturnTypeFixer::postvisit( FunctionType * ftype ) {
1500 // xxx - need to handle named return values - this information needs to be saved somehow
1501 // so that resolution has access to the names.
1502 // Note that this pass needs to happen early so that other passes which look for tuple types
1503 // find them in all of the right places, including function return types.
1504 std::list< DeclarationWithType * > & retVals = ftype->get_returnVals();
1505 if ( retVals.size() > 1 ) {
1506 // generate a single return parameter which is the tuple of all of the return values
1507 TupleType * tupleType = strict_dynamic_cast< TupleType * >( ResolvExpr::extractResultType( ftype ) );
1508 // ensure return value is not destructed by explicitly creating an empty ListInit node wherein maybeConstruct is false.
1509 ObjectDecl * newRet = new ObjectDecl( "", Type::StorageClasses(), LinkageSpec::Cforall, 0, tupleType, new ListInit( std::list<Initializer *>(), noDesignators, false ) );
1510 deleteAll( retVals );
1511 retVals.clear();
1512 retVals.push_back( newRet );
1513 }
1514 }
1515
1516 void FixObjectType::fix( std::list< Declaration * > & translationUnit ) {
1517 PassVisitor<FixObjectType> fixer;
1518 acceptAll( translationUnit, fixer );
1519 }
1520
1521 void FixObjectType::previsit( ObjectDecl * objDecl ) {
1522 Type * new_type = ResolvExpr::resolveTypeof( objDecl->get_type(), indexer );
1523 objDecl->set_type( new_type );
1524 }
1525
1526 void FixObjectType::previsit( FunctionDecl * funcDecl ) {
1527 Type * new_type = ResolvExpr::resolveTypeof( funcDecl->type, indexer );
1528 funcDecl->set_type( new_type );
1529 }
1530
1531 void FixObjectType::previsit( TypeDecl * typeDecl ) {
1532 if ( typeDecl->get_base() ) {
1533 Type * new_type = ResolvExpr::resolveTypeof( typeDecl->get_base(), indexer );
1534 typeDecl->set_base( new_type );
1535 } // if
1536 }
1537
1538 void InitializerLength::computeLength( std::list< Declaration * > & translationUnit ) {
1539 PassVisitor<InitializerLength> len;
1540 acceptAll( translationUnit, len );
1541 }
1542
1543 void ArrayLength::computeLength( std::list< Declaration * > & translationUnit ) {
1544 PassVisitor<ArrayLength> len;
1545 acceptAll( translationUnit, len );
1546 }
1547
1548 void InitializerLength::previsit( ObjectDecl * objDecl ) {
1549 if ( ArrayType * at = dynamic_cast< ArrayType * >( objDecl->type ) ) {
1550 if ( at->dimension ) return;
1551 if ( ListInit * init = dynamic_cast< ListInit * >( objDecl->init ) ) {
1552 at->dimension = new ConstantExpr( Constant::from_ulong( init->initializers.size() ) );
1553 }
1554 }
1555 }
1556
1557 void ArrayLength::previsit( ArrayType * type ) {
1558 if ( type->dimension ) {
1559 // need to resolve array dimensions early so that constructor code can correctly determine
1560 // if a type is a VLA (and hence whether its elements need to be constructed)
1561 ResolvExpr::findSingleExpression( type->dimension, Validate::SizeType->clone(), indexer );
1562
1563 // must re-evaluate whether a type is a VLA, now that more information is available
1564 // (e.g. the dimension may have been an enumerator, which was unknown prior to this step)
1565 type->isVarLen = ! InitTweak::isConstExpr( type->dimension );
1566 }
1567 }
1568
1569 struct LabelFinder {
1570 std::set< Label > & labels;
1571 LabelFinder( std::set< Label > & labels ) : labels( labels ) {}
1572 void previsit( Statement * stmt ) {
1573 for ( Label & l : stmt->labels ) {
1574 labels.insert( l );
1575 }
1576 }
1577 };
1578
1579 void LabelAddressFixer::premutate( FunctionDecl * funcDecl ) {
1580 GuardValue( labels );
1581 PassVisitor<LabelFinder> finder( labels );
1582 funcDecl->accept( finder );
1583 }
1584
1585 Expression * LabelAddressFixer::postmutate( AddressExpr * addrExpr ) {
1586 // convert &&label into label address
1587 if ( AddressExpr * inner = dynamic_cast< AddressExpr * >( addrExpr->arg ) ) {
1588 if ( NameExpr * nameExpr = dynamic_cast< NameExpr * >( inner->arg ) ) {
1589 if ( labels.count( nameExpr->name ) ) {
1590 Label name = nameExpr->name;
1591 delete addrExpr;
1592 return new LabelAddressExpr( name );
1593 }
1594 }
1595 }
1596 return addrExpr;
1597 }
1598
1599namespace {
1600 /// Replaces enum types by int, and function/array types in function parameter and return
1601 /// lists by appropriate pointers
1602 /*
1603 struct EnumAndPointerDecay_new {
1604 const ast::EnumDecl * previsit( const ast::EnumDecl * enumDecl ) {
1605 // set the type of each member of the enumeration to be EnumConstant
1606 for ( unsigned i = 0; i < enumDecl->members.size(); ++i ) {
1607 // build new version of object with EnumConstant
1608 ast::ptr< ast::ObjectDecl > obj =
1609 enumDecl->members[i].strict_as< ast::ObjectDecl >();
1610 obj.get_and_mutate()->type =
1611 new ast::EnumInstType{ enumDecl->name, ast::CV::Const };
1612
1613 // set into decl
1614 ast::EnumDecl * mut = mutate( enumDecl );
1615 mut->members[i] = obj.get();
1616 enumDecl = mut;
1617 }
1618 return enumDecl;
1619 }
1620
1621 static const ast::FunctionType * fixFunctionList(
1622 const ast::FunctionType * func,
1623 std::vector< ast::ptr< ast::DeclWithType > > ast::FunctionType::* field,
1624 ast::ArgumentFlag isVarArgs = ast::FixedArgs
1625 ) {
1626 const auto & dwts = func->* field;
1627 unsigned nvals = dwts.size();
1628 bool hasVoid = false;
1629 for ( unsigned i = 0; i < nvals; ++i ) {
1630 func = ast::mutate_field_index( func, field, i, fixFunction( dwts[i], hasVoid ) );
1631 }
1632
1633 // the only case in which "void" is valid is where it is the only one in the list
1634 if ( hasVoid && ( nvals > 1 || isVarArgs ) ) {
1635 SemanticError(
1636 dwts.front()->location, func, "invalid type void in function type" );
1637 }
1638
1639 // one void is the only thing in the list, remove it
1640 if ( hasVoid ) {
1641 func = ast::mutate_field(
1642 func, field, std::vector< ast::ptr< ast::DeclWithType > >{} );
1643 }
1644
1645 return func;
1646 }
1647
1648 const ast::FunctionType * previsit( const ast::FunctionType * func ) {
1649 func = fixFunctionList( func, &ast::FunctionType::params, func->isVarArgs );
1650 return fixFunctionList( func, &ast::FunctionType::returns );
1651 }
1652 };
1653
1654 /// expand assertions from a trait instance, performing appropriate type variable substitutions
1655 void expandAssertions(
1656 const ast::TraitInstType * inst, std::vector< ast::ptr< ast::DeclWithType > > & out
1657 ) {
1658 assertf( inst->base, "Trait instance not linked to base trait: %s", toCString( inst ) );
1659
1660 // build list of trait members, substituting trait decl parameters for instance parameters
1661 ast::TypeSubstitution sub{
1662 inst->base->params.begin(), inst->base->params.end(), inst->params.begin() };
1663 // deliberately take ast::ptr by-value to ensure this does not mutate inst->base
1664 for ( ast::ptr< ast::Decl > decl : inst->base->members ) {
1665 auto member = decl.strict_as< ast::DeclWithType >();
1666 sub.apply( member );
1667 out.emplace_back( member );
1668 }
1669 }
1670
1671 /// Associates forward declarations of aggregates with their definitions
1672 class LinkReferenceToTypes_new final
1673 : public ast::WithSymbolTable, public ast::WithGuards, public
1674 ast::WithVisitorRef<LinkReferenceToTypes_new>, public ast::WithShortCircuiting {
1675
1676 // these maps of uses of forward declarations of types need to have the actual type
1677 // declaration switched in * after * they have been traversed. To enable this in the
1678 // ast::Pass framework, any node that needs to be so mutated has mutate() called on it
1679 // before it is placed in the map, properly updating its parents in the usual traversal,
1680 // then can have the actual mutation applied later
1681 using ForwardEnumsType = std::unordered_multimap< std::string, ast::EnumInstType * >;
1682 using ForwardStructsType = std::unordered_multimap< std::string, ast::StructInstType * >;
1683 using ForwardUnionsType = std::unordered_multimap< std::string, ast::UnionInstType * >;
1684
1685 const CodeLocation & location;
1686 const ast::SymbolTable * localSymtab;
1687
1688 ForwardEnumsType forwardEnums;
1689 ForwardStructsType forwardStructs;
1690 ForwardUnionsType forwardUnions;
1691
1692 /// true if currently in a generic type body, so that type parameter instances can be
1693 /// renamed appropriately
1694 bool inGeneric = false;
1695
1696 public:
1697 /// contstruct using running symbol table
1698 LinkReferenceToTypes_new( const CodeLocation & loc )
1699 : location( loc ), localSymtab( &symtab ) {}
1700
1701 /// construct using provided symbol table
1702 LinkReferenceToTypes_new( const CodeLocation & loc, const ast::SymbolTable & syms )
1703 : location( loc ), localSymtab( &syms ) {}
1704
1705 const ast::Type * postvisit( const ast::TypeInstType * typeInst ) {
1706 // ensure generic parameter instances are renamed like the base type
1707 if ( inGeneric && typeInst->base ) {
1708 typeInst = ast::mutate_field(
1709 typeInst, &ast::TypeInstType::name, typeInst->base->name );
1710 }
1711
1712 if (
1713 auto typeDecl = dynamic_cast< const ast::TypeDecl * >(
1714 localSymtab->lookupType( typeInst->name ) )
1715 ) {
1716 typeInst = ast::mutate_field( typeInst, &ast::TypeInstType::kind, typeDecl->kind );
1717 }
1718
1719 return typeInst;
1720 }
1721
1722 const ast::Type * postvisit( const ast::EnumInstType * inst ) {
1723 const ast::EnumDecl * decl = localSymtab->lookupEnum( inst->name );
1724 // not a semantic error if the enum is not found, just an implicit forward declaration
1725 if ( decl ) {
1726 inst = ast::mutate_field( inst, &ast::EnumInstType::base, decl );
1727 }
1728 if ( ! decl || ! decl->body ) {
1729 // forward declaration
1730 auto mut = mutate( inst );
1731 forwardEnums.emplace( inst->name, mut );
1732 inst = mut;
1733 }
1734 return inst;
1735 }
1736
1737 void checkGenericParameters( const ast::BaseInstType * inst ) {
1738 for ( const ast::Expr * param : inst->params ) {
1739 if ( ! dynamic_cast< const ast::TypeExpr * >( param ) ) {
1740 SemanticError(
1741 location, inst, "Expression parameters for generic types are currently "
1742 "unsupported: " );
1743 }
1744 }
1745 }
1746
1747 const ast::StructInstType * postvisit( const ast::StructInstType * inst ) {
1748 const ast::StructDecl * decl = localSymtab->lookupStruct( inst->name );
1749 // not a semantic error if the struct is not found, just an implicit forward declaration
1750 if ( decl ) {
1751 inst = ast::mutate_field( inst, &ast::StructInstType::base, decl );
1752 }
1753 if ( ! decl || ! decl->body ) {
1754 // forward declaration
1755 auto mut = mutate( inst );
1756 forwardStructs.emplace( inst->name, mut );
1757 inst = mut;
1758 }
1759 checkGenericParameters( inst );
1760 return inst;
1761 }
1762
1763 const ast::UnionInstType * postvisit( const ast::UnionInstType * inst ) {
1764 const ast::UnionDecl * decl = localSymtab->lookupUnion( inst->name );
1765 // not a semantic error if the struct is not found, just an implicit forward declaration
1766 if ( decl ) {
1767 inst = ast::mutate_field( inst, &ast::UnionInstType::base, decl );
1768 }
1769 if ( ! decl || ! decl->body ) {
1770 // forward declaration
1771 auto mut = mutate( inst );
1772 forwardUnions.emplace( inst->name, mut );
1773 inst = mut;
1774 }
1775 checkGenericParameters( inst );
1776 return inst;
1777 }
1778
1779 const ast::Type * postvisit( const ast::TraitInstType * traitInst ) {
1780 // handle other traits
1781 const ast::TraitDecl * traitDecl = localSymtab->lookupTrait( traitInst->name );
1782 if ( ! traitDecl ) {
1783 SemanticError( location, "use of undeclared trait " + traitInst->name );
1784 }
1785 if ( traitDecl->params.size() != traitInst->params.size() ) {
1786 SemanticError( location, traitInst, "incorrect number of trait parameters: " );
1787 }
1788 traitInst = ast::mutate_field( traitInst, &ast::TraitInstType::base, traitDecl );
1789
1790 // need to carry over the "sized" status of each decl in the instance
1791 for ( unsigned i = 0; i < traitDecl->params.size(); ++i ) {
1792 auto expr = traitInst->params[i].as< ast::TypeExpr >();
1793 if ( ! expr ) {
1794 SemanticError(
1795 traitInst->params[i].get(), "Expression parameters for trait instances "
1796 "are currently unsupported: " );
1797 }
1798
1799 if ( auto inst = expr->type.as< ast::TypeInstType >() ) {
1800 if ( traitDecl->params[i]->sized && ! inst->base->sized ) {
1801 // traitInst = ast::mutate_field_index(
1802 // traitInst, &ast::TraitInstType::params, i,
1803 // ...
1804 // );
1805 ast::TraitInstType * mut = ast::mutate( traitInst );
1806 ast::chain_mutate( mut->params[i] )
1807 ( &ast::TypeExpr::type )
1808 ( &ast::TypeInstType::base )->sized = true;
1809 traitInst = mut;
1810 }
1811 }
1812 }
1813
1814 return traitInst;
1815 }
1816
1817 void previsit( const ast::QualifiedType * ) { visit_children = false; }
1818
1819 const ast::Type * postvisit( const ast::QualifiedType * qualType ) {
1820 // linking only makes sense for the "oldest ancestor" of the qualified type
1821 return ast::mutate_field(
1822 qualType, &ast::QualifiedType::parent, qualType->parent->accept( * visitor ) );
1823 }
1824
1825 const ast::Decl * postvisit( const ast::EnumDecl * enumDecl ) {
1826 // visit enum members first so that the types of self-referencing members are updated
1827 // properly
1828 if ( ! enumDecl->body ) return enumDecl;
1829
1830 // update forward declarations to point here
1831 auto fwds = forwardEnums.equal_range( enumDecl->name );
1832 if ( fwds.first != fwds.second ) {
1833 auto inst = fwds.first;
1834 do {
1835 // forward decl is stored * mutably * in map, can thus be updated
1836 inst->second->base = enumDecl;
1837 } while ( ++inst != fwds.second );
1838 forwardEnums.erase( fwds.first, fwds.second );
1839 }
1840
1841 // ensure that enumerator initializers are properly set
1842 for ( unsigned i = 0; i < enumDecl->members.size(); ++i ) {
1843 auto field = enumDecl->members[i].strict_as< ast::ObjectDecl >();
1844 if ( field->init ) {
1845 // need to resolve enumerator initializers early so that other passes that
1846 // determine if an expression is constexpr have appropriate information
1847 auto init = field->init.strict_as< ast::SingleInit >();
1848
1849 enumDecl = ast::mutate_field_index(
1850 enumDecl, &ast::EnumDecl::members, i,
1851 ast::mutate_field( field, &ast::ObjectDecl::init,
1852 ast::mutate_field( init, &ast::SingleInit::value,
1853 ResolvExpr::findSingleExpression(
1854 init->value, new ast::BasicType{ ast::BasicType::SignedInt },
1855 symtab ) ) ) );
1856 }
1857 }
1858
1859 return enumDecl;
1860 }
1861
1862 /// rename generic type parameters uniquely so that they do not conflict with user defined
1863 /// function forall parameters, e.g. the T in Box and the T in f, below
1864 /// forall(otype T)
1865 /// struct Box {
1866 /// T x;
1867 /// };
1868 /// forall(otype T)
1869 /// void f(Box(T) b) {
1870 /// ...
1871 /// }
1872 template< typename AggrDecl >
1873 const AggrDecl * renameGenericParams( const AggrDecl * aggr ) {
1874 GuardValue( inGeneric );
1875 inGeneric = ! aggr->params.empty();
1876
1877 for ( unsigned i = 0; i < aggr->params.size(); ++i ) {
1878 const ast::TypeDecl * td = aggr->params[i];
1879
1880 aggr = ast::mutate_field_index(
1881 aggr, &AggrDecl::params, i,
1882 ast::mutate_field( td, &ast::TypeDecl::name, "__" + td->name + "_generic_" ) );
1883 }
1884 return aggr;
1885 }
1886
1887 const ast::StructDecl * previsit( const ast::StructDecl * structDecl ) {
1888 return renameGenericParams( structDecl );
1889 }
1890
1891 void postvisit( const ast::StructDecl * structDecl ) {
1892 // visit struct members first so that the types of self-referencing members are
1893 // updated properly
1894 if ( ! structDecl->body ) return;
1895
1896 // update forward declarations to point here
1897 auto fwds = forwardStructs.equal_range( structDecl->name );
1898 if ( fwds.first != fwds.second ) {
1899 auto inst = fwds.first;
1900 do {
1901 // forward decl is stored * mutably * in map, can thus be updated
1902 inst->second->base = structDecl;
1903 } while ( ++inst != fwds.second );
1904 forwardStructs.erase( fwds.first, fwds.second );
1905 }
1906 }
1907
1908 const ast::UnionDecl * previsit( const ast::UnionDecl * unionDecl ) {
1909 return renameGenericParams( unionDecl );
1910 }
1911
1912 void postvisit( const ast::UnionDecl * unionDecl ) {
1913 // visit union members first so that the types of self-referencing members are updated
1914 // properly
1915 if ( ! unionDecl->body ) return;
1916
1917 // update forward declarations to point here
1918 auto fwds = forwardUnions.equal_range( unionDecl->name );
1919 if ( fwds.first != fwds.second ) {
1920 auto inst = fwds.first;
1921 do {
1922 // forward decl is stored * mutably * in map, can thus be updated
1923 inst->second->base = unionDecl;
1924 } while ( ++inst != fwds.second );
1925 forwardUnions.erase( fwds.first, fwds.second );
1926 }
1927 }
1928
1929 const ast::Decl * postvisit( const ast::TraitDecl * traitDecl ) {
1930 // set the "sized" status for the special "sized" trait
1931 if ( traitDecl->name == "sized" ) {
1932 assertf( traitDecl->params.size() == 1, "Built-in trait 'sized' has incorrect "
1933 "number of parameters: %zd", traitDecl->params.size() );
1934
1935 traitDecl = ast::mutate_field_index(
1936 traitDecl, &ast::TraitDecl::params, 0,
1937 ast::mutate_field(
1938 traitDecl->params.front().get(), &ast::TypeDecl::sized, true ) );
1939 }
1940
1941 // move assertions from type parameters into the body of the trait
1942 std::vector< ast::ptr< ast::DeclWithType > > added;
1943 for ( const ast::TypeDecl * td : traitDecl->params ) {
1944 for ( const ast::DeclWithType * assn : td->assertions ) {
1945 auto inst = dynamic_cast< const ast::TraitInstType * >( assn->get_type() );
1946 if ( inst ) {
1947 expandAssertions( inst, added );
1948 } else {
1949 added.emplace_back( assn );
1950 }
1951 }
1952 }
1953 if ( ! added.empty() ) {
1954 auto mut = mutate( traitDecl );
1955 for ( const ast::DeclWithType * decl : added ) {
1956 mut->members.emplace_back( decl );
1957 }
1958 traitDecl = mut;
1959 }
1960
1961 return traitDecl;
1962 }
1963 };
1964
1965 /// Replaces array and function types in forall lists by appropriate pointer type and assigns
1966 /// each object and function declaration a unique ID
1967 class ForallPointerDecay_new {
1968 const CodeLocation & location;
1969 public:
1970 ForallPointerDecay_new( const CodeLocation & loc ) : location( loc ) {}
1971
1972 const ast::ObjectDecl * previsit( const ast::ObjectDecl * obj ) {
1973 // ensure that operator names only apply to functions or function pointers
1974 if (
1975 CodeGen::isOperator( obj->name )
1976 && ! dynamic_cast< const ast::FunctionType * >( obj->type->stripDeclarator() )
1977 ) {
1978 SemanticError( obj->location, toCString( "operator ", obj->name.c_str(), " is not "
1979 "a function or function pointer." ) );
1980 }
1981
1982 // ensure object has unique ID
1983 if ( obj->uniqueId ) return obj;
1984 auto mut = mutate( obj );
1985 mut->fixUniqueId();
1986 return mut;
1987 }
1988
1989 const ast::FunctionDecl * previsit( const ast::FunctionDecl * func ) {
1990 // ensure function has unique ID
1991 if ( func->uniqueId ) return func;
1992 auto mut = mutate( func );
1993 mut->fixUniqueId();
1994 return mut;
1995 }
1996
1997 /// Fix up assertions -- flattens assertion lists, removing all trait instances
1998 template< typename node_t, typename parent_t >
1999 static const node_t * forallFixer(
2000 const CodeLocation & loc, const node_t * node,
2001 ast::FunctionType::ForallList parent_t::* forallField
2002 ) {
2003 for ( unsigned i = 0; i < (node->* forallField).size(); ++i ) {
2004 const ast::TypeDecl * type = (node->* forallField)[i];
2005 if ( type->assertions.empty() ) continue;
2006
2007 std::vector< ast::ptr< ast::DeclWithType > > asserts;
2008 asserts.reserve( type->assertions.size() );
2009
2010 // expand trait instances into their members
2011 for ( const ast::DeclWithType * assn : type->assertions ) {
2012 auto traitInst =
2013 dynamic_cast< const ast::TraitInstType * >( assn->get_type() );
2014 if ( traitInst ) {
2015 // expand trait instance to all its members
2016 expandAssertions( traitInst, asserts );
2017 } else {
2018 // pass other assertions through
2019 asserts.emplace_back( assn );
2020 }
2021 }
2022
2023 // apply FixFunction to every assertion to check for invalid void type
2024 for ( ast::ptr< ast::DeclWithType > & assn : asserts ) {
2025 bool isVoid = false;
2026 assn = fixFunction( assn, isVoid );
2027 if ( isVoid ) {
2028 SemanticError( loc, node, "invalid type void in assertion of function " );
2029 }
2030 }
2031
2032 // place mutated assertion list in node
2033 auto mut = mutate( type );
2034 mut->assertions = move( asserts );
2035 node = ast::mutate_field_index( node, forallField, i, mut );
2036 }
2037 return node;
2038 }
2039
2040 const ast::FunctionType * previsit( const ast::FunctionType * ftype ) {
2041 return forallFixer( location, ftype, &ast::FunctionType::forall );
2042 }
2043
2044 const ast::StructDecl * previsit( const ast::StructDecl * aggrDecl ) {
2045 return forallFixer( aggrDecl->location, aggrDecl, &ast::StructDecl::params );
2046 }
2047
2048 const ast::UnionDecl * previsit( const ast::UnionDecl * aggrDecl ) {
2049 return forallFixer( aggrDecl->location, aggrDecl, &ast::UnionDecl::params );
2050 }
2051 };
2052 */
2053} // anonymous namespace
2054
2055/*
2056const ast::Type * validateType(
2057 const CodeLocation & loc, const ast::Type * type, const ast::SymbolTable & symtab ) {
2058 // ast::Pass< EnumAndPointerDecay_new > epc;
2059 ast::Pass< LinkReferenceToTypes_new > lrt{ loc, symtab };
2060 ast::Pass< ForallPointerDecay_new > fpd{ loc };
2061
2062 return type->accept( lrt )->accept( fpd );
2063}
2064*/
2065
2066} // namespace SymTab
2067
2068// Local Variables: //
2069// tab-width: 4 //
2070// mode: c++ //
2071// compile-command: "make install" //
2072// End: //
Note: See TracBrowser for help on using the repository browser.