source: src/SymTab/Validate.cc@ ea89e36

ADT ast-experimental enum pthread-emulation qualifiedEnum
Last change on this file since ea89e36 was a488783, checked in by Andrew Beach <ajbeach@…>, 4 years ago

Translated the first half of validate-D. HoistControlStruct is pretty much the same, Autogen has changed a lot due to the changes in the AST.

  • Property mode set to 100644
File size: 78.9 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Validate.cc --
8//
9// Author : Richard C. Bilson
10// Created On : Sun May 17 21:50:04 2015
11// Last Modified By : Andrew Beach
12// Last Modified On : Fri Nov 12 11:00:00 2021
13// Update Count : 364
14//
15
16// The "validate" phase of translation is used to take a syntax tree and convert it into a standard form that aims to be
17// as regular in structure as possible. Some assumptions can be made regarding the state of the tree after this pass is
18// complete, including:
19//
20// - No nested structure or union definitions; any in the input are "hoisted" to the level of the containing struct or
21// union.
22//
23// - All enumeration constants have type EnumInstType.
24//
25// - The type "void" never occurs in lists of function parameter or return types. A function
26// taking no arguments has no argument types.
27//
28// - No context instances exist; they are all replaced by the set of declarations signified by the context, instantiated
29// by the particular set of type arguments.
30//
31// - Every declaration is assigned a unique id.
32//
33// - No typedef declarations or instances exist; the actual type is substituted for each instance.
34//
35// - Each type, struct, and union definition is followed by an appropriate assignment operator.
36//
37// - Each use of a struct or union is connected to a complete definition of that struct or union, even if that
38// definition occurs later in the input.
39
40#include "Validate.h"
41
42#include <cassert> // for assertf, assert
43#include <cstddef> // for size_t
44#include <list> // for list
45#include <string> // for string
46#include <unordered_map> // for unordered_map
47#include <utility> // for pair
48
49#include "AST/Chain.hpp"
50#include "AST/Decl.hpp"
51#include "AST/Node.hpp"
52#include "AST/Pass.hpp"
53#include "AST/SymbolTable.hpp"
54#include "AST/Type.hpp"
55#include "AST/TypeSubstitution.hpp"
56#include "CodeGen/CodeGenerator.h" // for genName
57#include "CodeGen/OperatorTable.h" // for isCtorDtor, isCtorDtorAssign
58#include "ControlStruct/Mutate.h" // for ForExprMutator
59#include "Common/CodeLocation.h" // for CodeLocation
60#include "Common/Stats.h" // for Stats::Heap
61#include "Common/PassVisitor.h" // for PassVisitor, WithDeclsToAdd
62#include "Common/ScopedMap.h" // for ScopedMap
63#include "Common/SemanticError.h" // for SemanticError
64#include "Common/UniqueName.h" // for UniqueName
65#include "Common/utility.h" // for operator+, cloneAll, deleteAll
66#include "CompilationState.h" // skip some passes in new-ast build
67#include "Concurrency/Keywords.h" // for applyKeywords
68#include "FixFunction.h" // for FixFunction
69#include "Indexer.h" // for Indexer
70#include "InitTweak/GenInit.h" // for fixReturnStatements
71#include "InitTweak/InitTweak.h" // for isCtorDtorAssign
72#include "ResolvExpr/typeops.h" // for typesCompatible
73#include "ResolvExpr/Resolver.h" // for findSingleExpression
74#include "ResolvExpr/ResolveTypeof.h" // for resolveTypeof
75#include "SymTab/Autogen.h" // for SizeType
76#include "SynTree/LinkageSpec.h" // for C
77#include "SynTree/Attribute.h" // for noAttributes, Attribute
78#include "SynTree/Constant.h" // for Constant
79#include "SynTree/Declaration.h" // for ObjectDecl, DeclarationWithType
80#include "SynTree/Expression.h" // for CompoundLiteralExpr, Expressio...
81#include "SynTree/Initializer.h" // for ListInit, Initializer
82#include "SynTree/Label.h" // for operator==, Label
83#include "SynTree/Mutator.h" // for Mutator
84#include "SynTree/Type.h" // for Type, TypeInstType, EnumInstType
85#include "SynTree/TypeSubstitution.h" // for TypeSubstitution
86#include "SynTree/Visitor.h" // for Visitor
87#include "Validate/HandleAttributes.h" // for handleAttributes
88#include "Validate/FindSpecialDecls.h" // for FindSpecialDecls
89
90class CompoundStmt;
91class ReturnStmt;
92class SwitchStmt;
93
94#define debugPrint( x ) if ( doDebug ) x
95
96namespace SymTab {
97 /// hoists declarations that are difficult to hoist while parsing
98 struct HoistTypeDecls final : public WithDeclsToAdd {
99 void previsit( SizeofExpr * );
100 void previsit( AlignofExpr * );
101 void previsit( UntypedOffsetofExpr * );
102 void previsit( CompoundLiteralExpr * );
103 void handleType( Type * );
104 };
105
106 struct FixQualifiedTypes final : public WithIndexer {
107 FixQualifiedTypes() : WithIndexer(false) {}
108 Type * postmutate( QualifiedType * );
109 };
110
111 struct HoistStruct final : public WithDeclsToAdd, public WithGuards {
112 /// Flattens nested struct types
113 static void hoistStruct( std::list< Declaration * > &translationUnit );
114
115 void previsit( StructDecl * aggregateDecl );
116 void previsit( UnionDecl * aggregateDecl );
117 void previsit( StaticAssertDecl * assertDecl );
118 void previsit( StructInstType * type );
119 void previsit( UnionInstType * type );
120 void previsit( EnumInstType * type );
121
122 private:
123 template< typename AggDecl > void handleAggregate( AggDecl * aggregateDecl );
124
125 AggregateDecl * parentAggr = nullptr;
126 };
127
128 /// Fix return types so that every function returns exactly one value
129 struct ReturnTypeFixer {
130 static void fix( std::list< Declaration * > &translationUnit );
131
132 void postvisit( FunctionDecl * functionDecl );
133 void postvisit( FunctionType * ftype );
134 };
135
136 /// Replaces enum types by int, and function or array types in function parameter and return lists by appropriate pointers.
137 struct EnumAndPointerDecay_old {
138 void previsit( EnumDecl * aggregateDecl );
139 void previsit( FunctionType * func );
140 };
141
142 /// Associates forward declarations of aggregates with their definitions
143 struct LinkReferenceToTypes_old final : public WithIndexer, public WithGuards, public WithVisitorRef<LinkReferenceToTypes_old>, public WithShortCircuiting {
144 LinkReferenceToTypes_old( const Indexer * indexer );
145 void postvisit( TypeInstType * typeInst );
146
147 void postvisit( EnumInstType * enumInst );
148 void postvisit( StructInstType * structInst );
149 void postvisit( UnionInstType * unionInst );
150 void postvisit( TraitInstType * traitInst );
151 void previsit( QualifiedType * qualType );
152 void postvisit( QualifiedType * qualType );
153
154 void postvisit( EnumDecl * enumDecl );
155 void postvisit( StructDecl * structDecl );
156 void postvisit( UnionDecl * unionDecl );
157 void postvisit( TraitDecl * traitDecl );
158
159 void previsit( StructDecl * structDecl );
160 void previsit( UnionDecl * unionDecl );
161
162 void renameGenericParams( std::list< TypeDecl * > & params );
163
164 private:
165 const Indexer * local_indexer;
166
167 typedef std::map< std::string, std::list< EnumInstType * > > ForwardEnumsType;
168 typedef std::map< std::string, std::list< StructInstType * > > ForwardStructsType;
169 typedef std::map< std::string, std::list< UnionInstType * > > ForwardUnionsType;
170 ForwardEnumsType forwardEnums;
171 ForwardStructsType forwardStructs;
172 ForwardUnionsType forwardUnions;
173 /// true if currently in a generic type body, so that type parameter instances can be renamed appropriately
174 bool inGeneric = false;
175 };
176
177 /// Does early resolution on the expressions that give enumeration constants their values
178 struct ResolveEnumInitializers final : public WithIndexer, public WithGuards, public WithVisitorRef<ResolveEnumInitializers>, public WithShortCircuiting {
179 ResolveEnumInitializers( const Indexer * indexer );
180 void postvisit( EnumDecl * enumDecl );
181
182 private:
183 const Indexer * local_indexer;
184
185 };
186
187 /// Replaces array and function types in forall lists by appropriate pointer type and assigns each Object and Function declaration a unique ID.
188 struct ForallPointerDecay_old final {
189 void previsit( ObjectDecl * object );
190 void previsit( FunctionDecl * func );
191 void previsit( FunctionType * ftype );
192 void previsit( StructDecl * aggrDecl );
193 void previsit( UnionDecl * aggrDecl );
194 };
195
196 struct ReturnChecker : public WithGuards {
197 /// Checks that return statements return nothing if their return type is void
198 /// and return something if the return type is non-void.
199 static void checkFunctionReturns( std::list< Declaration * > & translationUnit );
200
201 void previsit( FunctionDecl * functionDecl );
202 void previsit( ReturnStmt * returnStmt );
203
204 typedef std::list< DeclarationWithType * > ReturnVals;
205 ReturnVals returnVals;
206 };
207
208 struct ReplaceTypedef final : public WithVisitorRef<ReplaceTypedef>, public WithGuards, public WithShortCircuiting, public WithDeclsToAdd {
209 ReplaceTypedef() : scopeLevel( 0 ) {}
210 /// Replaces typedefs by forward declarations
211 static void replaceTypedef( std::list< Declaration * > &translationUnit );
212
213 void premutate( QualifiedType * );
214 Type * postmutate( QualifiedType * qualType );
215 Type * postmutate( TypeInstType * aggregateUseType );
216 Declaration * postmutate( TypedefDecl * typeDecl );
217 void premutate( TypeDecl * typeDecl );
218 void premutate( FunctionDecl * funcDecl );
219 void premutate( ObjectDecl * objDecl );
220 DeclarationWithType * postmutate( ObjectDecl * objDecl );
221
222 void premutate( CastExpr * castExpr );
223
224 void premutate( CompoundStmt * compoundStmt );
225
226 void premutate( StructDecl * structDecl );
227 void premutate( UnionDecl * unionDecl );
228 void premutate( EnumDecl * enumDecl );
229 void premutate( TraitDecl * );
230
231 void premutate( FunctionType * ftype );
232
233 private:
234 template<typename AggDecl>
235 void addImplicitTypedef( AggDecl * aggDecl );
236 template< typename AggDecl >
237 void handleAggregate( AggDecl * aggr );
238
239 typedef std::unique_ptr<TypedefDecl> TypedefDeclPtr;
240 typedef ScopedMap< std::string, std::pair< TypedefDeclPtr, int > > TypedefMap;
241 typedef ScopedMap< std::string, TypeDecl * > TypeDeclMap;
242 TypedefMap typedefNames;
243 TypeDeclMap typedeclNames;
244 int scopeLevel;
245 bool inFunctionType = false;
246 };
247
248 struct EliminateTypedef {
249 /// removes TypedefDecls from the AST
250 static void eliminateTypedef( std::list< Declaration * > &translationUnit );
251
252 template<typename AggDecl>
253 void handleAggregate( AggDecl * aggregateDecl );
254
255 void previsit( StructDecl * aggregateDecl );
256 void previsit( UnionDecl * aggregateDecl );
257 void previsit( CompoundStmt * compoundStmt );
258 };
259
260 struct VerifyCtorDtorAssign {
261 /// ensure that constructors, destructors, and assignment have at least one
262 /// parameter, the first of which must be a pointer, and that ctor/dtors have no
263 /// return values.
264 static void verify( std::list< Declaration * > &translationUnit );
265
266 void previsit( FunctionDecl * funcDecl );
267 };
268
269 /// ensure that generic types have the correct number of type arguments
270 struct ValidateGenericParameters {
271 void previsit( StructInstType * inst );
272 void previsit( UnionInstType * inst );
273 };
274
275 /// desugar declarations and uses of dimension paramaters like [N],
276 /// from type-system managed values, to tunnneling via ordinary types,
277 /// as char[-] in and sizeof(-) out
278 struct TranslateDimensionGenericParameters : public WithIndexer, public WithGuards {
279 static void translateDimensions( std::list< Declaration * > &translationUnit );
280 TranslateDimensionGenericParameters();
281
282 bool nextVisitedNodeIsChildOfSUIT = false; // SUIT = Struct or Union -Inst Type
283 bool visitingChildOfSUIT = false;
284 void changeState_ChildOfSUIT( bool newVal );
285 void premutate( StructInstType * sit );
286 void premutate( UnionInstType * uit );
287 void premutate( BaseSyntaxNode * node );
288
289 TypeDecl * postmutate( TypeDecl * td );
290 Expression * postmutate( DimensionExpr * de );
291 Expression * postmutate( Expression * e );
292 };
293
294 struct FixObjectType : public WithIndexer {
295 /// resolves typeof type in object, function, and type declarations
296 static void fix( std::list< Declaration * > & translationUnit );
297
298 void previsit( ObjectDecl * );
299 void previsit( FunctionDecl * );
300 void previsit( TypeDecl * );
301 };
302
303 struct InitializerLength {
304 /// for array types without an explicit length, compute the length and store it so that it
305 /// is known to the rest of the phases. For example,
306 /// int x[] = { 1, 2, 3 };
307 /// int y[][2] = { { 1, 2, 3 }, { 1, 2, 3 } };
308 /// here x and y are known at compile-time to have length 3, so change this into
309 /// int x[3] = { 1, 2, 3 };
310 /// int y[3][2] = { { 1, 2, 3 }, { 1, 2, 3 } };
311 static void computeLength( std::list< Declaration * > & translationUnit );
312
313 void previsit( ObjectDecl * objDecl );
314 };
315
316 struct ArrayLength : public WithIndexer {
317 static void computeLength( std::list< Declaration * > & translationUnit );
318
319 void previsit( ArrayType * arrayType );
320 };
321
322 struct CompoundLiteral final : public WithDeclsToAdd, public WithVisitorRef<CompoundLiteral> {
323 Type::StorageClasses storageClasses;
324
325 void premutate( ObjectDecl * objectDecl );
326 Expression * postmutate( CompoundLiteralExpr * compLitExpr );
327 };
328
329 struct LabelAddressFixer final : public WithGuards {
330 std::set< Label > labels;
331
332 void premutate( FunctionDecl * funcDecl );
333 Expression * postmutate( AddressExpr * addrExpr );
334 };
335
336 void validate_A( std::list< Declaration * > & translationUnit ) {
337 PassVisitor<EnumAndPointerDecay_old> epc;
338 PassVisitor<HoistTypeDecls> hoistDecls;
339 {
340 Stats::Heap::newPass("validate-A");
341 Stats::Time::BlockGuard guard("validate-A");
342 VerifyCtorDtorAssign::verify( translationUnit ); // must happen before autogen, because autogen examines existing ctor/dtors
343 acceptAll( translationUnit, hoistDecls );
344 ReplaceTypedef::replaceTypedef( translationUnit );
345 ReturnTypeFixer::fix( translationUnit ); // must happen before autogen
346 acceptAll( translationUnit, epc ); // must happen before VerifyCtorDtorAssign, because void return objects should not exist; before LinkReferenceToTypes_old because it is an indexer and needs correct types for mangling
347 }
348 }
349
350 void validate_B( std::list< Declaration * > & translationUnit ) {
351 PassVisitor<LinkReferenceToTypes_old> lrt( nullptr );
352 PassVisitor<FixQualifiedTypes> fixQual;
353 {
354 Stats::Heap::newPass("validate-B");
355 Stats::Time::BlockGuard guard("validate-B");
356 acceptAll( translationUnit, lrt ); // must happen before autogen, because sized flag needs to propagate to generated functions
357 mutateAll( translationUnit, fixQual ); // must happen after LinkReferenceToTypes_old, because aggregate members are accessed
358 HoistStruct::hoistStruct( translationUnit );
359 EliminateTypedef::eliminateTypedef( translationUnit );
360 }
361 }
362
363 void validate_C( std::list< Declaration * > & translationUnit ) {
364 PassVisitor<ValidateGenericParameters> genericParams;
365 PassVisitor<ResolveEnumInitializers> rei( nullptr );
366 {
367 Stats::Heap::newPass("validate-C");
368 Stats::Time::BlockGuard guard("validate-C");
369 Stats::Time::TimeBlock("Validate Generic Parameters", [&]() {
370 acceptAll( translationUnit, genericParams ); // check as early as possible - can't happen before LinkReferenceToTypes_old; observed failing when attempted before eliminateTypedef
371 });
372 Stats::Time::TimeBlock("Translate Dimensions", [&]() {
373 TranslateDimensionGenericParameters::translateDimensions( translationUnit );
374 });
375 Stats::Time::TimeBlock("Resolve Enum Initializers", [&]() {
376 acceptAll( translationUnit, rei ); // must happen after translateDimensions because rei needs identifier lookup, which needs name mangling
377 });
378 Stats::Time::TimeBlock("Check Function Returns", [&]() {
379 ReturnChecker::checkFunctionReturns( translationUnit );
380 });
381 Stats::Time::TimeBlock("Fix Return Statements", [&]() {
382 InitTweak::fixReturnStatements( translationUnit ); // must happen before autogen
383 });
384 }
385 }
386
387 void validate_D( std::list< Declaration * > & translationUnit ) {
388 PassVisitor<ForallPointerDecay_old> fpd;
389 {
390 Stats::Heap::newPass("validate-D");
391 Stats::Time::BlockGuard guard("validate-D");
392 Stats::Time::TimeBlock("Apply Concurrent Keywords", [&]() {
393 Concurrency::applyKeywords( translationUnit );
394 });
395 Stats::Time::TimeBlock("Forall Pointer Decay", [&]() {
396 acceptAll( translationUnit, fpd ); // must happen before autogenerateRoutines, after Concurrency::applyKeywords because uniqueIds must be set on declaration before resolution
397 });
398 Stats::Time::TimeBlock("Hoist Control Declarations", [&]() {
399 ControlStruct::hoistControlDecls( translationUnit ); // hoist initialization out of for statements; must happen before autogenerateRoutines
400 });
401 Stats::Time::TimeBlock("Generate Autogen routines", [&]() {
402 autogenerateRoutines( translationUnit ); // moved up, used to be below compoundLiteral - currently needs EnumAndPointerDecay_old
403 });
404 }
405 }
406
407 void validate_E( std::list< Declaration * > & translationUnit ) {
408 PassVisitor<CompoundLiteral> compoundliteral;
409 {
410 Stats::Heap::newPass("validate-E");
411 Stats::Time::BlockGuard guard("validate-E");
412 Stats::Time::TimeBlock("Implement Mutex Func", [&]() {
413 Concurrency::implementMutexFuncs( translationUnit );
414 });
415 Stats::Time::TimeBlock("Implement Thread Start", [&]() {
416 Concurrency::implementThreadStarter( translationUnit );
417 });
418 Stats::Time::TimeBlock("Compound Literal", [&]() {
419 mutateAll( translationUnit, compoundliteral );
420 });
421 if (!useNewAST) {
422 Stats::Time::TimeBlock("Resolve With Expressions", [&]() {
423 ResolvExpr::resolveWithExprs( translationUnit ); // must happen before FixObjectType because user-code is resolved and may contain with variables
424 });
425 }
426 }
427 }
428
429 void validate_F( std::list< Declaration * > & translationUnit ) {
430 PassVisitor<LabelAddressFixer> labelAddrFixer;
431 {
432 Stats::Heap::newPass("validate-F");
433 Stats::Time::BlockGuard guard("validate-F");
434 if (!useNewAST) {
435 Stats::Time::TimeCall("Fix Object Type",
436 FixObjectType::fix, translationUnit);
437 }
438 Stats::Time::TimeCall("Initializer Length",
439 InitializerLength::computeLength, translationUnit);
440 if (!useNewAST) {
441 Stats::Time::TimeCall("Array Length",
442 ArrayLength::computeLength, translationUnit);
443 }
444 Stats::Time::TimeCall("Find Special Declarations",
445 Validate::findSpecialDecls, translationUnit);
446 Stats::Time::TimeCall("Fix Label Address",
447 mutateAll<LabelAddressFixer>, translationUnit, labelAddrFixer);
448 if (!useNewAST) {
449 Stats::Time::TimeCall("Handle Attributes",
450 Validate::handleAttributes, translationUnit);
451 }
452 }
453 }
454
455 void decayForallPointers( std::list< Declaration * > & translationUnit ) {
456 PassVisitor<ForallPointerDecay_old> fpd;
457 acceptAll( translationUnit, fpd );
458 }
459
460 void validate( std::list< Declaration * > &translationUnit, __attribute__((unused)) bool doDebug ) {
461 validate_A( translationUnit );
462 validate_B( translationUnit );
463 validate_C( translationUnit );
464 validate_D( translationUnit );
465 validate_E( translationUnit );
466 validate_F( translationUnit );
467 }
468
469 void validateType( Type * type, const Indexer * indexer ) {
470 PassVisitor<EnumAndPointerDecay_old> epc;
471 PassVisitor<LinkReferenceToTypes_old> lrt( indexer );
472 PassVisitor<ForallPointerDecay_old> fpd;
473 type->accept( epc );
474 type->accept( lrt );
475 type->accept( fpd );
476 }
477
478 void HoistTypeDecls::handleType( Type * type ) {
479 // some type declarations are buried in expressions and not easy to hoist during parsing; hoist them here
480 AggregateDecl * aggr = nullptr;
481 if ( StructInstType * inst = dynamic_cast< StructInstType * >( type ) ) {
482 aggr = inst->baseStruct;
483 } else if ( UnionInstType * inst = dynamic_cast< UnionInstType * >( type ) ) {
484 aggr = inst->baseUnion;
485 } else if ( EnumInstType * inst = dynamic_cast< EnumInstType * >( type ) ) {
486 aggr = inst->baseEnum;
487 }
488 if ( aggr && aggr->body ) {
489 declsToAddBefore.push_front( aggr );
490 }
491 }
492
493 void HoistTypeDecls::previsit( SizeofExpr * expr ) {
494 handleType( expr->type );
495 }
496
497 void HoistTypeDecls::previsit( AlignofExpr * expr ) {
498 handleType( expr->type );
499 }
500
501 void HoistTypeDecls::previsit( UntypedOffsetofExpr * expr ) {
502 handleType( expr->type );
503 }
504
505 void HoistTypeDecls::previsit( CompoundLiteralExpr * expr ) {
506 handleType( expr->result );
507 }
508
509
510 Type * FixQualifiedTypes::postmutate( QualifiedType * qualType ) {
511 Type * parent = qualType->parent;
512 Type * child = qualType->child;
513 if ( dynamic_cast< GlobalScopeType * >( qualType->parent ) ) {
514 // .T => lookup T at global scope
515 if ( TypeInstType * inst = dynamic_cast< TypeInstType * >( child ) ) {
516 auto td = indexer.globalLookupType( inst->name );
517 if ( ! td ) {
518 SemanticError( qualType->location, toString("Use of undefined global type ", inst->name) );
519 }
520 auto base = td->base;
521 assert( base );
522 Type * ret = base->clone();
523 ret->get_qualifiers() = qualType->get_qualifiers();
524 return ret;
525 } else {
526 // .T => T is not a type name
527 assertf( false, "unhandled global qualified child type: %s", toCString(child) );
528 }
529 } else {
530 // S.T => S must be an aggregate type, find the declaration for T in S.
531 AggregateDecl * aggr = nullptr;
532 if ( StructInstType * inst = dynamic_cast< StructInstType * >( parent ) ) {
533 aggr = inst->baseStruct;
534 } else if ( UnionInstType * inst = dynamic_cast< UnionInstType * > ( parent ) ) {
535 aggr = inst->baseUnion;
536 } else {
537 SemanticError( qualType->location, toString("Qualified type requires an aggregate on the left, but has: ", parent) );
538 }
539 assert( aggr ); // TODO: need to handle forward declarations
540 for ( Declaration * member : aggr->members ) {
541 if ( TypeInstType * inst = dynamic_cast< TypeInstType * >( child ) ) {
542 // name on the right is a typedef
543 if ( NamedTypeDecl * aggr = dynamic_cast< NamedTypeDecl * > ( member ) ) {
544 if ( aggr->name == inst->name ) {
545 assert( aggr->base );
546 Type * ret = aggr->base->clone();
547 ret->get_qualifiers() = qualType->get_qualifiers();
548 TypeSubstitution sub = parent->genericSubstitution();
549 sub.apply(ret);
550 return ret;
551 }
552 }
553 } else {
554 // S.T - S is not an aggregate => error
555 assertf( false, "unhandled qualified child type: %s", toCString(qualType) );
556 }
557 }
558 // failed to find a satisfying definition of type
559 SemanticError( qualType->location, toString("Undefined type in qualified type: ", qualType) );
560 }
561
562 // ... may want to link canonical SUE definition to each forward decl so that it becomes easier to lookup?
563 }
564
565
566 void HoistStruct::hoistStruct( std::list< Declaration * > &translationUnit ) {
567 PassVisitor<HoistStruct> hoister;
568 acceptAll( translationUnit, hoister );
569 }
570
571 bool shouldHoist( Declaration * decl ) {
572 return dynamic_cast< StructDecl * >( decl ) || dynamic_cast< UnionDecl * >( decl ) || dynamic_cast< StaticAssertDecl * >( decl );
573 }
574
575 namespace {
576 void qualifiedName( AggregateDecl * aggr, std::ostringstream & ss ) {
577 if ( aggr->parent ) qualifiedName( aggr->parent, ss );
578 ss << "__" << aggr->name;
579 }
580
581 // mangle nested type names using entire parent chain
582 std::string qualifiedName( AggregateDecl * aggr ) {
583 std::ostringstream ss;
584 qualifiedName( aggr, ss );
585 return ss.str();
586 }
587 }
588
589 template< typename AggDecl >
590 void HoistStruct::handleAggregate( AggDecl * aggregateDecl ) {
591 if ( parentAggr ) {
592 aggregateDecl->parent = parentAggr;
593 aggregateDecl->name = qualifiedName( aggregateDecl );
594 // Add elements in stack order corresponding to nesting structure.
595 declsToAddBefore.push_front( aggregateDecl );
596 } else {
597 GuardValue( parentAggr );
598 parentAggr = aggregateDecl;
599 } // if
600 // Always remove the hoisted aggregate from the inner structure.
601 GuardAction( [aggregateDecl]() { filter( aggregateDecl->members, shouldHoist, false ); } );
602 }
603
604 void HoistStruct::previsit( StaticAssertDecl * assertDecl ) {
605 if ( parentAggr ) {
606 declsToAddBefore.push_back( assertDecl );
607 }
608 }
609
610 void HoistStruct::previsit( StructDecl * aggregateDecl ) {
611 handleAggregate( aggregateDecl );
612 }
613
614 void HoistStruct::previsit( UnionDecl * aggregateDecl ) {
615 handleAggregate( aggregateDecl );
616 }
617
618 void HoistStruct::previsit( StructInstType * type ) {
619 // need to reset type name after expanding to qualified name
620 assert( type->baseStruct );
621 type->name = type->baseStruct->name;
622 }
623
624 void HoistStruct::previsit( UnionInstType * type ) {
625 assert( type->baseUnion );
626 type->name = type->baseUnion->name;
627 }
628
629 void HoistStruct::previsit( EnumInstType * type ) {
630 assert( type->baseEnum );
631 type->name = type->baseEnum->name;
632 }
633
634
635 bool isTypedef( Declaration * decl ) {
636 return dynamic_cast< TypedefDecl * >( decl );
637 }
638
639 void EliminateTypedef::eliminateTypedef( std::list< Declaration * > &translationUnit ) {
640 PassVisitor<EliminateTypedef> eliminator;
641 acceptAll( translationUnit, eliminator );
642 filter( translationUnit, isTypedef, true );
643 }
644
645 template< typename AggDecl >
646 void EliminateTypedef::handleAggregate( AggDecl * aggregateDecl ) {
647 filter( aggregateDecl->members, isTypedef, true );
648 }
649
650 void EliminateTypedef::previsit( StructDecl * aggregateDecl ) {
651 handleAggregate( aggregateDecl );
652 }
653
654 void EliminateTypedef::previsit( UnionDecl * aggregateDecl ) {
655 handleAggregate( aggregateDecl );
656 }
657
658 void EliminateTypedef::previsit( CompoundStmt * compoundStmt ) {
659 // remove and delete decl stmts
660 filter( compoundStmt->kids, [](Statement * stmt) {
661 if ( DeclStmt * declStmt = dynamic_cast< DeclStmt * >( stmt ) ) {
662 if ( dynamic_cast< TypedefDecl * >( declStmt->decl ) ) {
663 return true;
664 } // if
665 } // if
666 return false;
667 }, true);
668 }
669
670 void EnumAndPointerDecay_old::previsit( EnumDecl * enumDecl ) {
671 // Set the type of each member of the enumeration to be EnumConstant
672 for ( std::list< Declaration * >::iterator i = enumDecl->members.begin(); i != enumDecl->members.end(); ++i ) {
673 ObjectDecl * obj = dynamic_cast< ObjectDecl * >( * i );
674 assert( obj );
675 obj->set_type( new EnumInstType( Type::Qualifiers( Type::Const ), enumDecl->name ) );
676 } // for
677 }
678
679 namespace {
680 template< typename DWTList >
681 void fixFunctionList( DWTList & dwts, bool isVarArgs, FunctionType * func ) {
682 auto nvals = dwts.size();
683 bool containsVoid = false;
684 for ( auto & dwt : dwts ) {
685 // fix each DWT and record whether a void was found
686 containsVoid |= fixFunction( dwt );
687 }
688
689 // the only case in which "void" is valid is where it is the only one in the list
690 if ( containsVoid && ( nvals > 1 || isVarArgs ) ) {
691 SemanticError( func, "invalid type void in function type " );
692 }
693
694 // one void is the only thing in the list; remove it.
695 if ( containsVoid ) {
696 delete dwts.front();
697 dwts.clear();
698 }
699 }
700 }
701
702 void EnumAndPointerDecay_old::previsit( FunctionType * func ) {
703 // Fix up parameters and return types
704 fixFunctionList( func->parameters, func->isVarArgs, func );
705 fixFunctionList( func->returnVals, false, func );
706 }
707
708 LinkReferenceToTypes_old::LinkReferenceToTypes_old( const Indexer * other_indexer ) : WithIndexer( false ) {
709 if ( other_indexer ) {
710 local_indexer = other_indexer;
711 } else {
712 local_indexer = &indexer;
713 } // if
714 }
715
716 void LinkReferenceToTypes_old::postvisit( EnumInstType * enumInst ) {
717 const EnumDecl * st = local_indexer->lookupEnum( enumInst->name );
718 // it's not a semantic error if the enum is not found, just an implicit forward declaration
719 if ( st ) {
720 enumInst->baseEnum = const_cast<EnumDecl *>(st); // Just linking in the node
721 } // if
722 if ( ! st || ! st->body ) {
723 // use of forward declaration
724 forwardEnums[ enumInst->name ].push_back( enumInst );
725 } // if
726 }
727
728 void LinkReferenceToTypes_old::postvisit( StructInstType * structInst ) {
729 const StructDecl * st = local_indexer->lookupStruct( structInst->name );
730 // it's not a semantic error if the struct is not found, just an implicit forward declaration
731 if ( st ) {
732 structInst->baseStruct = const_cast<StructDecl *>(st); // Just linking in the node
733 } // if
734 if ( ! st || ! st->body ) {
735 // use of forward declaration
736 forwardStructs[ structInst->name ].push_back( structInst );
737 } // if
738 }
739
740 void LinkReferenceToTypes_old::postvisit( UnionInstType * unionInst ) {
741 const UnionDecl * un = local_indexer->lookupUnion( unionInst->name );
742 // it's not a semantic error if the union is not found, just an implicit forward declaration
743 if ( un ) {
744 unionInst->baseUnion = const_cast<UnionDecl *>(un); // Just linking in the node
745 } // if
746 if ( ! un || ! un->body ) {
747 // use of forward declaration
748 forwardUnions[ unionInst->name ].push_back( unionInst );
749 } // if
750 }
751
752 void LinkReferenceToTypes_old::previsit( QualifiedType * ) {
753 visit_children = false;
754 }
755
756 void LinkReferenceToTypes_old::postvisit( QualifiedType * qualType ) {
757 // linking only makes sense for the 'oldest ancestor' of the qualified type
758 qualType->parent->accept( * visitor );
759 }
760
761 template< typename Decl >
762 void normalizeAssertions( std::list< Decl * > & assertions ) {
763 // ensure no duplicate trait members after the clone
764 auto pred = [](Decl * d1, Decl * d2) {
765 // only care if they're equal
766 DeclarationWithType * dwt1 = dynamic_cast<DeclarationWithType *>( d1 );
767 DeclarationWithType * dwt2 = dynamic_cast<DeclarationWithType *>( d2 );
768 if ( dwt1 && dwt2 ) {
769 if ( dwt1->name == dwt2->name && ResolvExpr::typesCompatible( dwt1->get_type(), dwt2->get_type(), SymTab::Indexer() ) ) {
770 // std::cerr << "=========== equal:" << std::endl;
771 // std::cerr << "d1: " << d1 << std::endl;
772 // std::cerr << "d2: " << d2 << std::endl;
773 return false;
774 }
775 }
776 return d1 < d2;
777 };
778 std::set<Decl *, decltype(pred)> unique_members( assertions.begin(), assertions.end(), pred );
779 // if ( unique_members.size() != assertions.size() ) {
780 // std::cerr << "============different" << std::endl;
781 // std::cerr << unique_members.size() << " " << assertions.size() << std::endl;
782 // }
783
784 std::list< Decl * > order;
785 order.splice( order.end(), assertions );
786 std::copy_if( order.begin(), order.end(), back_inserter( assertions ), [&]( Decl * decl ) {
787 return unique_members.count( decl );
788 });
789 }
790
791 // expand assertions from trait instance, performing the appropriate type variable substitutions
792 template< typename Iterator >
793 void expandAssertions( TraitInstType * inst, Iterator out ) {
794 assertf( inst->baseTrait, "Trait instance not linked to base trait: %s", toCString( inst ) );
795 std::list< DeclarationWithType * > asserts;
796 for ( Declaration * decl : inst->baseTrait->members ) {
797 asserts.push_back( strict_dynamic_cast<DeclarationWithType *>( decl->clone() ) );
798 }
799 // substitute trait decl parameters for instance parameters
800 applySubstitution( inst->baseTrait->parameters.begin(), inst->baseTrait->parameters.end(), inst->parameters.begin(), asserts.begin(), asserts.end(), out );
801 }
802
803 void LinkReferenceToTypes_old::postvisit( TraitDecl * traitDecl ) {
804 if ( traitDecl->name == "sized" ) {
805 // "sized" is a special trait - flick the sized status on for the type variable
806 assertf( traitDecl->parameters.size() == 1, "Built-in trait 'sized' has incorrect number of parameters: %zd", traitDecl->parameters.size() );
807 TypeDecl * td = traitDecl->parameters.front();
808 td->set_sized( true );
809 }
810
811 // move assertions from type parameters into the body of the trait
812 for ( TypeDecl * td : traitDecl->parameters ) {
813 for ( DeclarationWithType * assert : td->assertions ) {
814 if ( TraitInstType * inst = dynamic_cast< TraitInstType * >( assert->get_type() ) ) {
815 expandAssertions( inst, back_inserter( traitDecl->members ) );
816 } else {
817 traitDecl->members.push_back( assert->clone() );
818 }
819 }
820 deleteAll( td->assertions );
821 td->assertions.clear();
822 } // for
823 }
824
825 void LinkReferenceToTypes_old::postvisit( TraitInstType * traitInst ) {
826 // handle other traits
827 const TraitDecl * traitDecl = local_indexer->lookupTrait( traitInst->name );
828 if ( ! traitDecl ) {
829 SemanticError( traitInst->location, "use of undeclared trait " + traitInst->name );
830 } // if
831 if ( traitDecl->parameters.size() != traitInst->parameters.size() ) {
832 SemanticError( traitInst, "incorrect number of trait parameters: " );
833 } // if
834 traitInst->baseTrait = const_cast<TraitDecl *>(traitDecl); // Just linking in the node
835
836 // need to carry over the 'sized' status of each decl in the instance
837 for ( auto p : group_iterate( traitDecl->parameters, traitInst->parameters ) ) {
838 TypeExpr * expr = dynamic_cast< TypeExpr * >( std::get<1>(p) );
839 if ( ! expr ) {
840 SemanticError( std::get<1>(p), "Expression parameters for trait instances are currently unsupported: " );
841 }
842 if ( TypeInstType * inst = dynamic_cast< TypeInstType * >( expr->get_type() ) ) {
843 TypeDecl * formalDecl = std::get<0>(p);
844 TypeDecl * instDecl = inst->baseType;
845 if ( formalDecl->get_sized() ) instDecl->set_sized( true );
846 }
847 }
848 // normalizeAssertions( traitInst->members );
849 }
850
851 void LinkReferenceToTypes_old::postvisit( EnumDecl * enumDecl ) {
852 // visit enum members first so that the types of self-referencing members are updated properly
853 if ( enumDecl->body ) {
854 ForwardEnumsType::iterator fwds = forwardEnums.find( enumDecl->name );
855 if ( fwds != forwardEnums.end() ) {
856 for ( std::list< EnumInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) {
857 (* inst)->baseEnum = enumDecl;
858 } // for
859 forwardEnums.erase( fwds );
860 } // if
861 } // if
862 }
863
864 void LinkReferenceToTypes_old::renameGenericParams( std::list< TypeDecl * > & params ) {
865 // rename generic type parameters uniquely so that they do not conflict with user-defined function forall parameters, e.g.
866 // forall(otype T)
867 // struct Box {
868 // T x;
869 // };
870 // forall(otype T)
871 // void f(Box(T) b) {
872 // ...
873 // }
874 // The T in Box and the T in f are different, so internally the naming must reflect that.
875 GuardValue( inGeneric );
876 inGeneric = ! params.empty();
877 for ( TypeDecl * td : params ) {
878 td->name = "__" + td->name + "_generic_";
879 }
880 }
881
882 void LinkReferenceToTypes_old::previsit( StructDecl * structDecl ) {
883 renameGenericParams( structDecl->parameters );
884 }
885
886 void LinkReferenceToTypes_old::previsit( UnionDecl * unionDecl ) {
887 renameGenericParams( unionDecl->parameters );
888 }
889
890 void LinkReferenceToTypes_old::postvisit( StructDecl * structDecl ) {
891 // visit struct members first so that the types of self-referencing members are updated properly
892 // xxx - need to ensure that type parameters match up between forward declarations and definition (most importantly, number of type parameters and their defaults)
893 if ( structDecl->body ) {
894 ForwardStructsType::iterator fwds = forwardStructs.find( structDecl->name );
895 if ( fwds != forwardStructs.end() ) {
896 for ( std::list< StructInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) {
897 (* inst)->baseStruct = structDecl;
898 } // for
899 forwardStructs.erase( fwds );
900 } // if
901 } // if
902 }
903
904 void LinkReferenceToTypes_old::postvisit( UnionDecl * unionDecl ) {
905 if ( unionDecl->body ) {
906 ForwardUnionsType::iterator fwds = forwardUnions.find( unionDecl->name );
907 if ( fwds != forwardUnions.end() ) {
908 for ( std::list< UnionInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) {
909 (* inst)->baseUnion = unionDecl;
910 } // for
911 forwardUnions.erase( fwds );
912 } // if
913 } // if
914 }
915
916 void LinkReferenceToTypes_old::postvisit( TypeInstType * typeInst ) {
917 // ensure generic parameter instances are renamed like the base type
918 if ( inGeneric && typeInst->baseType ) typeInst->name = typeInst->baseType->name;
919 if ( const NamedTypeDecl * namedTypeDecl = local_indexer->lookupType( typeInst->name ) ) {
920 if ( const TypeDecl * typeDecl = dynamic_cast< const TypeDecl * >( namedTypeDecl ) ) {
921 typeInst->set_isFtype( typeDecl->kind == TypeDecl::Ftype );
922 } // if
923 } // if
924 }
925
926 ResolveEnumInitializers::ResolveEnumInitializers( const Indexer * other_indexer ) : WithIndexer( true ) {
927 if ( other_indexer ) {
928 local_indexer = other_indexer;
929 } else {
930 local_indexer = &indexer;
931 } // if
932 }
933
934 void ResolveEnumInitializers::postvisit( EnumDecl * enumDecl ) {
935 if ( enumDecl->body ) {
936 for ( Declaration * member : enumDecl->members ) {
937 ObjectDecl * field = strict_dynamic_cast<ObjectDecl *>( member );
938 if ( field->init ) {
939 // need to resolve enumerator initializers early so that other passes that determine if an expression is constexpr have the appropriate information.
940 SingleInit * init = strict_dynamic_cast<SingleInit *>( field->init );
941 ResolvExpr::findSingleExpression( init->value, new BasicType( Type::Qualifiers(), BasicType::SignedInt ), indexer );
942 }
943 }
944 } // if
945 }
946
947 /// Fix up assertions - flattens assertion lists, removing all trait instances
948 void forallFixer( std::list< TypeDecl * > & forall, BaseSyntaxNode * node ) {
949 for ( TypeDecl * type : forall ) {
950 std::list< DeclarationWithType * > asserts;
951 asserts.splice( asserts.end(), type->assertions );
952 // expand trait instances into their members
953 for ( DeclarationWithType * assertion : asserts ) {
954 if ( TraitInstType * traitInst = dynamic_cast< TraitInstType * >( assertion->get_type() ) ) {
955 // expand trait instance into all of its members
956 expandAssertions( traitInst, back_inserter( type->assertions ) );
957 delete traitInst;
958 } else {
959 // pass other assertions through
960 type->assertions.push_back( assertion );
961 } // if
962 } // for
963 // apply FixFunction to every assertion to check for invalid void type
964 for ( DeclarationWithType *& assertion : type->assertions ) {
965 bool isVoid = fixFunction( assertion );
966 if ( isVoid ) {
967 SemanticError( node, "invalid type void in assertion of function " );
968 } // if
969 } // for
970 // normalizeAssertions( type->assertions );
971 } // for
972 }
973
974 void ForallPointerDecay_old::previsit( ObjectDecl * object ) {
975 // ensure that operator names only apply to functions or function pointers
976 if ( CodeGen::isOperator( object->name ) && ! dynamic_cast< FunctionType * >( object->type->stripDeclarator() ) ) {
977 SemanticError( object->location, toCString( "operator ", object->name.c_str(), " is not a function or function pointer." ) );
978 }
979 object->fixUniqueId();
980 }
981
982 void ForallPointerDecay_old::previsit( FunctionDecl * func ) {
983 func->fixUniqueId();
984 }
985
986 void ForallPointerDecay_old::previsit( FunctionType * ftype ) {
987 forallFixer( ftype->forall, ftype );
988 }
989
990 void ForallPointerDecay_old::previsit( StructDecl * aggrDecl ) {
991 forallFixer( aggrDecl->parameters, aggrDecl );
992 }
993
994 void ForallPointerDecay_old::previsit( UnionDecl * aggrDecl ) {
995 forallFixer( aggrDecl->parameters, aggrDecl );
996 }
997
998 void ReturnChecker::checkFunctionReturns( std::list< Declaration * > & translationUnit ) {
999 PassVisitor<ReturnChecker> checker;
1000 acceptAll( translationUnit, checker );
1001 }
1002
1003 void ReturnChecker::previsit( FunctionDecl * functionDecl ) {
1004 GuardValue( returnVals );
1005 returnVals = functionDecl->get_functionType()->get_returnVals();
1006 }
1007
1008 void ReturnChecker::previsit( ReturnStmt * returnStmt ) {
1009 // Previously this also checked for the existence of an expr paired with no return values on
1010 // the function return type. This is incorrect, since you can have an expression attached to
1011 // a return statement in a void-returning function in C. The expression is treated as if it
1012 // were cast to void.
1013 if ( ! returnStmt->get_expr() && returnVals.size() != 0 ) {
1014 SemanticError( returnStmt, "Non-void function returns no values: " );
1015 }
1016 }
1017
1018
1019 void ReplaceTypedef::replaceTypedef( std::list< Declaration * > &translationUnit ) {
1020 PassVisitor<ReplaceTypedef> eliminator;
1021 mutateAll( translationUnit, eliminator );
1022 if ( eliminator.pass.typedefNames.count( "size_t" ) ) {
1023 // grab and remember declaration of size_t
1024 Validate::SizeType = eliminator.pass.typedefNames["size_t"].first->base->clone();
1025 } else {
1026 // xxx - missing global typedef for size_t - default to long unsigned int, even though that may be wrong
1027 // eventually should have a warning for this case.
1028 Validate::SizeType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
1029 }
1030 }
1031
1032 void ReplaceTypedef::premutate( QualifiedType * ) {
1033 visit_children = false;
1034 }
1035
1036 Type * ReplaceTypedef::postmutate( QualifiedType * qualType ) {
1037 // replacing typedefs only makes sense for the 'oldest ancestor' of the qualified type
1038 qualType->parent = qualType->parent->acceptMutator( * visitor );
1039 return qualType;
1040 }
1041
1042 static bool isNonParameterAttribute( Attribute * attr ) {
1043 static const std::vector<std::string> bad_names = {
1044 "aligned", "__aligned__",
1045 };
1046 for ( auto name : bad_names ) {
1047 if ( name == attr->name ) {
1048 return true;
1049 }
1050 }
1051 return false;
1052 }
1053
1054 Type * ReplaceTypedef::postmutate( TypeInstType * typeInst ) {
1055 // instances of typedef types will come here. If it is an instance
1056 // of a typdef type, link the instance to its actual type.
1057 TypedefMap::const_iterator def = typedefNames.find( typeInst->name );
1058 if ( def != typedefNames.end() ) {
1059 Type * ret = def->second.first->base->clone();
1060 ret->location = typeInst->location;
1061 ret->get_qualifiers() |= typeInst->get_qualifiers();
1062 // GCC ignores certain attributes if they arrive by typedef, this mimics that.
1063 if ( inFunctionType ) {
1064 ret->attributes.remove_if( isNonParameterAttribute );
1065 }
1066 ret->attributes.splice( ret->attributes.end(), typeInst->attributes );
1067 // place instance parameters on the typedef'd type
1068 if ( ! typeInst->parameters.empty() ) {
1069 ReferenceToType * rtt = dynamic_cast<ReferenceToType *>(ret);
1070 if ( ! rtt ) {
1071 SemanticError( typeInst->location, "Cannot apply type parameters to base type of " + typeInst->name );
1072 }
1073 rtt->parameters.clear();
1074 cloneAll( typeInst->parameters, rtt->parameters );
1075 mutateAll( rtt->parameters, * visitor ); // recursively fix typedefs on parameters
1076 } // if
1077 delete typeInst;
1078 return ret;
1079 } else {
1080 TypeDeclMap::const_iterator base = typedeclNames.find( typeInst->name );
1081 if ( base == typedeclNames.end() ) {
1082 SemanticError( typeInst->location, toString("Use of undefined type ", typeInst->name) );
1083 }
1084 typeInst->set_baseType( base->second );
1085 return typeInst;
1086 } // if
1087 assert( false );
1088 }
1089
1090 struct VarLenChecker : WithShortCircuiting {
1091 void previsit( FunctionType * ) { visit_children = false; }
1092 void previsit( ArrayType * at ) {
1093 isVarLen |= at->isVarLen;
1094 }
1095 bool isVarLen = false;
1096 };
1097
1098 bool isVariableLength( Type * t ) {
1099 PassVisitor<VarLenChecker> varLenChecker;
1100 maybeAccept( t, varLenChecker );
1101 return varLenChecker.pass.isVarLen;
1102 }
1103
1104 Declaration * ReplaceTypedef::postmutate( TypedefDecl * tyDecl ) {
1105 if ( typedefNames.count( tyDecl->name ) == 1 && typedefNames[ tyDecl->name ].second == scopeLevel ) {
1106 // typedef to the same name from the same scope
1107 // must be from the same type
1108
1109 Type * t1 = tyDecl->base;
1110 Type * t2 = typedefNames[ tyDecl->name ].first->base;
1111 if ( ! ResolvExpr::typesCompatible( t1, t2, Indexer() ) ) {
1112 SemanticError( tyDecl->location, "Cannot redefine typedef: " + tyDecl->name );
1113 }
1114 // Cannot redefine VLA typedefs. Note: this is slightly incorrect, because our notion of VLAs
1115 // at this point in the translator is imprecise. In particular, this will disallow redefining typedefs
1116 // with arrays whose dimension is an enumerator or a cast of a constant/enumerator. The effort required
1117 // to fix this corner case likely outweighs the utility of allowing it.
1118 if ( isVariableLength( t1 ) || isVariableLength( t2 ) ) {
1119 SemanticError( tyDecl->location, "Cannot redefine typedef: " + tyDecl->name );
1120 }
1121 } else {
1122 typedefNames[ tyDecl->name ] = std::make_pair( TypedefDeclPtr( tyDecl ), scopeLevel );
1123 } // if
1124
1125 // When a typedef is a forward declaration:
1126 // typedef struct screen SCREEN;
1127 // the declaration portion must be retained:
1128 // struct screen;
1129 // because the expansion of the typedef is:
1130 // void rtn( SCREEN * p ) => void rtn( struct screen * p )
1131 // hence the type-name "screen" must be defined.
1132 // Note, qualifiers on the typedef are superfluous for the forward declaration.
1133
1134 Type * designatorType = tyDecl->base->stripDeclarator();
1135 if ( StructInstType * aggDecl = dynamic_cast< StructInstType * >( designatorType ) ) {
1136 declsToAddBefore.push_back( new StructDecl( aggDecl->name, AggregateDecl::Struct, noAttributes, tyDecl->linkage ) );
1137 } else if ( UnionInstType * aggDecl = dynamic_cast< UnionInstType * >( designatorType ) ) {
1138 declsToAddBefore.push_back( new UnionDecl( aggDecl->name, noAttributes, tyDecl->linkage ) );
1139 } else if ( EnumInstType * enumDecl = dynamic_cast< EnumInstType * >( designatorType ) ) {
1140 declsToAddBefore.push_back( new EnumDecl( enumDecl->name, noAttributes, tyDecl->linkage ) );
1141 } // if
1142 return tyDecl->clone();
1143 }
1144
1145 void ReplaceTypedef::premutate( TypeDecl * typeDecl ) {
1146 TypedefMap::iterator i = typedefNames.find( typeDecl->name );
1147 if ( i != typedefNames.end() ) {
1148 typedefNames.erase( i ) ;
1149 } // if
1150
1151 typedeclNames.insert( typeDecl->name, typeDecl );
1152 }
1153
1154 void ReplaceTypedef::premutate( FunctionDecl * ) {
1155 GuardScope( typedefNames );
1156 GuardScope( typedeclNames );
1157 }
1158
1159 void ReplaceTypedef::premutate( ObjectDecl * ) {
1160 GuardScope( typedefNames );
1161 GuardScope( typedeclNames );
1162 }
1163
1164 DeclarationWithType * ReplaceTypedef::postmutate( ObjectDecl * objDecl ) {
1165 if ( FunctionType * funtype = dynamic_cast<FunctionType *>( objDecl->type ) ) { // function type?
1166 // replace the current object declaration with a function declaration
1167 FunctionDecl * newDecl = new FunctionDecl( objDecl->name, objDecl->get_storageClasses(), objDecl->linkage, funtype, 0, objDecl->attributes, objDecl->get_funcSpec() );
1168 objDecl->attributes.clear();
1169 objDecl->set_type( nullptr );
1170 delete objDecl;
1171 return newDecl;
1172 } // if
1173 return objDecl;
1174 }
1175
1176 void ReplaceTypedef::premutate( CastExpr * ) {
1177 GuardScope( typedefNames );
1178 GuardScope( typedeclNames );
1179 }
1180
1181 void ReplaceTypedef::premutate( CompoundStmt * ) {
1182 GuardScope( typedefNames );
1183 GuardScope( typedeclNames );
1184 scopeLevel += 1;
1185 GuardAction( [this](){ scopeLevel -= 1; } );
1186 }
1187
1188 template<typename AggDecl>
1189 void ReplaceTypedef::addImplicitTypedef( AggDecl * aggDecl ) {
1190 if ( typedefNames.count( aggDecl->get_name() ) == 0 ) {
1191 Type * type = nullptr;
1192 if ( StructDecl * newDeclStructDecl = dynamic_cast< StructDecl * >( aggDecl ) ) {
1193 type = new StructInstType( Type::Qualifiers(), newDeclStructDecl->get_name() );
1194 } else if ( UnionDecl * newDeclUnionDecl = dynamic_cast< UnionDecl * >( aggDecl ) ) {
1195 type = new UnionInstType( Type::Qualifiers(), newDeclUnionDecl->get_name() );
1196 } else if ( EnumDecl * newDeclEnumDecl = dynamic_cast< EnumDecl * >( aggDecl ) ) {
1197 type = new EnumInstType( Type::Qualifiers(), newDeclEnumDecl->get_name() );
1198 } // if
1199 TypedefDeclPtr tyDecl( new TypedefDecl( aggDecl->get_name(), aggDecl->location, Type::StorageClasses(), type, aggDecl->get_linkage() ) );
1200 typedefNames[ aggDecl->get_name() ] = std::make_pair( std::move( tyDecl ), scopeLevel );
1201 // add the implicit typedef to the AST
1202 declsToAddBefore.push_back( new TypedefDecl( aggDecl->get_name(), aggDecl->location, Type::StorageClasses(), type->clone(), aggDecl->get_linkage() ) );
1203 } // if
1204 }
1205
1206 template< typename AggDecl >
1207 void ReplaceTypedef::handleAggregate( AggDecl * aggr ) {
1208 SemanticErrorException errors;
1209
1210 ValueGuard< std::list<Declaration * > > oldBeforeDecls( declsToAddBefore );
1211 ValueGuard< std::list<Declaration * > > oldAfterDecls ( declsToAddAfter );
1212 declsToAddBefore.clear();
1213 declsToAddAfter.clear();
1214
1215 GuardScope( typedefNames );
1216 GuardScope( typedeclNames );
1217 mutateAll( aggr->parameters, * visitor );
1218 mutateAll( aggr->attributes, * visitor );
1219
1220 // unroll mutateAll for aggr->members so that implicit typedefs for nested types are added to the aggregate body.
1221 for ( std::list< Declaration * >::iterator i = aggr->members.begin(); i != aggr->members.end(); ++i ) {
1222 if ( !declsToAddAfter.empty() ) { aggr->members.splice( i, declsToAddAfter ); }
1223
1224 try {
1225 * i = maybeMutate( * i, * visitor );
1226 } catch ( SemanticErrorException &e ) {
1227 errors.append( e );
1228 }
1229
1230 if ( !declsToAddBefore.empty() ) { aggr->members.splice( i, declsToAddBefore ); }
1231 }
1232
1233 if ( !declsToAddAfter.empty() ) { aggr->members.splice( aggr->members.end(), declsToAddAfter ); }
1234 if ( !errors.isEmpty() ) { throw errors; }
1235 }
1236
1237 void ReplaceTypedef::premutate( StructDecl * structDecl ) {
1238 visit_children = false;
1239 addImplicitTypedef( structDecl );
1240 handleAggregate( structDecl );
1241 }
1242
1243 void ReplaceTypedef::premutate( UnionDecl * unionDecl ) {
1244 visit_children = false;
1245 addImplicitTypedef( unionDecl );
1246 handleAggregate( unionDecl );
1247 }
1248
1249 void ReplaceTypedef::premutate( EnumDecl * enumDecl ) {
1250 addImplicitTypedef( enumDecl );
1251 }
1252
1253 void ReplaceTypedef::premutate( FunctionType * ) {
1254 GuardValue( inFunctionType );
1255 inFunctionType = true;
1256 }
1257
1258 void ReplaceTypedef::premutate( TraitDecl * ) {
1259 GuardScope( typedefNames );
1260 GuardScope( typedeclNames);
1261 }
1262
1263 void VerifyCtorDtorAssign::verify( std::list< Declaration * > & translationUnit ) {
1264 PassVisitor<VerifyCtorDtorAssign> verifier;
1265 acceptAll( translationUnit, verifier );
1266 }
1267
1268 void VerifyCtorDtorAssign::previsit( FunctionDecl * funcDecl ) {
1269 FunctionType * funcType = funcDecl->get_functionType();
1270 std::list< DeclarationWithType * > &returnVals = funcType->get_returnVals();
1271 std::list< DeclarationWithType * > &params = funcType->get_parameters();
1272
1273 if ( CodeGen::isCtorDtorAssign( funcDecl->get_name() ) ) { // TODO: also check /=, etc.
1274 if ( params.size() == 0 ) {
1275 SemanticError( funcDecl->location, "Constructors, destructors, and assignment functions require at least one parameter." );
1276 }
1277 ReferenceType * refType = dynamic_cast< ReferenceType * >( params.front()->get_type() );
1278 if ( ! refType ) {
1279 SemanticError( funcDecl->location, "First parameter of a constructor, destructor, or assignment function must be a reference." );
1280 }
1281 if ( CodeGen::isCtorDtor( funcDecl->get_name() ) && returnVals.size() != 0 ) {
1282 if(!returnVals.front()->get_type()->isVoid()) {
1283 SemanticError( funcDecl->location, "Constructors and destructors cannot have explicit return values." );
1284 }
1285 }
1286 }
1287 }
1288
1289 // Test for special name on a generic parameter. Special treatment for the
1290 // special name is a bootstrapping hack. In most cases, the worlds of T's
1291 // and of N's don't overlap (normal treamtemt). The foundations in
1292 // array.hfa use tagging for both types and dimensions. Tagging treats
1293 // its subject parameter even more opaquely than T&, which assumes it is
1294 // possible to have a pointer/reference to such an object. Tagging only
1295 // seeks to identify the type-system resident at compile time. Both N's
1296 // and T's can make tags. The tag definition uses the special name, which
1297 // is treated as "an N or a T." This feature is not inteded to be used
1298 // outside of the definition and immediate uses of a tag.
1299 static inline bool isReservedTysysIdOnlyName( const std::string & name ) {
1300 // name's prefix was __CFA_tysys_id_only, before it got wrapped in __..._generic
1301 int foundAt = name.find("__CFA_tysys_id_only");
1302 if (foundAt == 0) return true;
1303 if (foundAt == 2 && name[0] == '_' && name[1] == '_') return true;
1304 return false;
1305 }
1306
1307 template< typename Aggr >
1308 void validateGeneric( Aggr * inst ) {
1309 std::list< TypeDecl * > * params = inst->get_baseParameters();
1310 if ( params ) {
1311 std::list< Expression * > & args = inst->get_parameters();
1312
1313 // insert defaults arguments when a type argument is missing (currently only supports missing arguments at the end of the list).
1314 // A substitution is used to ensure that defaults are replaced correctly, e.g.,
1315 // forall(otype T, otype alloc = heap_allocator(T)) struct vector;
1316 // vector(int) v;
1317 // after insertion of default values becomes
1318 // vector(int, heap_allocator(T))
1319 // and the substitution is built with T=int so that after substitution, the result is
1320 // vector(int, heap_allocator(int))
1321 TypeSubstitution sub;
1322 auto paramIter = params->begin();
1323 auto argIter = args.begin();
1324 for ( ; paramIter != params->end(); ++paramIter, ++argIter ) {
1325 if ( argIter != args.end() ) {
1326 TypeExpr * expr = dynamic_cast< TypeExpr * >( * argIter );
1327 if ( expr ) {
1328 sub.add( (* paramIter)->get_name(), expr->get_type()->clone() );
1329 }
1330 } else {
1331 Type * defaultType = (* paramIter)->get_init();
1332 if ( defaultType ) {
1333 args.push_back( new TypeExpr( defaultType->clone() ) );
1334 sub.add( (* paramIter)->get_name(), defaultType->clone() );
1335 argIter = std::prev(args.end());
1336 } else {
1337 SemanticError( inst, "Too few type arguments in generic type " );
1338 }
1339 }
1340 assert( argIter != args.end() );
1341 bool typeParamDeclared = (*paramIter)->kind != TypeDecl::Kind::Dimension;
1342 bool typeArgGiven;
1343 if ( isReservedTysysIdOnlyName( (*paramIter)->name ) ) {
1344 // coerce a match when declaration is reserved name, which means "either"
1345 typeArgGiven = typeParamDeclared;
1346 } else {
1347 typeArgGiven = dynamic_cast< TypeExpr * >( * argIter );
1348 }
1349 if ( ! typeParamDeclared && typeArgGiven ) SemanticError( inst, "Type argument given for value parameter: " );
1350 if ( typeParamDeclared && ! typeArgGiven ) SemanticError( inst, "Expression argument given for type parameter: " );
1351 }
1352
1353 sub.apply( inst );
1354 if ( args.size() > params->size() ) SemanticError( inst, "Too many type arguments in generic type " );
1355 }
1356 }
1357
1358 void ValidateGenericParameters::previsit( StructInstType * inst ) {
1359 validateGeneric( inst );
1360 }
1361
1362 void ValidateGenericParameters::previsit( UnionInstType * inst ) {
1363 validateGeneric( inst );
1364 }
1365
1366 void TranslateDimensionGenericParameters::translateDimensions( std::list< Declaration * > &translationUnit ) {
1367 PassVisitor<TranslateDimensionGenericParameters> translator;
1368 mutateAll( translationUnit, translator );
1369 }
1370
1371 TranslateDimensionGenericParameters::TranslateDimensionGenericParameters() : WithIndexer( false ) {}
1372
1373 // Declaration of type variable: forall( [N] ) -> forall( N & | sized( N ) )
1374 TypeDecl * TranslateDimensionGenericParameters::postmutate( TypeDecl * td ) {
1375 if ( td->kind == TypeDecl::Dimension ) {
1376 td->kind = TypeDecl::Dtype;
1377 if ( ! isReservedTysysIdOnlyName( td->name ) ) {
1378 td->sized = true;
1379 }
1380 }
1381 return td;
1382 }
1383
1384 // Situational awareness:
1385 // array( float, [[currentExpr]] ) has visitingChildOfSUIT == true
1386 // array( float, [[currentExpr]] - 1 ) has visitingChildOfSUIT == false
1387 // size_t x = [[currentExpr]] has visitingChildOfSUIT == false
1388 void TranslateDimensionGenericParameters::changeState_ChildOfSUIT( bool newVal ) {
1389 GuardValue( nextVisitedNodeIsChildOfSUIT );
1390 GuardValue( visitingChildOfSUIT );
1391 visitingChildOfSUIT = nextVisitedNodeIsChildOfSUIT;
1392 nextVisitedNodeIsChildOfSUIT = newVal;
1393 }
1394 void TranslateDimensionGenericParameters::premutate( StructInstType * sit ) {
1395 (void) sit;
1396 changeState_ChildOfSUIT(true);
1397 }
1398 void TranslateDimensionGenericParameters::premutate( UnionInstType * uit ) {
1399 (void) uit;
1400 changeState_ChildOfSUIT(true);
1401 }
1402 void TranslateDimensionGenericParameters::premutate( BaseSyntaxNode * node ) {
1403 (void) node;
1404 changeState_ChildOfSUIT(false);
1405 }
1406
1407 // Passing values as dimension arguments: array( float, 7 ) -> array( float, char[ 7 ] )
1408 // Consuming dimension parameters: size_t x = N - 1 ; -> size_t x = sizeof(N) - 1 ;
1409 // Intertwined reality: array( float, N ) -> array( float, N )
1410 // array( float, N - 1 ) -> array( float, char[ sizeof(N) - 1 ] )
1411 // Intertwined case 1 is not just an optimization.
1412 // Avoiding char[sizeof(-)] is necessary to enable the call of f to bind the value of N, in:
1413 // forall([N]) void f( array(float, N) & );
1414 // array(float, 7) a;
1415 // f(a);
1416
1417 Expression * TranslateDimensionGenericParameters::postmutate( DimensionExpr * de ) {
1418 // Expression de is an occurrence of N in LHS of above examples.
1419 // Look up the name that de references.
1420 // If we are in a struct body, then this reference can be to an entry of the stuct's forall list.
1421 // Whether or not we are in a struct body, this reference can be to an entry of a containing function's forall list.
1422 // If we are in a struct body, then the stuct's forall declarations are innermost (functions don't occur in structs).
1423 // Thus, a potential struct's declaration is highest priority.
1424 // A struct's forall declarations are already renamed with _generic_ suffix. Try that name variant first.
1425
1426 std::string useName = "__" + de->name + "_generic_";
1427 TypeDecl * namedParamDecl = const_cast<TypeDecl *>( strict_dynamic_cast<const TypeDecl *, nullptr >( indexer.lookupType( useName ) ) );
1428
1429 if ( ! namedParamDecl ) {
1430 useName = de->name;
1431 namedParamDecl = const_cast<TypeDecl *>( strict_dynamic_cast<const TypeDecl *, nullptr >( indexer.lookupType( useName ) ) );
1432 }
1433
1434 // Expect to find it always. A misspelled name would have been parsed as an identifier.
1435 assert( namedParamDecl && "Type-system-managed value name not found in symbol table" );
1436
1437 delete de;
1438
1439 TypeInstType * refToDecl = new TypeInstType( 0, useName, namedParamDecl );
1440
1441 if ( visitingChildOfSUIT ) {
1442 // As in postmutate( Expression * ), topmost expression needs a TypeExpr wrapper
1443 // But avoid ArrayType-Sizeof
1444 return new TypeExpr( refToDecl );
1445 } else {
1446 // the N occurrence is being used directly as a runtime value,
1447 // if we are in a type instantiation, then the N is within a bigger value computation
1448 return new SizeofExpr( refToDecl );
1449 }
1450 }
1451
1452 Expression * TranslateDimensionGenericParameters::postmutate( Expression * e ) {
1453 if ( visitingChildOfSUIT ) {
1454 // e is an expression used as an argument to instantiate a type
1455 if (! dynamic_cast< TypeExpr * >( e ) ) {
1456 // e is a value expression
1457 // but not a DimensionExpr, which has a distinct postmutate
1458 Type * typeExprContent = new ArrayType( 0, new BasicType( 0, BasicType::Char ), e, true, false );
1459 TypeExpr * result = new TypeExpr( typeExprContent );
1460 return result;
1461 }
1462 }
1463 return e;
1464 }
1465
1466 void CompoundLiteral::premutate( ObjectDecl * objectDecl ) {
1467 storageClasses = objectDecl->get_storageClasses();
1468 }
1469
1470 Expression * CompoundLiteral::postmutate( CompoundLiteralExpr * compLitExpr ) {
1471 // transform [storage_class] ... (struct S){ 3, ... };
1472 // into [storage_class] struct S temp = { 3, ... };
1473 static UniqueName indexName( "_compLit" );
1474
1475 ObjectDecl * tempvar = new ObjectDecl( indexName.newName(), storageClasses, LinkageSpec::C, nullptr, compLitExpr->get_result(), compLitExpr->get_initializer() );
1476 compLitExpr->set_result( nullptr );
1477 compLitExpr->set_initializer( nullptr );
1478 delete compLitExpr;
1479 declsToAddBefore.push_back( tempvar ); // add modified temporary to current block
1480 return new VariableExpr( tempvar );
1481 }
1482
1483 void ReturnTypeFixer::fix( std::list< Declaration * > &translationUnit ) {
1484 PassVisitor<ReturnTypeFixer> fixer;
1485 acceptAll( translationUnit, fixer );
1486 }
1487
1488 void ReturnTypeFixer::postvisit( FunctionDecl * functionDecl ) {
1489 FunctionType * ftype = functionDecl->get_functionType();
1490 std::list< DeclarationWithType * > & retVals = ftype->get_returnVals();
1491 assertf( retVals.size() == 0 || retVals.size() == 1, "Function %s has too many return values: %zu", functionDecl->get_name().c_str(), retVals.size() );
1492 if ( retVals.size() == 1 ) {
1493 // ensure all function return values have a name - use the name of the function to disambiguate (this also provides a nice bit of help for debugging).
1494 // ensure other return values have a name.
1495 DeclarationWithType * ret = retVals.front();
1496 if ( ret->get_name() == "" ) {
1497 ret->set_name( toString( "_retval_", CodeGen::genName( functionDecl ) ) );
1498 }
1499 ret->get_attributes().push_back( new Attribute( "unused" ) );
1500 }
1501 }
1502
1503 void ReturnTypeFixer::postvisit( FunctionType * ftype ) {
1504 // xxx - need to handle named return values - this information needs to be saved somehow
1505 // so that resolution has access to the names.
1506 // Note that this pass needs to happen early so that other passes which look for tuple types
1507 // find them in all of the right places, including function return types.
1508 std::list< DeclarationWithType * > & retVals = ftype->get_returnVals();
1509 if ( retVals.size() > 1 ) {
1510 // generate a single return parameter which is the tuple of all of the return values
1511 TupleType * tupleType = strict_dynamic_cast< TupleType * >( ResolvExpr::extractResultType( ftype ) );
1512 // ensure return value is not destructed by explicitly creating an empty ListInit node wherein maybeConstruct is false.
1513 ObjectDecl * newRet = new ObjectDecl( "", Type::StorageClasses(), LinkageSpec::Cforall, 0, tupleType, new ListInit( std::list<Initializer *>(), noDesignators, false ) );
1514 deleteAll( retVals );
1515 retVals.clear();
1516 retVals.push_back( newRet );
1517 }
1518 }
1519
1520 void FixObjectType::fix( std::list< Declaration * > & translationUnit ) {
1521 PassVisitor<FixObjectType> fixer;
1522 acceptAll( translationUnit, fixer );
1523 }
1524
1525 void FixObjectType::previsit( ObjectDecl * objDecl ) {
1526 Type * new_type = ResolvExpr::resolveTypeof( objDecl->get_type(), indexer );
1527 objDecl->set_type( new_type );
1528 }
1529
1530 void FixObjectType::previsit( FunctionDecl * funcDecl ) {
1531 Type * new_type = ResolvExpr::resolveTypeof( funcDecl->type, indexer );
1532 funcDecl->set_type( new_type );
1533 }
1534
1535 void FixObjectType::previsit( TypeDecl * typeDecl ) {
1536 if ( typeDecl->get_base() ) {
1537 Type * new_type = ResolvExpr::resolveTypeof( typeDecl->get_base(), indexer );
1538 typeDecl->set_base( new_type );
1539 } // if
1540 }
1541
1542 void InitializerLength::computeLength( std::list< Declaration * > & translationUnit ) {
1543 PassVisitor<InitializerLength> len;
1544 acceptAll( translationUnit, len );
1545 }
1546
1547 void ArrayLength::computeLength( std::list< Declaration * > & translationUnit ) {
1548 PassVisitor<ArrayLength> len;
1549 acceptAll( translationUnit, len );
1550 }
1551
1552 void InitializerLength::previsit( ObjectDecl * objDecl ) {
1553 if ( ArrayType * at = dynamic_cast< ArrayType * >( objDecl->type ) ) {
1554 if ( at->dimension ) return;
1555 if ( ListInit * init = dynamic_cast< ListInit * >( objDecl->init ) ) {
1556 at->dimension = new ConstantExpr( Constant::from_ulong( init->initializers.size() ) );
1557 }
1558 }
1559 }
1560
1561 void ArrayLength::previsit( ArrayType * type ) {
1562 if ( type->dimension ) {
1563 // need to resolve array dimensions early so that constructor code can correctly determine
1564 // if a type is a VLA (and hence whether its elements need to be constructed)
1565 ResolvExpr::findSingleExpression( type->dimension, Validate::SizeType->clone(), indexer );
1566
1567 // must re-evaluate whether a type is a VLA, now that more information is available
1568 // (e.g. the dimension may have been an enumerator, which was unknown prior to this step)
1569 type->isVarLen = ! InitTweak::isConstExpr( type->dimension );
1570 }
1571 }
1572
1573 struct LabelFinder {
1574 std::set< Label > & labels;
1575 LabelFinder( std::set< Label > & labels ) : labels( labels ) {}
1576 void previsit( Statement * stmt ) {
1577 for ( Label & l : stmt->labels ) {
1578 labels.insert( l );
1579 }
1580 }
1581 };
1582
1583 void LabelAddressFixer::premutate( FunctionDecl * funcDecl ) {
1584 GuardValue( labels );
1585 PassVisitor<LabelFinder> finder( labels );
1586 funcDecl->accept( finder );
1587 }
1588
1589 Expression * LabelAddressFixer::postmutate( AddressExpr * addrExpr ) {
1590 // convert &&label into label address
1591 if ( AddressExpr * inner = dynamic_cast< AddressExpr * >( addrExpr->arg ) ) {
1592 if ( NameExpr * nameExpr = dynamic_cast< NameExpr * >( inner->arg ) ) {
1593 if ( labels.count( nameExpr->name ) ) {
1594 Label name = nameExpr->name;
1595 delete addrExpr;
1596 return new LabelAddressExpr( name );
1597 }
1598 }
1599 }
1600 return addrExpr;
1601 }
1602
1603namespace {
1604 /// Replaces enum types by int, and function/array types in function parameter and return
1605 /// lists by appropriate pointers
1606 /*
1607 struct EnumAndPointerDecay_new {
1608 const ast::EnumDecl * previsit( const ast::EnumDecl * enumDecl ) {
1609 // set the type of each member of the enumeration to be EnumConstant
1610 for ( unsigned i = 0; i < enumDecl->members.size(); ++i ) {
1611 // build new version of object with EnumConstant
1612 ast::ptr< ast::ObjectDecl > obj =
1613 enumDecl->members[i].strict_as< ast::ObjectDecl >();
1614 obj.get_and_mutate()->type =
1615 new ast::EnumInstType{ enumDecl->name, ast::CV::Const };
1616
1617 // set into decl
1618 ast::EnumDecl * mut = mutate( enumDecl );
1619 mut->members[i] = obj.get();
1620 enumDecl = mut;
1621 }
1622 return enumDecl;
1623 }
1624
1625 static const ast::FunctionType * fixFunctionList(
1626 const ast::FunctionType * func,
1627 std::vector< ast::ptr< ast::DeclWithType > > ast::FunctionType::* field,
1628 ast::ArgumentFlag isVarArgs = ast::FixedArgs
1629 ) {
1630 const auto & dwts = func->* field;
1631 unsigned nvals = dwts.size();
1632 bool hasVoid = false;
1633 for ( unsigned i = 0; i < nvals; ++i ) {
1634 func = ast::mutate_field_index( func, field, i, fixFunction( dwts[i], hasVoid ) );
1635 }
1636
1637 // the only case in which "void" is valid is where it is the only one in the list
1638 if ( hasVoid && ( nvals > 1 || isVarArgs ) ) {
1639 SemanticError(
1640 dwts.front()->location, func, "invalid type void in function type" );
1641 }
1642
1643 // one void is the only thing in the list, remove it
1644 if ( hasVoid ) {
1645 func = ast::mutate_field(
1646 func, field, std::vector< ast::ptr< ast::DeclWithType > >{} );
1647 }
1648
1649 return func;
1650 }
1651
1652 const ast::FunctionType * previsit( const ast::FunctionType * func ) {
1653 func = fixFunctionList( func, &ast::FunctionType::params, func->isVarArgs );
1654 return fixFunctionList( func, &ast::FunctionType::returns );
1655 }
1656 };
1657
1658 /// expand assertions from a trait instance, performing appropriate type variable substitutions
1659 void expandAssertions(
1660 const ast::TraitInstType * inst, std::vector< ast::ptr< ast::DeclWithType > > & out
1661 ) {
1662 assertf( inst->base, "Trait instance not linked to base trait: %s", toCString( inst ) );
1663
1664 // build list of trait members, substituting trait decl parameters for instance parameters
1665 ast::TypeSubstitution sub{
1666 inst->base->params.begin(), inst->base->params.end(), inst->params.begin() };
1667 // deliberately take ast::ptr by-value to ensure this does not mutate inst->base
1668 for ( ast::ptr< ast::Decl > decl : inst->base->members ) {
1669 auto member = decl.strict_as< ast::DeclWithType >();
1670 sub.apply( member );
1671 out.emplace_back( member );
1672 }
1673 }
1674
1675 /// Associates forward declarations of aggregates with their definitions
1676 class LinkReferenceToTypes_new final
1677 : public ast::WithSymbolTable, public ast::WithGuards, public
1678 ast::WithVisitorRef<LinkReferenceToTypes_new>, public ast::WithShortCircuiting {
1679
1680 // these maps of uses of forward declarations of types need to have the actual type
1681 // declaration switched in * after * they have been traversed. To enable this in the
1682 // ast::Pass framework, any node that needs to be so mutated has mutate() called on it
1683 // before it is placed in the map, properly updating its parents in the usual traversal,
1684 // then can have the actual mutation applied later
1685 using ForwardEnumsType = std::unordered_multimap< std::string, ast::EnumInstType * >;
1686 using ForwardStructsType = std::unordered_multimap< std::string, ast::StructInstType * >;
1687 using ForwardUnionsType = std::unordered_multimap< std::string, ast::UnionInstType * >;
1688
1689 const CodeLocation & location;
1690 const ast::SymbolTable * localSymtab;
1691
1692 ForwardEnumsType forwardEnums;
1693 ForwardStructsType forwardStructs;
1694 ForwardUnionsType forwardUnions;
1695
1696 /// true if currently in a generic type body, so that type parameter instances can be
1697 /// renamed appropriately
1698 bool inGeneric = false;
1699
1700 public:
1701 /// contstruct using running symbol table
1702 LinkReferenceToTypes_new( const CodeLocation & loc )
1703 : location( loc ), localSymtab( &symtab ) {}
1704
1705 /// construct using provided symbol table
1706 LinkReferenceToTypes_new( const CodeLocation & loc, const ast::SymbolTable & syms )
1707 : location( loc ), localSymtab( &syms ) {}
1708
1709 const ast::Type * postvisit( const ast::TypeInstType * typeInst ) {
1710 // ensure generic parameter instances are renamed like the base type
1711 if ( inGeneric && typeInst->base ) {
1712 typeInst = ast::mutate_field(
1713 typeInst, &ast::TypeInstType::name, typeInst->base->name );
1714 }
1715
1716 if (
1717 auto typeDecl = dynamic_cast< const ast::TypeDecl * >(
1718 localSymtab->lookupType( typeInst->name ) )
1719 ) {
1720 typeInst = ast::mutate_field( typeInst, &ast::TypeInstType::kind, typeDecl->kind );
1721 }
1722
1723 return typeInst;
1724 }
1725
1726 const ast::Type * postvisit( const ast::EnumInstType * inst ) {
1727 const ast::EnumDecl * decl = localSymtab->lookupEnum( inst->name );
1728 // not a semantic error if the enum is not found, just an implicit forward declaration
1729 if ( decl ) {
1730 inst = ast::mutate_field( inst, &ast::EnumInstType::base, decl );
1731 }
1732 if ( ! decl || ! decl->body ) {
1733 // forward declaration
1734 auto mut = mutate( inst );
1735 forwardEnums.emplace( inst->name, mut );
1736 inst = mut;
1737 }
1738 return inst;
1739 }
1740
1741 void checkGenericParameters( const ast::BaseInstType * inst ) {
1742 for ( const ast::Expr * param : inst->params ) {
1743 if ( ! dynamic_cast< const ast::TypeExpr * >( param ) ) {
1744 SemanticError(
1745 location, inst, "Expression parameters for generic types are currently "
1746 "unsupported: " );
1747 }
1748 }
1749 }
1750
1751 const ast::StructInstType * postvisit( const ast::StructInstType * inst ) {
1752 const ast::StructDecl * decl = localSymtab->lookupStruct( inst->name );
1753 // not a semantic error if the struct is not found, just an implicit forward declaration
1754 if ( decl ) {
1755 inst = ast::mutate_field( inst, &ast::StructInstType::base, decl );
1756 }
1757 if ( ! decl || ! decl->body ) {
1758 // forward declaration
1759 auto mut = mutate( inst );
1760 forwardStructs.emplace( inst->name, mut );
1761 inst = mut;
1762 }
1763 checkGenericParameters( inst );
1764 return inst;
1765 }
1766
1767 const ast::UnionInstType * postvisit( const ast::UnionInstType * inst ) {
1768 const ast::UnionDecl * decl = localSymtab->lookupUnion( inst->name );
1769 // not a semantic error if the struct is not found, just an implicit forward declaration
1770 if ( decl ) {
1771 inst = ast::mutate_field( inst, &ast::UnionInstType::base, decl );
1772 }
1773 if ( ! decl || ! decl->body ) {
1774 // forward declaration
1775 auto mut = mutate( inst );
1776 forwardUnions.emplace( inst->name, mut );
1777 inst = mut;
1778 }
1779 checkGenericParameters( inst );
1780 return inst;
1781 }
1782
1783 const ast::Type * postvisit( const ast::TraitInstType * traitInst ) {
1784 // handle other traits
1785 const ast::TraitDecl * traitDecl = localSymtab->lookupTrait( traitInst->name );
1786 if ( ! traitDecl ) {
1787 SemanticError( location, "use of undeclared trait " + traitInst->name );
1788 }
1789 if ( traitDecl->params.size() != traitInst->params.size() ) {
1790 SemanticError( location, traitInst, "incorrect number of trait parameters: " );
1791 }
1792 traitInst = ast::mutate_field( traitInst, &ast::TraitInstType::base, traitDecl );
1793
1794 // need to carry over the "sized" status of each decl in the instance
1795 for ( unsigned i = 0; i < traitDecl->params.size(); ++i ) {
1796 auto expr = traitInst->params[i].as< ast::TypeExpr >();
1797 if ( ! expr ) {
1798 SemanticError(
1799 traitInst->params[i].get(), "Expression parameters for trait instances "
1800 "are currently unsupported: " );
1801 }
1802
1803 if ( auto inst = expr->type.as< ast::TypeInstType >() ) {
1804 if ( traitDecl->params[i]->sized && ! inst->base->sized ) {
1805 // traitInst = ast::mutate_field_index(
1806 // traitInst, &ast::TraitInstType::params, i,
1807 // ...
1808 // );
1809 ast::TraitInstType * mut = ast::mutate( traitInst );
1810 ast::chain_mutate( mut->params[i] )
1811 ( &ast::TypeExpr::type )
1812 ( &ast::TypeInstType::base )->sized = true;
1813 traitInst = mut;
1814 }
1815 }
1816 }
1817
1818 return traitInst;
1819 }
1820
1821 void previsit( const ast::QualifiedType * ) { visit_children = false; }
1822
1823 const ast::Type * postvisit( const ast::QualifiedType * qualType ) {
1824 // linking only makes sense for the "oldest ancestor" of the qualified type
1825 return ast::mutate_field(
1826 qualType, &ast::QualifiedType::parent, qualType->parent->accept( * visitor ) );
1827 }
1828
1829 const ast::Decl * postvisit( const ast::EnumDecl * enumDecl ) {
1830 // visit enum members first so that the types of self-referencing members are updated
1831 // properly
1832 if ( ! enumDecl->body ) return enumDecl;
1833
1834 // update forward declarations to point here
1835 auto fwds = forwardEnums.equal_range( enumDecl->name );
1836 if ( fwds.first != fwds.second ) {
1837 auto inst = fwds.first;
1838 do {
1839 // forward decl is stored * mutably * in map, can thus be updated
1840 inst->second->base = enumDecl;
1841 } while ( ++inst != fwds.second );
1842 forwardEnums.erase( fwds.first, fwds.second );
1843 }
1844
1845 // ensure that enumerator initializers are properly set
1846 for ( unsigned i = 0; i < enumDecl->members.size(); ++i ) {
1847 auto field = enumDecl->members[i].strict_as< ast::ObjectDecl >();
1848 if ( field->init ) {
1849 // need to resolve enumerator initializers early so that other passes that
1850 // determine if an expression is constexpr have appropriate information
1851 auto init = field->init.strict_as< ast::SingleInit >();
1852
1853 enumDecl = ast::mutate_field_index(
1854 enumDecl, &ast::EnumDecl::members, i,
1855 ast::mutate_field( field, &ast::ObjectDecl::init,
1856 ast::mutate_field( init, &ast::SingleInit::value,
1857 ResolvExpr::findSingleExpression(
1858 init->value, new ast::BasicType{ ast::BasicType::SignedInt },
1859 symtab ) ) ) );
1860 }
1861 }
1862
1863 return enumDecl;
1864 }
1865
1866 /// rename generic type parameters uniquely so that they do not conflict with user defined
1867 /// function forall parameters, e.g. the T in Box and the T in f, below
1868 /// forall(otype T)
1869 /// struct Box {
1870 /// T x;
1871 /// };
1872 /// forall(otype T)
1873 /// void f(Box(T) b) {
1874 /// ...
1875 /// }
1876 template< typename AggrDecl >
1877 const AggrDecl * renameGenericParams( const AggrDecl * aggr ) {
1878 GuardValue( inGeneric );
1879 inGeneric = ! aggr->params.empty();
1880
1881 for ( unsigned i = 0; i < aggr->params.size(); ++i ) {
1882 const ast::TypeDecl * td = aggr->params[i];
1883
1884 aggr = ast::mutate_field_index(
1885 aggr, &AggrDecl::params, i,
1886 ast::mutate_field( td, &ast::TypeDecl::name, "__" + td->name + "_generic_" ) );
1887 }
1888 return aggr;
1889 }
1890
1891 const ast::StructDecl * previsit( const ast::StructDecl * structDecl ) {
1892 return renameGenericParams( structDecl );
1893 }
1894
1895 void postvisit( const ast::StructDecl * structDecl ) {
1896 // visit struct members first so that the types of self-referencing members are
1897 // updated properly
1898 if ( ! structDecl->body ) return;
1899
1900 // update forward declarations to point here
1901 auto fwds = forwardStructs.equal_range( structDecl->name );
1902 if ( fwds.first != fwds.second ) {
1903 auto inst = fwds.first;
1904 do {
1905 // forward decl is stored * mutably * in map, can thus be updated
1906 inst->second->base = structDecl;
1907 } while ( ++inst != fwds.second );
1908 forwardStructs.erase( fwds.first, fwds.second );
1909 }
1910 }
1911
1912 const ast::UnionDecl * previsit( const ast::UnionDecl * unionDecl ) {
1913 return renameGenericParams( unionDecl );
1914 }
1915
1916 void postvisit( const ast::UnionDecl * unionDecl ) {
1917 // visit union members first so that the types of self-referencing members are updated
1918 // properly
1919 if ( ! unionDecl->body ) return;
1920
1921 // update forward declarations to point here
1922 auto fwds = forwardUnions.equal_range( unionDecl->name );
1923 if ( fwds.first != fwds.second ) {
1924 auto inst = fwds.first;
1925 do {
1926 // forward decl is stored * mutably * in map, can thus be updated
1927 inst->second->base = unionDecl;
1928 } while ( ++inst != fwds.second );
1929 forwardUnions.erase( fwds.first, fwds.second );
1930 }
1931 }
1932
1933 const ast::Decl * postvisit( const ast::TraitDecl * traitDecl ) {
1934 // set the "sized" status for the special "sized" trait
1935 if ( traitDecl->name == "sized" ) {
1936 assertf( traitDecl->params.size() == 1, "Built-in trait 'sized' has incorrect "
1937 "number of parameters: %zd", traitDecl->params.size() );
1938
1939 traitDecl = ast::mutate_field_index(
1940 traitDecl, &ast::TraitDecl::params, 0,
1941 ast::mutate_field(
1942 traitDecl->params.front().get(), &ast::TypeDecl::sized, true ) );
1943 }
1944
1945 // move assertions from type parameters into the body of the trait
1946 std::vector< ast::ptr< ast::DeclWithType > > added;
1947 for ( const ast::TypeDecl * td : traitDecl->params ) {
1948 for ( const ast::DeclWithType * assn : td->assertions ) {
1949 auto inst = dynamic_cast< const ast::TraitInstType * >( assn->get_type() );
1950 if ( inst ) {
1951 expandAssertions( inst, added );
1952 } else {
1953 added.emplace_back( assn );
1954 }
1955 }
1956 }
1957 if ( ! added.empty() ) {
1958 auto mut = mutate( traitDecl );
1959 for ( const ast::DeclWithType * decl : added ) {
1960 mut->members.emplace_back( decl );
1961 }
1962 traitDecl = mut;
1963 }
1964
1965 return traitDecl;
1966 }
1967 };
1968
1969 /// Replaces array and function types in forall lists by appropriate pointer type and assigns
1970 /// each object and function declaration a unique ID
1971 class ForallPointerDecay_new {
1972 const CodeLocation & location;
1973 public:
1974 ForallPointerDecay_new( const CodeLocation & loc ) : location( loc ) {}
1975
1976 const ast::ObjectDecl * previsit( const ast::ObjectDecl * obj ) {
1977 // ensure that operator names only apply to functions or function pointers
1978 if (
1979 CodeGen::isOperator( obj->name )
1980 && ! dynamic_cast< const ast::FunctionType * >( obj->type->stripDeclarator() )
1981 ) {
1982 SemanticError( obj->location, toCString( "operator ", obj->name.c_str(), " is not "
1983 "a function or function pointer." ) );
1984 }
1985
1986 // ensure object has unique ID
1987 if ( obj->uniqueId ) return obj;
1988 auto mut = mutate( obj );
1989 mut->fixUniqueId();
1990 return mut;
1991 }
1992
1993 const ast::FunctionDecl * previsit( const ast::FunctionDecl * func ) {
1994 // ensure function has unique ID
1995 if ( func->uniqueId ) return func;
1996 auto mut = mutate( func );
1997 mut->fixUniqueId();
1998 return mut;
1999 }
2000
2001 /// Fix up assertions -- flattens assertion lists, removing all trait instances
2002 template< typename node_t, typename parent_t >
2003 static const node_t * forallFixer(
2004 const CodeLocation & loc, const node_t * node,
2005 ast::FunctionType::ForallList parent_t::* forallField
2006 ) {
2007 for ( unsigned i = 0; i < (node->* forallField).size(); ++i ) {
2008 const ast::TypeDecl * type = (node->* forallField)[i];
2009 if ( type->assertions.empty() ) continue;
2010
2011 std::vector< ast::ptr< ast::DeclWithType > > asserts;
2012 asserts.reserve( type->assertions.size() );
2013
2014 // expand trait instances into their members
2015 for ( const ast::DeclWithType * assn : type->assertions ) {
2016 auto traitInst =
2017 dynamic_cast< const ast::TraitInstType * >( assn->get_type() );
2018 if ( traitInst ) {
2019 // expand trait instance to all its members
2020 expandAssertions( traitInst, asserts );
2021 } else {
2022 // pass other assertions through
2023 asserts.emplace_back( assn );
2024 }
2025 }
2026
2027 // apply FixFunction to every assertion to check for invalid void type
2028 for ( ast::ptr< ast::DeclWithType > & assn : asserts ) {
2029 bool isVoid = false;
2030 assn = fixFunction( assn, isVoid );
2031 if ( isVoid ) {
2032 SemanticError( loc, node, "invalid type void in assertion of function " );
2033 }
2034 }
2035
2036 // place mutated assertion list in node
2037 auto mut = mutate( type );
2038 mut->assertions = move( asserts );
2039 node = ast::mutate_field_index( node, forallField, i, mut );
2040 }
2041 return node;
2042 }
2043
2044 const ast::FunctionType * previsit( const ast::FunctionType * ftype ) {
2045 return forallFixer( location, ftype, &ast::FunctionType::forall );
2046 }
2047
2048 const ast::StructDecl * previsit( const ast::StructDecl * aggrDecl ) {
2049 return forallFixer( aggrDecl->location, aggrDecl, &ast::StructDecl::params );
2050 }
2051
2052 const ast::UnionDecl * previsit( const ast::UnionDecl * aggrDecl ) {
2053 return forallFixer( aggrDecl->location, aggrDecl, &ast::UnionDecl::params );
2054 }
2055 };
2056 */
2057} // anonymous namespace
2058
2059/*
2060const ast::Type * validateType(
2061 const CodeLocation & loc, const ast::Type * type, const ast::SymbolTable & symtab ) {
2062 // ast::Pass< EnumAndPointerDecay_new > epc;
2063 ast::Pass< LinkReferenceToTypes_new > lrt{ loc, symtab };
2064 ast::Pass< ForallPointerDecay_new > fpd{ loc };
2065
2066 return type->accept( lrt )->accept( fpd );
2067}
2068*/
2069
2070} // namespace SymTab
2071
2072// Local Variables: //
2073// tab-width: 4 //
2074// mode: c++ //
2075// compile-command: "make install" //
2076// End: //
Note: See TracBrowser for help on using the repository browser.