source: src/SymTab/Validate.cc@ cccc534

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors deferred_resn demangler enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum resolv-new stuck-waitfor-destruct with_gc
Last change on this file since cccc534 was fbcb354, checked in by Rob Schluntz <rschlunt@…>, 8 years ago

Merge branch 'master' of plg.uwaterloo.ca:/u/cforall/software/cfa/cfa-cc

  • Property mode set to 100644
File size: 39.8 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Validate.cc --
8//
9// Author : Richard C. Bilson
10// Created On : Sun May 17 21:50:04 2015
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Mon Aug 28 13:47:23 2017
13// Update Count : 359
14//
15
16// The "validate" phase of translation is used to take a syntax tree and convert it into a standard form that aims to be
17// as regular in structure as possible. Some assumptions can be made regarding the state of the tree after this pass is
18// complete, including:
19//
20// - No nested structure or union definitions; any in the input are "hoisted" to the level of the containing struct or
21// union.
22//
23// - All enumeration constants have type EnumInstType.
24//
25// - The type "void" never occurs in lists of function parameter or return types. A function
26// taking no arguments has no argument types.
27//
28// - No context instances exist; they are all replaced by the set of declarations signified by the context, instantiated
29// by the particular set of type arguments.
30//
31// - Every declaration is assigned a unique id.
32//
33// - No typedef declarations or instances exist; the actual type is substituted for each instance.
34//
35// - Each type, struct, and union definition is followed by an appropriate assignment operator.
36//
37// - Each use of a struct or union is connected to a complete definition of that struct or union, even if that
38// definition occurs later in the input.
39
40#include "Validate.h"
41
42#include <cassert> // for assertf, assert
43#include <cstddef> // for size_t
44#include <list> // for list
45#include <string> // for string
46#include <utility> // for pair
47
48#include "CodeGen/CodeGenerator.h" // for genName
49#include "CodeGen/OperatorTable.h" // for isCtorDtor, isCtorDtorAssign
50#include "Common/PassVisitor.h" // for PassVisitor, WithDeclsToAdd
51#include "Common/ScopedMap.h" // for ScopedMap
52#include "Common/SemanticError.h" // for SemanticError
53#include "Common/UniqueName.h" // for UniqueName
54#include "Common/utility.h" // for operator+, cloneAll, deleteAll
55#include "Concurrency/Keywords.h" // for applyKeywords
56#include "FixFunction.h" // for FixFunction
57#include "Indexer.h" // for Indexer
58#include "InitTweak/InitTweak.h" // for isCtorDtorAssign
59#include "Parser/LinkageSpec.h" // for C
60#include "ResolvExpr/typeops.h" // for typesCompatible
61#include "SymTab/AddVisit.h" // for addVisit
62#include "SymTab/Autogen.h" // for SizeType
63#include "SynTree/Attribute.h" // for noAttributes, Attribute
64#include "SynTree/Constant.h" // for Constant
65#include "SynTree/Declaration.h" // for ObjectDecl, DeclarationWithType
66#include "SynTree/Expression.h" // for CompoundLiteralExpr, Expressio...
67#include "SynTree/Initializer.h" // for ListInit, Initializer
68#include "SynTree/Label.h" // for operator==, Label
69#include "SynTree/Mutator.h" // for Mutator
70#include "SynTree/Type.h" // for Type, TypeInstType, EnumInstType
71#include "SynTree/TypeSubstitution.h" // for TypeSubstitution
72#include "SynTree/Visitor.h" // for Visitor
73
74class CompoundStmt;
75class ReturnStmt;
76class SwitchStmt;
77
78
79#define debugPrint( x ) if ( doDebug ) { std::cout << x; }
80
81namespace SymTab {
82 class HoistStruct final : public Visitor {
83 template< typename Visitor >
84 friend void acceptAndAdd( std::list< Declaration * > &translationUnit, Visitor &visitor );
85 template< typename Visitor >
86 friend void addVisitStatementList( std::list< Statement* > &stmts, Visitor &visitor );
87 public:
88 /// Flattens nested struct types
89 static void hoistStruct( std::list< Declaration * > &translationUnit );
90
91 std::list< Declaration * > &get_declsToAdd() { return declsToAdd; }
92
93 virtual void visit( EnumInstType *enumInstType );
94 virtual void visit( StructInstType *structInstType );
95 virtual void visit( UnionInstType *unionInstType );
96 virtual void visit( StructDecl *aggregateDecl );
97 virtual void visit( UnionDecl *aggregateDecl );
98
99 virtual void visit( CompoundStmt *compoundStmt );
100 virtual void visit( SwitchStmt *switchStmt );
101 private:
102 HoistStruct();
103
104 template< typename AggDecl > void handleAggregate( AggDecl *aggregateDecl );
105
106 std::list< Declaration * > declsToAdd, declsToAddAfter;
107 bool inStruct;
108 };
109
110 /// Fix return types so that every function returns exactly one value
111 struct ReturnTypeFixer {
112 static void fix( std::list< Declaration * > &translationUnit );
113
114 void postvisit( FunctionDecl * functionDecl );
115 void postvisit( FunctionType * ftype );
116 };
117
118 /// Replaces enum types by int, and function or array types in function parameter and return lists by appropriate pointers.
119 struct EnumAndPointerDecay {
120 void previsit( EnumDecl *aggregateDecl );
121 void previsit( FunctionType *func );
122 };
123
124 /// Associates forward declarations of aggregates with their definitions
125 class LinkReferenceToTypes final : public Indexer {
126 typedef Indexer Parent;
127 public:
128 LinkReferenceToTypes( bool doDebug, const Indexer *indexer );
129 using Parent::visit;
130 void visit( TypeInstType *typeInst ) final;
131
132 void visit( EnumInstType *enumInst ) final;
133 void visit( StructInstType *structInst ) final;
134 void visit( UnionInstType *unionInst ) final;
135 void visit( TraitInstType *traitInst ) final;
136
137 void visit( EnumDecl *enumDecl ) final;
138 void visit( StructDecl *structDecl ) final;
139 void visit( UnionDecl *unionDecl ) final;
140 void visit( TraitDecl * traitDecl ) final;
141
142 private:
143 const Indexer *indexer;
144
145 typedef std::map< std::string, std::list< EnumInstType * > > ForwardEnumsType;
146 typedef std::map< std::string, std::list< StructInstType * > > ForwardStructsType;
147 typedef std::map< std::string, std::list< UnionInstType * > > ForwardUnionsType;
148 ForwardEnumsType forwardEnums;
149 ForwardStructsType forwardStructs;
150 ForwardUnionsType forwardUnions;
151 };
152
153 /// Replaces array and function types in forall lists by appropriate pointer type and assigns each Object and Function declaration a unique ID.
154 class ForallPointerDecay final : public Indexer {
155 typedef Indexer Parent;
156 public:
157 using Parent::visit;
158 ForallPointerDecay( const Indexer *indexer );
159
160 virtual void visit( ObjectDecl *object ) override;
161 virtual void visit( FunctionDecl *func ) override;
162
163 const Indexer *indexer;
164 };
165
166 struct ReturnChecker : public WithGuards {
167 /// Checks that return statements return nothing if their return type is void
168 /// and return something if the return type is non-void.
169 static void checkFunctionReturns( std::list< Declaration * > & translationUnit );
170
171 void previsit( FunctionDecl * functionDecl );
172 void previsit( ReturnStmt * returnStmt );
173
174 typedef std::list< DeclarationWithType * > ReturnVals;
175 ReturnVals returnVals;
176 };
177
178 class EliminateTypedef : public Mutator {
179 public:
180 EliminateTypedef() : scopeLevel( 0 ) {}
181 /// Replaces typedefs by forward declarations
182 static void eliminateTypedef( std::list< Declaration * > &translationUnit );
183 private:
184 virtual Declaration *mutate( TypedefDecl *typeDecl );
185 virtual TypeDecl *mutate( TypeDecl *typeDecl );
186 virtual DeclarationWithType *mutate( FunctionDecl *funcDecl );
187 virtual DeclarationWithType *mutate( ObjectDecl *objDecl );
188 virtual CompoundStmt *mutate( CompoundStmt *compoundStmt );
189 virtual Type *mutate( TypeInstType *aggregateUseType );
190 virtual Expression *mutate( CastExpr *castExpr );
191
192 virtual Declaration *mutate( StructDecl * structDecl );
193 virtual Declaration *mutate( UnionDecl * unionDecl );
194 virtual Declaration *mutate( EnumDecl * enumDecl );
195 virtual Declaration *mutate( TraitDecl * contextDecl );
196
197 template<typename AggDecl>
198 AggDecl *handleAggregate( AggDecl * aggDecl );
199
200 template<typename AggDecl>
201 void addImplicitTypedef( AggDecl * aggDecl );
202
203 typedef std::unique_ptr<TypedefDecl> TypedefDeclPtr;
204 typedef ScopedMap< std::string, std::pair< TypedefDeclPtr, int > > TypedefMap;
205 typedef std::map< std::string, TypeDecl * > TypeDeclMap;
206 TypedefMap typedefNames;
207 TypeDeclMap typedeclNames;
208 int scopeLevel;
209 };
210
211 struct VerifyCtorDtorAssign {
212 /// ensure that constructors, destructors, and assignment have at least one
213 /// parameter, the first of which must be a pointer, and that ctor/dtors have no
214 /// return values.
215 static void verify( std::list< Declaration * > &translationUnit );
216
217 void previsit( FunctionDecl *funcDecl );
218 };
219
220 /// ensure that generic types have the correct number of type arguments
221 struct ValidateGenericParameters {
222 void previsit( StructInstType * inst );
223 void previsit( UnionInstType * inst );
224 };
225
226 struct ArrayLength {
227 /// for array types without an explicit length, compute the length and store it so that it
228 /// is known to the rest of the phases. For example,
229 /// int x[] = { 1, 2, 3 };
230 /// int y[][2] = { { 1, 2, 3 }, { 1, 2, 3 } };
231 /// here x and y are known at compile-time to have length 3, so change this into
232 /// int x[3] = { 1, 2, 3 };
233 /// int y[3][2] = { { 1, 2, 3 }, { 1, 2, 3 } };
234 static void computeLength( std::list< Declaration * > & translationUnit );
235
236 void previsit( ObjectDecl * objDecl );
237 };
238
239 struct CompoundLiteral final : public WithDeclsToAdd, public WithVisitorRef<CompoundLiteral> {
240 Type::StorageClasses storageClasses;
241
242 void premutate( ObjectDecl *objectDecl );
243 Expression * postmutate( CompoundLiteralExpr *compLitExpr );
244 };
245
246
247 FunctionDecl * dereferenceOperator = nullptr;
248 struct FindSpecialDeclarations final {
249 void previsit( FunctionDecl * funcDecl );
250 };
251
252 void validate( std::list< Declaration * > &translationUnit, bool doDebug ) {
253 PassVisitor<EnumAndPointerDecay> epc;
254 LinkReferenceToTypes lrt( doDebug, 0 );
255 ForallPointerDecay fpd( 0 );
256 PassVisitor<CompoundLiteral> compoundliteral;
257 PassVisitor<ValidateGenericParameters> genericParams;
258 PassVisitor<FindSpecialDeclarations> finder;
259
260 EliminateTypedef::eliminateTypedef( translationUnit );
261 HoistStruct::hoistStruct( translationUnit ); // must happen after EliminateTypedef, so that aggregate typedefs occur in the correct order
262 ReturnTypeFixer::fix( translationUnit ); // must happen before autogen
263 acceptAll( translationUnit, lrt ); // must happen before autogen, because sized flag needs to propagate to generated functions
264 acceptAll( translationUnit, genericParams ); // check as early as possible - can't happen before LinkReferenceToTypes
265 acceptAll( translationUnit, epc ); // must happen before VerifyCtorDtorAssign, because void return objects should not exist
266 VerifyCtorDtorAssign::verify( translationUnit ); // must happen before autogen, because autogen examines existing ctor/dtors
267 Concurrency::applyKeywords( translationUnit );
268 autogenerateRoutines( translationUnit ); // moved up, used to be below compoundLiteral - currently needs EnumAndPointerDecay
269 Concurrency::implementMutexFuncs( translationUnit );
270 Concurrency::implementThreadStarter( translationUnit );
271 ReturnChecker::checkFunctionReturns( translationUnit );
272 mutateAll( translationUnit, compoundliteral );
273 acceptAll( translationUnit, fpd );
274 ArrayLength::computeLength( translationUnit );
275 acceptAll( translationUnit, finder );
276 }
277
278 void validateType( Type *type, const Indexer *indexer ) {
279 PassVisitor<EnumAndPointerDecay> epc;
280 LinkReferenceToTypes lrt( false, indexer );
281 ForallPointerDecay fpd( indexer );
282 type->accept( epc );
283 type->accept( lrt );
284 type->accept( fpd );
285 }
286
287 void HoistStruct::hoistStruct( std::list< Declaration * > &translationUnit ) {
288 HoistStruct hoister;
289 acceptAndAdd( translationUnit, hoister );
290 }
291
292 HoistStruct::HoistStruct() : inStruct( false ) {
293 }
294
295 void filter( std::list< Declaration * > &declList, bool (*pred)( Declaration * ), bool doDelete ) {
296 std::list< Declaration * >::iterator i = declList.begin();
297 while ( i != declList.end() ) {
298 std::list< Declaration * >::iterator next = i;
299 ++next;
300 if ( pred( *i ) ) {
301 if ( doDelete ) {
302 delete *i;
303 } // if
304 declList.erase( i );
305 } // if
306 i = next;
307 } // while
308 }
309
310 bool isStructOrUnion( Declaration *decl ) {
311 return dynamic_cast< StructDecl * >( decl ) || dynamic_cast< UnionDecl * >( decl );
312 }
313
314 template< typename AggDecl >
315 void HoistStruct::handleAggregate( AggDecl *aggregateDecl ) {
316 if ( inStruct ) {
317 // Add elements in stack order corresponding to nesting structure.
318 declsToAdd.push_front( aggregateDecl );
319 Visitor::visit( aggregateDecl );
320 } else {
321 inStruct = true;
322 Visitor::visit( aggregateDecl );
323 inStruct = false;
324 } // if
325 // Always remove the hoisted aggregate from the inner structure.
326 filter( aggregateDecl->get_members(), isStructOrUnion, false );
327 }
328
329 void HoistStruct::visit( EnumInstType *structInstType ) {
330 if ( structInstType->get_baseEnum() ) {
331 declsToAdd.push_front( structInstType->get_baseEnum() );
332 }
333 }
334
335 void HoistStruct::visit( StructInstType *structInstType ) {
336 if ( structInstType->get_baseStruct() ) {
337 declsToAdd.push_front( structInstType->get_baseStruct() );
338 }
339 }
340
341 void HoistStruct::visit( UnionInstType *structInstType ) {
342 if ( structInstType->get_baseUnion() ) {
343 declsToAdd.push_front( structInstType->get_baseUnion() );
344 }
345 }
346
347 void HoistStruct::visit( StructDecl *aggregateDecl ) {
348 handleAggregate( aggregateDecl );
349 }
350
351 void HoistStruct::visit( UnionDecl *aggregateDecl ) {
352 handleAggregate( aggregateDecl );
353 }
354
355 void HoistStruct::visit( CompoundStmt *compoundStmt ) {
356 addVisit( compoundStmt, *this );
357 }
358
359 void HoistStruct::visit( SwitchStmt *switchStmt ) {
360 addVisit( switchStmt, *this );
361 }
362
363 void EnumAndPointerDecay::previsit( EnumDecl *enumDecl ) {
364 // Set the type of each member of the enumeration to be EnumConstant
365 for ( std::list< Declaration * >::iterator i = enumDecl->get_members().begin(); i != enumDecl->get_members().end(); ++i ) {
366 ObjectDecl * obj = dynamic_cast< ObjectDecl * >( *i );
367 assert( obj );
368 obj->set_type( new EnumInstType( Type::Qualifiers( Type::Const ), enumDecl->get_name() ) );
369 } // for
370 }
371
372 namespace {
373 template< typename DWTList >
374 void fixFunctionList( DWTList & dwts, FunctionType * func ) {
375 // the only case in which "void" is valid is where it is the only one in the list; then it should be removed
376 // entirely. other fix ups are handled by the FixFunction class
377 typedef typename DWTList::iterator DWTIterator;
378 DWTIterator begin( dwts.begin() ), end( dwts.end() );
379 if ( begin == end ) return;
380 FixFunction fixer;
381 DWTIterator i = begin;
382 *i = (*i)->acceptMutator( fixer );
383 if ( fixer.get_isVoid() ) {
384 DWTIterator j = i;
385 ++i;
386 delete *j;
387 dwts.erase( j );
388 if ( i != end ) {
389 throw SemanticError( "invalid type void in function type ", func );
390 } // if
391 } else {
392 ++i;
393 for ( ; i != end; ++i ) {
394 FixFunction fixer;
395 *i = (*i)->acceptMutator( fixer );
396 if ( fixer.get_isVoid() ) {
397 throw SemanticError( "invalid type void in function type ", func );
398 } // if
399 } // for
400 } // if
401 }
402 }
403
404 void EnumAndPointerDecay::previsit( FunctionType *func ) {
405 // Fix up parameters and return types
406 fixFunctionList( func->get_parameters(), func );
407 fixFunctionList( func->get_returnVals(), func );
408 }
409
410 LinkReferenceToTypes::LinkReferenceToTypes( bool doDebug, const Indexer *other_indexer ) : Indexer( doDebug ) {
411 if ( other_indexer ) {
412 indexer = other_indexer;
413 } else {
414 indexer = this;
415 } // if
416 }
417
418 void LinkReferenceToTypes::visit( EnumInstType *enumInst ) {
419 Parent::visit( enumInst );
420 EnumDecl *st = indexer->lookupEnum( enumInst->get_name() );
421 // it's not a semantic error if the enum is not found, just an implicit forward declaration
422 if ( st ) {
423 //assert( ! enumInst->get_baseEnum() || enumInst->get_baseEnum()->get_members().empty() || ! st->get_members().empty() );
424 enumInst->set_baseEnum( st );
425 } // if
426 if ( ! st || st->get_members().empty() ) {
427 // use of forward declaration
428 forwardEnums[ enumInst->get_name() ].push_back( enumInst );
429 } // if
430 }
431
432 void LinkReferenceToTypes::visit( StructInstType *structInst ) {
433 Parent::visit( structInst );
434 StructDecl *st = indexer->lookupStruct( structInst->get_name() );
435 // it's not a semantic error if the struct is not found, just an implicit forward declaration
436 if ( st ) {
437 //assert( ! structInst->get_baseStruct() || structInst->get_baseStruct()->get_members().empty() || ! st->get_members().empty() );
438 structInst->set_baseStruct( st );
439 } // if
440 if ( ! st || st->get_members().empty() ) {
441 // use of forward declaration
442 forwardStructs[ structInst->get_name() ].push_back( structInst );
443 } // if
444 }
445
446 void LinkReferenceToTypes::visit( UnionInstType *unionInst ) {
447 Parent::visit( unionInst );
448 UnionDecl *un = indexer->lookupUnion( unionInst->get_name() );
449 // it's not a semantic error if the union is not found, just an implicit forward declaration
450 if ( un ) {
451 unionInst->set_baseUnion( un );
452 } // if
453 if ( ! un || un->get_members().empty() ) {
454 // use of forward declaration
455 forwardUnions[ unionInst->get_name() ].push_back( unionInst );
456 } // if
457 }
458
459 template< typename Decl >
460 void normalizeAssertions( std::list< Decl * > & assertions ) {
461 // ensure no duplicate trait members after the clone
462 auto pred = [](Decl * d1, Decl * d2) {
463 // only care if they're equal
464 DeclarationWithType * dwt1 = dynamic_cast<DeclarationWithType *>( d1 );
465 DeclarationWithType * dwt2 = dynamic_cast<DeclarationWithType *>( d2 );
466 if ( dwt1 && dwt2 ) {
467 if ( dwt1->get_name() == dwt2->get_name() && ResolvExpr::typesCompatible( dwt1->get_type(), dwt2->get_type(), SymTab::Indexer() ) ) {
468 // std::cerr << "=========== equal:" << std::endl;
469 // std::cerr << "d1: " << d1 << std::endl;
470 // std::cerr << "d2: " << d2 << std::endl;
471 return false;
472 }
473 }
474 return d1 < d2;
475 };
476 std::set<Decl *, decltype(pred)> unique_members( assertions.begin(), assertions.end(), pred );
477 // if ( unique_members.size() != assertions.size() ) {
478 // std::cerr << "============different" << std::endl;
479 // std::cerr << unique_members.size() << " " << assertions.size() << std::endl;
480 // }
481
482 std::list< Decl * > order;
483 order.splice( order.end(), assertions );
484 std::copy_if( order.begin(), order.end(), back_inserter( assertions ), [&]( Decl * decl ) {
485 return unique_members.count( decl );
486 });
487 }
488
489 // expand assertions from trait instance, performing the appropriate type variable substitutions
490 template< typename Iterator >
491 void expandAssertions( TraitInstType * inst, Iterator out ) {
492 assertf( inst->baseTrait, "Trait instance not linked to base trait: %s", toString( inst ).c_str() );
493 std::list< DeclarationWithType * > asserts;
494 for ( Declaration * decl : inst->baseTrait->members ) {
495 asserts.push_back( safe_dynamic_cast<DeclarationWithType *>( decl->clone() ) );
496 }
497 // substitute trait decl parameters for instance parameters
498 applySubstitution( inst->baseTrait->parameters.begin(), inst->baseTrait->parameters.end(), inst->parameters.begin(), asserts.begin(), asserts.end(), out );
499 }
500
501 void LinkReferenceToTypes::visit( TraitDecl * traitDecl ) {
502 Parent::visit( traitDecl );
503
504 if ( traitDecl->name == "sized" ) {
505 // "sized" is a special trait - flick the sized status on for the type variable
506 assertf( traitDecl->parameters.size() == 1, "Built-in trait 'sized' has incorrect number of parameters: %zd", traitDecl->parameters.size() );
507 TypeDecl * td = traitDecl->parameters.front();
508 td->set_sized( true );
509 }
510
511 // move assertions from type parameters into the body of the trait
512 for ( TypeDecl * td : traitDecl->parameters ) {
513 for ( DeclarationWithType * assert : td->assertions ) {
514 if ( TraitInstType * inst = dynamic_cast< TraitInstType * >( assert->get_type() ) ) {
515 expandAssertions( inst, back_inserter( traitDecl->members ) );
516 } else {
517 traitDecl->members.push_back( assert->clone() );
518 }
519 }
520 deleteAll( td->assertions );
521 td->assertions.clear();
522 } // for
523 }
524
525 void LinkReferenceToTypes::visit( TraitInstType * traitInst ) {
526 Parent::visit( traitInst );
527 // handle other traits
528 TraitDecl *traitDecl = indexer->lookupTrait( traitInst->name );
529 if ( ! traitDecl ) {
530 throw SemanticError( "use of undeclared trait " + traitInst->name );
531 } // if
532 if ( traitDecl->get_parameters().size() != traitInst->get_parameters().size() ) {
533 throw SemanticError( "incorrect number of trait parameters: ", traitInst );
534 } // if
535 traitInst->baseTrait = traitDecl;
536
537 // need to carry over the 'sized' status of each decl in the instance
538 for ( auto p : group_iterate( traitDecl->get_parameters(), traitInst->get_parameters() ) ) {
539 TypeExpr * expr = safe_dynamic_cast< TypeExpr * >( std::get<1>(p) );
540 if ( TypeInstType * inst = dynamic_cast< TypeInstType * >( expr->get_type() ) ) {
541 TypeDecl * formalDecl = std::get<0>(p);
542 TypeDecl * instDecl = inst->get_baseType();
543 if ( formalDecl->get_sized() ) instDecl->set_sized( true );
544 }
545 }
546 // normalizeAssertions( traitInst->members );
547 }
548
549 void LinkReferenceToTypes::visit( EnumDecl *enumDecl ) {
550 // visit enum members first so that the types of self-referencing members are updated properly
551 Parent::visit( enumDecl );
552 if ( ! enumDecl->get_members().empty() ) {
553 ForwardEnumsType::iterator fwds = forwardEnums.find( enumDecl->get_name() );
554 if ( fwds != forwardEnums.end() ) {
555 for ( std::list< EnumInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) {
556 (*inst )->set_baseEnum( enumDecl );
557 } // for
558 forwardEnums.erase( fwds );
559 } // if
560 } // if
561 }
562
563 void LinkReferenceToTypes::visit( StructDecl *structDecl ) {
564 // visit struct members first so that the types of self-referencing members are updated properly
565 // xxx - need to ensure that type parameters match up between forward declarations and definition (most importantly, number of type parameters and and their defaults)
566 Parent::visit( structDecl );
567 if ( ! structDecl->get_members().empty() ) {
568 ForwardStructsType::iterator fwds = forwardStructs.find( structDecl->get_name() );
569 if ( fwds != forwardStructs.end() ) {
570 for ( std::list< StructInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) {
571 (*inst )->set_baseStruct( structDecl );
572 } // for
573 forwardStructs.erase( fwds );
574 } // if
575 } // if
576 }
577
578 void LinkReferenceToTypes::visit( UnionDecl *unionDecl ) {
579 Parent::visit( unionDecl );
580 if ( ! unionDecl->get_members().empty() ) {
581 ForwardUnionsType::iterator fwds = forwardUnions.find( unionDecl->get_name() );
582 if ( fwds != forwardUnions.end() ) {
583 for ( std::list< UnionInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) {
584 (*inst )->set_baseUnion( unionDecl );
585 } // for
586 forwardUnions.erase( fwds );
587 } // if
588 } // if
589 }
590
591 void LinkReferenceToTypes::visit( TypeInstType *typeInst ) {
592 if ( NamedTypeDecl *namedTypeDecl = lookupType( typeInst->get_name() ) ) {
593 if ( TypeDecl *typeDecl = dynamic_cast< TypeDecl * >( namedTypeDecl ) ) {
594 typeInst->set_isFtype( typeDecl->get_kind() == TypeDecl::Ftype );
595 } // if
596 } // if
597 }
598
599 ForallPointerDecay::ForallPointerDecay( const Indexer *other_indexer ) : Indexer( false ) {
600 if ( other_indexer ) {
601 indexer = other_indexer;
602 } else {
603 indexer = this;
604 } // if
605 }
606
607 /// Fix up assertions - flattens assertion lists, removing all trait instances
608 void forallFixer( Type * func ) {
609 for ( TypeDecl * type : func->get_forall() ) {
610 std::list< DeclarationWithType * > asserts;
611 asserts.splice( asserts.end(), type->assertions );
612 // expand trait instances into their members
613 for ( DeclarationWithType * assertion : asserts ) {
614 if ( TraitInstType *traitInst = dynamic_cast< TraitInstType * >( assertion->get_type() ) ) {
615 // expand trait instance into all of its members
616 expandAssertions( traitInst, back_inserter( type->assertions ) );
617 delete traitInst;
618 } else {
619 // pass other assertions through
620 type->assertions.push_back( assertion );
621 } // if
622 } // for
623 // apply FixFunction to every assertion to check for invalid void type
624 for ( DeclarationWithType *& assertion : type->assertions ) {
625 FixFunction fixer;
626 assertion = assertion->acceptMutator( fixer );
627 if ( fixer.get_isVoid() ) {
628 throw SemanticError( "invalid type void in assertion of function ", func );
629 } // if
630 } // for
631 // normalizeAssertions( type->assertions );
632 } // for
633 }
634
635 void ForallPointerDecay::visit( ObjectDecl *object ) {
636 forallFixer( object->get_type() );
637 if ( PointerType *pointer = dynamic_cast< PointerType * >( object->get_type() ) ) {
638 forallFixer( pointer->get_base() );
639 } // if
640 Parent::visit( object );
641 object->fixUniqueId();
642 }
643
644 void ForallPointerDecay::visit( FunctionDecl *func ) {
645 forallFixer( func->get_type() );
646 Parent::visit( func );
647 func->fixUniqueId();
648 }
649
650 void ReturnChecker::checkFunctionReturns( std::list< Declaration * > & translationUnit ) {
651 PassVisitor<ReturnChecker> checker;
652 acceptAll( translationUnit, checker );
653 }
654
655 void ReturnChecker::previsit( FunctionDecl * functionDecl ) {
656 GuardValue( returnVals );
657 returnVals = functionDecl->get_functionType()->get_returnVals();
658 }
659
660 void ReturnChecker::previsit( ReturnStmt * returnStmt ) {
661 // Previously this also checked for the existence of an expr paired with no return values on
662 // the function return type. This is incorrect, since you can have an expression attached to
663 // a return statement in a void-returning function in C. The expression is treated as if it
664 // were cast to void.
665 if ( ! returnStmt->get_expr() && returnVals.size() != 0 ) {
666 throw SemanticError( "Non-void function returns no values: " , returnStmt );
667 }
668 }
669
670
671 bool isTypedef( Declaration *decl ) {
672 return dynamic_cast< TypedefDecl * >( decl );
673 }
674
675 void EliminateTypedef::eliminateTypedef( std::list< Declaration * > &translationUnit ) {
676 EliminateTypedef eliminator;
677 mutateAll( translationUnit, eliminator );
678 if ( eliminator.typedefNames.count( "size_t" ) ) {
679 // grab and remember declaration of size_t
680 SizeType = eliminator.typedefNames["size_t"].first->get_base()->clone();
681 } else {
682 // xxx - missing global typedef for size_t - default to long unsigned int, even though that may be wrong
683 // eventually should have a warning for this case.
684 SizeType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
685 }
686 filter( translationUnit, isTypedef, true );
687
688 }
689
690 Type *EliminateTypedef::mutate( TypeInstType * typeInst ) {
691 // instances of typedef types will come here. If it is an instance
692 // of a typdef type, link the instance to its actual type.
693 TypedefMap::const_iterator def = typedefNames.find( typeInst->get_name() );
694 if ( def != typedefNames.end() ) {
695 Type *ret = def->second.first->get_base()->clone();
696 ret->get_qualifiers() |= typeInst->get_qualifiers();
697 // place instance parameters on the typedef'd type
698 if ( ! typeInst->get_parameters().empty() ) {
699 ReferenceToType *rtt = dynamic_cast<ReferenceToType*>(ret);
700 if ( ! rtt ) {
701 throw SemanticError("cannot apply type parameters to base type of " + typeInst->get_name());
702 }
703 rtt->get_parameters().clear();
704 cloneAll( typeInst->get_parameters(), rtt->get_parameters() );
705 mutateAll( rtt->get_parameters(), *this ); // recursively fix typedefs on parameters
706 } // if
707 delete typeInst;
708 return ret;
709 } else {
710 TypeDeclMap::const_iterator base = typedeclNames.find( typeInst->get_name() );
711 assertf( base != typedeclNames.end(), "Cannot find typedecl name %s", typeInst->get_name().c_str() );
712 typeInst->set_baseType( base->second );
713 } // if
714 return typeInst;
715 }
716
717 Declaration *EliminateTypedef::mutate( TypedefDecl * tyDecl ) {
718 Declaration *ret = Mutator::mutate( tyDecl );
719
720 if ( typedefNames.count( tyDecl->get_name() ) == 1 && typedefNames[ tyDecl->get_name() ].second == scopeLevel ) {
721 // typedef to the same name from the same scope
722 // must be from the same type
723
724 Type * t1 = tyDecl->get_base();
725 Type * t2 = typedefNames[ tyDecl->get_name() ].first->get_base();
726 if ( ! ResolvExpr::typesCompatible( t1, t2, Indexer() ) ) {
727 throw SemanticError( "cannot redefine typedef: " + tyDecl->get_name() );
728 }
729 } else {
730 typedefNames[ tyDecl->get_name() ] = std::make_pair( TypedefDeclPtr( tyDecl ), scopeLevel );
731 } // if
732
733 // When a typedef is a forward declaration:
734 // typedef struct screen SCREEN;
735 // the declaration portion must be retained:
736 // struct screen;
737 // because the expansion of the typedef is:
738 // void rtn( SCREEN *p ) => void rtn( struct screen *p )
739 // hence the type-name "screen" must be defined.
740 // Note, qualifiers on the typedef are superfluous for the forward declaration.
741
742 Type *designatorType = tyDecl->get_base()->stripDeclarator();
743 if ( StructInstType *aggDecl = dynamic_cast< StructInstType * >( designatorType ) ) {
744 return new StructDecl( aggDecl->get_name(), DeclarationNode::Struct, noAttributes, tyDecl->get_linkage() );
745 } else if ( UnionInstType *aggDecl = dynamic_cast< UnionInstType * >( designatorType ) ) {
746 return new UnionDecl( aggDecl->get_name(), noAttributes, tyDecl->get_linkage() );
747 } else if ( EnumInstType *enumDecl = dynamic_cast< EnumInstType * >( designatorType ) ) {
748 return new EnumDecl( enumDecl->get_name(), noAttributes, tyDecl->get_linkage() );
749 } else {
750 return ret->clone();
751 } // if
752 }
753
754 TypeDecl *EliminateTypedef::mutate( TypeDecl * typeDecl ) {
755 TypedefMap::iterator i = typedefNames.find( typeDecl->get_name() );
756 if ( i != typedefNames.end() ) {
757 typedefNames.erase( i ) ;
758 } // if
759
760 typedeclNames[ typeDecl->get_name() ] = typeDecl;
761 return Mutator::mutate( typeDecl );
762 }
763
764 DeclarationWithType *EliminateTypedef::mutate( FunctionDecl * funcDecl ) {
765 typedefNames.beginScope();
766 DeclarationWithType *ret = Mutator::mutate( funcDecl );
767 typedefNames.endScope();
768 return ret;
769 }
770
771 DeclarationWithType *EliminateTypedef::mutate( ObjectDecl * objDecl ) {
772 typedefNames.beginScope();
773 DeclarationWithType *ret = Mutator::mutate( objDecl );
774 typedefNames.endScope();
775
776 if ( FunctionType *funtype = dynamic_cast<FunctionType *>( ret->get_type() ) ) { // function type?
777 // replace the current object declaration with a function declaration
778 FunctionDecl * newDecl = new FunctionDecl( ret->get_name(), ret->get_storageClasses(), ret->get_linkage(), funtype, 0, objDecl->get_attributes(), ret->get_funcSpec() );
779 objDecl->get_attributes().clear();
780 objDecl->set_type( nullptr );
781 delete objDecl;
782 return newDecl;
783 } // if
784 return ret;
785 }
786
787 Expression *EliminateTypedef::mutate( CastExpr * castExpr ) {
788 typedefNames.beginScope();
789 Expression *ret = Mutator::mutate( castExpr );
790 typedefNames.endScope();
791 return ret;
792 }
793
794 CompoundStmt *EliminateTypedef::mutate( CompoundStmt * compoundStmt ) {
795 typedefNames.beginScope();
796 scopeLevel += 1;
797 CompoundStmt *ret = Mutator::mutate( compoundStmt );
798 scopeLevel -= 1;
799 std::list< Statement * >::iterator i = compoundStmt->get_kids().begin();
800 while ( i != compoundStmt->get_kids().end() ) {
801 std::list< Statement * >::iterator next = i+1;
802 if ( DeclStmt *declStmt = dynamic_cast< DeclStmt * >( *i ) ) {
803 if ( dynamic_cast< TypedefDecl * >( declStmt->get_decl() ) ) {
804 delete *i;
805 compoundStmt->get_kids().erase( i );
806 } // if
807 } // if
808 i = next;
809 } // while
810 typedefNames.endScope();
811 return ret;
812 }
813
814 // there may be typedefs nested within aggregates. in order for everything to work properly, these should be removed
815 // as well
816 template<typename AggDecl>
817 AggDecl *EliminateTypedef::handleAggregate( AggDecl * aggDecl ) {
818 std::list<Declaration *>::iterator it = aggDecl->get_members().begin();
819 for ( ; it != aggDecl->get_members().end(); ) {
820 std::list< Declaration * >::iterator next = it+1;
821 if ( dynamic_cast< TypedefDecl * >( *it ) ) {
822 delete *it;
823 aggDecl->get_members().erase( it );
824 } // if
825 it = next;
826 }
827 return aggDecl;
828 }
829
830 template<typename AggDecl>
831 void EliminateTypedef::addImplicitTypedef( AggDecl * aggDecl ) {
832 if ( typedefNames.count( aggDecl->get_name() ) == 0 ) {
833 Type *type = nullptr;
834 if ( StructDecl * newDeclStructDecl = dynamic_cast< StructDecl * >( aggDecl ) ) {
835 type = new StructInstType( Type::Qualifiers(), newDeclStructDecl->get_name() );
836 } else if ( UnionDecl * newDeclUnionDecl = dynamic_cast< UnionDecl * >( aggDecl ) ) {
837 type = new UnionInstType( Type::Qualifiers(), newDeclUnionDecl->get_name() );
838 } else if ( EnumDecl * newDeclEnumDecl = dynamic_cast< EnumDecl * >( aggDecl ) ) {
839 type = new EnumInstType( Type::Qualifiers(), newDeclEnumDecl->get_name() );
840 } // if
841 TypedefDeclPtr tyDecl( new TypedefDecl( aggDecl->get_name(), Type::StorageClasses(), type, aggDecl->get_linkage() ) );
842 typedefNames[ aggDecl->get_name() ] = std::make_pair( std::move( tyDecl ), scopeLevel );
843 } // if
844 }
845
846 Declaration *EliminateTypedef::mutate( StructDecl * structDecl ) {
847 addImplicitTypedef( structDecl );
848 Mutator::mutate( structDecl );
849 return handleAggregate( structDecl );
850 }
851
852 Declaration *EliminateTypedef::mutate( UnionDecl * unionDecl ) {
853 addImplicitTypedef( unionDecl );
854 Mutator::mutate( unionDecl );
855 return handleAggregate( unionDecl );
856 }
857
858 Declaration *EliminateTypedef::mutate( EnumDecl * enumDecl ) {
859 addImplicitTypedef( enumDecl );
860 Mutator::mutate( enumDecl );
861 return handleAggregate( enumDecl );
862 }
863
864 Declaration *EliminateTypedef::mutate( TraitDecl * contextDecl ) {
865 Mutator::mutate( contextDecl );
866 return handleAggregate( contextDecl );
867 }
868
869 void VerifyCtorDtorAssign::verify( std::list< Declaration * > & translationUnit ) {
870 PassVisitor<VerifyCtorDtorAssign> verifier;
871 acceptAll( translationUnit, verifier );
872 }
873
874 void VerifyCtorDtorAssign::previsit( FunctionDecl * funcDecl ) {
875 FunctionType * funcType = funcDecl->get_functionType();
876 std::list< DeclarationWithType * > &returnVals = funcType->get_returnVals();
877 std::list< DeclarationWithType * > &params = funcType->get_parameters();
878
879 if ( CodeGen::isCtorDtorAssign( funcDecl->get_name() ) ) { // TODO: also check /=, etc.
880 if ( params.size() == 0 ) {
881 throw SemanticError( "Constructors, destructors, and assignment functions require at least one parameter ", funcDecl );
882 }
883 ReferenceType * refType = dynamic_cast< ReferenceType * >( params.front()->get_type() );
884 if ( ! refType ) {
885 throw SemanticError( "First parameter of a constructor, destructor, or assignment function must be a reference ", funcDecl );
886 }
887 if ( CodeGen::isCtorDtor( funcDecl->get_name() ) && returnVals.size() != 0 ) {
888 throw SemanticError( "Constructors and destructors cannot have explicit return values ", funcDecl );
889 }
890 }
891 }
892
893 template< typename Aggr >
894 void validateGeneric( Aggr * inst ) {
895 std::list< TypeDecl * > * params = inst->get_baseParameters();
896 if ( params ) {
897 std::list< Expression * > & args = inst->get_parameters();
898
899 // insert defaults arguments when a type argument is missing (currently only supports missing arguments at the end of the list).
900 // A substitution is used to ensure that defaults are replaced correctly, e.g.,
901 // forall(otype T, otype alloc = heap_allocator(T)) struct vector;
902 // vector(int) v;
903 // after insertion of default values becomes
904 // vector(int, heap_allocator(T))
905 // and the substitution is built with T=int so that after substitution, the result is
906 // vector(int, heap_allocator(int))
907 TypeSubstitution sub;
908 auto paramIter = params->begin();
909 for ( size_t i = 0; paramIter != params->end(); ++paramIter, ++i ) {
910 if ( i < args.size() ) {
911 TypeExpr * expr = safe_dynamic_cast< TypeExpr * >( *std::next( args.begin(), i ) );
912 sub.add( (*paramIter)->get_name(), expr->get_type()->clone() );
913 } else if ( i == args.size() ) {
914 Type * defaultType = (*paramIter)->get_init();
915 if ( defaultType ) {
916 args.push_back( new TypeExpr( defaultType->clone() ) );
917 sub.add( (*paramIter)->get_name(), defaultType->clone() );
918 }
919 }
920 }
921
922 sub.apply( inst );
923 if ( args.size() < params->size() ) throw SemanticError( "Too few type arguments in generic type ", inst );
924 if ( args.size() > params->size() ) throw SemanticError( "Too many type arguments in generic type ", inst );
925 }
926 }
927
928 void ValidateGenericParameters::previsit( StructInstType * inst ) {
929 validateGeneric( inst );
930 }
931
932 void ValidateGenericParameters::previsit( UnionInstType * inst ) {
933 validateGeneric( inst );
934 }
935
936 void CompoundLiteral::premutate( ObjectDecl *objectDecl ) {
937 storageClasses = objectDecl->get_storageClasses();
938 }
939
940 Expression *CompoundLiteral::postmutate( CompoundLiteralExpr *compLitExpr ) {
941 // transform [storage_class] ... (struct S){ 3, ... };
942 // into [storage_class] struct S temp = { 3, ... };
943 static UniqueName indexName( "_compLit" );
944
945 ObjectDecl *tempvar = new ObjectDecl( indexName.newName(), storageClasses, LinkageSpec::C, nullptr, compLitExpr->get_result(), compLitExpr->get_initializer() );
946 compLitExpr->set_result( nullptr );
947 compLitExpr->set_initializer( nullptr );
948 delete compLitExpr;
949 declsToAddBefore.push_back( tempvar ); // add modified temporary to current block
950 return new VariableExpr( tempvar );
951 }
952
953 void ReturnTypeFixer::fix( std::list< Declaration * > &translationUnit ) {
954 PassVisitor<ReturnTypeFixer> fixer;
955 acceptAll( translationUnit, fixer );
956 }
957
958 void ReturnTypeFixer::postvisit( FunctionDecl * functionDecl ) {
959 FunctionType * ftype = functionDecl->get_functionType();
960 std::list< DeclarationWithType * > & retVals = ftype->get_returnVals();
961 assertf( retVals.size() == 0 || retVals.size() == 1, "Function %s has too many return values: %zu", functionDecl->get_name().c_str(), retVals.size() );
962 if ( retVals.size() == 1 ) {
963 // ensure all function return values have a name - use the name of the function to disambiguate (this also provides a nice bit of help for debugging).
964 // ensure other return values have a name.
965 DeclarationWithType * ret = retVals.front();
966 if ( ret->get_name() == "" ) {
967 ret->set_name( toString( "_retval_", CodeGen::genName( functionDecl ) ) );
968 }
969 ret->get_attributes().push_back( new Attribute( "unused" ) );
970 }
971 }
972
973 void ReturnTypeFixer::postvisit( FunctionType * ftype ) {
974 // xxx - need to handle named return values - this information needs to be saved somehow
975 // so that resolution has access to the names.
976 // Note that this pass needs to happen early so that other passes which look for tuple types
977 // find them in all of the right places, including function return types.
978 std::list< DeclarationWithType * > & retVals = ftype->get_returnVals();
979 if ( retVals.size() > 1 ) {
980 // generate a single return parameter which is the tuple of all of the return values
981 TupleType * tupleType = safe_dynamic_cast< TupleType * >( ResolvExpr::extractResultType( ftype ) );
982 // ensure return value is not destructed by explicitly creating an empty ListInit node wherein maybeConstruct is false.
983 ObjectDecl * newRet = new ObjectDecl( "", Type::StorageClasses(), LinkageSpec::Cforall, 0, tupleType, new ListInit( std::list<Initializer*>(), noDesignators, false ) );
984 deleteAll( retVals );
985 retVals.clear();
986 retVals.push_back( newRet );
987 }
988 }
989
990 void ArrayLength::computeLength( std::list< Declaration * > & translationUnit ) {
991 PassVisitor<ArrayLength> len;
992 acceptAll( translationUnit, len );
993 }
994
995 void ArrayLength::previsit( ObjectDecl * objDecl ) {
996 if ( ArrayType * at = dynamic_cast< ArrayType * >( objDecl->get_type() ) ) {
997 if ( at->get_dimension() ) return;
998 if ( ListInit * init = dynamic_cast< ListInit * >( objDecl->get_init() ) ) {
999 at->set_dimension( new ConstantExpr( Constant::from_ulong( init->get_initializers().size() ) ) );
1000 }
1001 }
1002 }
1003
1004 void FindSpecialDeclarations::previsit( FunctionDecl * funcDecl ) {
1005 if ( ! dereferenceOperator ) {
1006 if ( funcDecl->get_name() == "*?" && funcDecl->get_linkage() == LinkageSpec::Intrinsic ) {
1007 FunctionType * ftype = funcDecl->get_functionType();
1008 if ( ftype->get_parameters().size() == 1 && ftype->get_parameters().front()->get_type()->get_qualifiers() == Type::Qualifiers() ) {
1009 dereferenceOperator = funcDecl;
1010 }
1011 }
1012 }
1013 }
1014} // namespace SymTab
1015
1016// Local Variables: //
1017// tab-width: 4 //
1018// mode: c++ //
1019// compile-command: "make install" //
1020// End: //
Note: See TracBrowser for help on using the repository browser.