source: src/SymTab/Validate.cc@ 2e9b59b

ADT ast-experimental pthread-emulation qualifiedEnum
Last change on this file since 2e9b59b was 92538ab, checked in by JiadaL <j82liang@…>, 3 years ago

Resolve conflict

  • Property mode set to 100644
File size: 82.8 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Validate.cc --
8//
9// Author : Richard C. Bilson
10// Created On : Sun May 17 21:50:04 2015
11// Last Modified By : Andrew Beach
12// Last Modified On : Fri Nov 12 11:00:00 2021
13// Update Count : 364
14//
15
16// The "validate" phase of translation is used to take a syntax tree and convert it into a standard form that aims to be
17// as regular in structure as possible. Some assumptions can be made regarding the state of the tree after this pass is
18// complete, including:
19//
20// - No nested structure or union definitions; any in the input are "hoisted" to the level of the containing struct or
21// union.
22//
23// - All enumeration constants have type EnumInstType.
24//
25// - The type "void" never occurs in lists of function parameter or return types. A function
26// taking no arguments has no argument types.
27//
28// - No context instances exist; they are all replaced by the set of declarations signified by the context, instantiated
29// by the particular set of type arguments.
30//
31// - Every declaration is assigned a unique id.
32//
33// - No typedef declarations or instances exist; the actual type is substituted for each instance.
34//
35// - Each type, struct, and union definition is followed by an appropriate assignment operator.
36//
37// - Each use of a struct or union is connected to a complete definition of that struct or union, even if that
38// definition occurs later in the input.
39
40#include "Validate.h"
41
42#include <cassert> // for assertf, assert
43#include <cstddef> // for size_t
44#include <list> // for list
45#include <string> // for string
46#include <unordered_map> // for unordered_map
47#include <utility> // for pair
48
49#include "AST/Chain.hpp"
50#include "AST/Decl.hpp"
51#include "AST/Node.hpp"
52#include "AST/Pass.hpp"
53#include "AST/SymbolTable.hpp"
54#include "AST/Type.hpp"
55#include "AST/TypeSubstitution.hpp"
56#include "CodeGen/CodeGenerator.h" // for genName
57#include "CodeGen/OperatorTable.h" // for isCtorDtor, isCtorDtorAssign
58#include "ControlStruct/Mutate.h" // for ForExprMutator
59#include "Common/CodeLocation.h" // for CodeLocation
60#include "Common/Stats.h" // for Stats::Heap
61#include "Common/PassVisitor.h" // for PassVisitor, WithDeclsToAdd
62#include "Common/ScopedMap.h" // for ScopedMap
63#include "Common/SemanticError.h" // for SemanticError
64#include "Common/UniqueName.h" // for UniqueName
65#include "Common/utility.h" // for operator+, cloneAll, deleteAll
66#include "CompilationState.h" // skip some passes in new-ast build
67#include "Concurrency/Keywords.h" // for applyKeywords
68#include "FixFunction.h" // for FixFunction
69#include "Indexer.h" // for Indexer
70#include "InitTweak/GenInit.h" // for fixReturnStatements
71#include "InitTweak/InitTweak.h" // for isCtorDtorAssign
72#include "ResolvExpr/typeops.h" // for typesCompatible
73#include "ResolvExpr/Resolver.h" // for findSingleExpression
74#include "ResolvExpr/ResolveTypeof.h" // for resolveTypeof
75#include "SymTab/Autogen.h" // for SizeType
76#include "SynTree/LinkageSpec.h" // for C
77#include "SynTree/Attribute.h" // for noAttributes, Attribute
78#include "SynTree/Constant.h" // for Constant
79#include "SynTree/Declaration.h" // for ObjectDecl, DeclarationWithType
80#include "SynTree/Expression.h" // for CompoundLiteralExpr, Expressio...
81#include "SynTree/Initializer.h" // for ListInit, Initializer
82#include "SynTree/Label.h" // for operator==, Label
83#include "SynTree/Mutator.h" // for Mutator
84#include "SynTree/Type.h" // for Type, TypeInstType, EnumInstType
85#include "SynTree/TypeSubstitution.h" // for TypeSubstitution
86#include "SynTree/Visitor.h" // for Visitor
87#include "Validate/HandleAttributes.h" // for handleAttributes
88#include "Validate/FindSpecialDecls.h" // for FindSpecialDecls
89
90class CompoundStmt;
91class ReturnStmt;
92class SwitchStmt;
93
94#define debugPrint( x ) if ( doDebug ) x
95
96namespace SymTab {
97 /// hoists declarations that are difficult to hoist while parsing
98 struct HoistTypeDecls final : public WithDeclsToAdd {
99 void previsit( SizeofExpr * );
100 void previsit( AlignofExpr * );
101 void previsit( UntypedOffsetofExpr * );
102 void previsit( CompoundLiteralExpr * );
103 void handleType( Type * );
104 };
105
106 struct FixQualifiedTypes final : public WithIndexer {
107 FixQualifiedTypes() : WithIndexer(false) {}
108 Type * postmutate( QualifiedType * );
109 };
110
111 struct HoistStruct final : public WithDeclsToAdd, public WithGuards {
112 /// Flattens nested struct types
113 static void hoistStruct( std::list< Declaration * > &translationUnit );
114
115 void previsit( StructDecl * aggregateDecl );
116 void previsit( UnionDecl * aggregateDecl );
117 void previsit( StaticAssertDecl * assertDecl );
118 void previsit( StructInstType * type );
119 void previsit( UnionInstType * type );
120 void previsit( EnumInstType * type );
121
122 private:
123 template< typename AggDecl > void handleAggregate( AggDecl * aggregateDecl );
124
125 AggregateDecl * parentAggr = nullptr;
126 };
127
128 /// Fix return types so that every function returns exactly one value
129 struct ReturnTypeFixer {
130 static void fix( std::list< Declaration * > &translationUnit );
131
132 void postvisit( FunctionDecl * functionDecl );
133 void postvisit( FunctionType * ftype );
134 };
135
136 /// Replaces enum types by int, and function or array types in function parameter and return lists by appropriate pointers.
137 struct EnumAndPointerDecay_old {
138 void previsit( EnumDecl * aggregateDecl );
139 void previsit( FunctionType * func );
140 };
141
142 /// Associates forward declarations of aggregates with their definitions
143 struct LinkReferenceToTypes_old final : public WithIndexer, public WithGuards, public WithVisitorRef<LinkReferenceToTypes_old>, public WithShortCircuiting {
144 LinkReferenceToTypes_old( const Indexer * indexer );
145 void postvisit( TypeInstType * typeInst );
146
147 void postvisit( EnumInstType * enumInst );
148 void postvisit( StructInstType * structInst );
149 void postvisit( UnionInstType * unionInst );
150 void postvisit( TraitInstType * traitInst );
151 void previsit( QualifiedType * qualType );
152 void postvisit( QualifiedType * qualType );
153
154 void postvisit( EnumDecl * enumDecl );
155 void postvisit( StructDecl * structDecl );
156 void postvisit( UnionDecl * unionDecl );
157 void postvisit( TraitDecl * traitDecl );
158
159 void previsit( StructDecl * structDecl );
160 void previsit( UnionDecl * unionDecl );
161
162 void renameGenericParams( std::list< TypeDecl * > & params );
163
164 private:
165 const Indexer * local_indexer;
166
167 typedef std::map< std::string, std::list< EnumInstType * > > ForwardEnumsType;
168 typedef std::map< std::string, std::list< StructInstType * > > ForwardStructsType;
169 typedef std::map< std::string, std::list< UnionInstType * > > ForwardUnionsType;
170 ForwardEnumsType forwardEnums;
171 ForwardStructsType forwardStructs;
172 ForwardUnionsType forwardUnions;
173 /// true if currently in a generic type body, so that type parameter instances can be renamed appropriately
174 bool inGeneric = false;
175 };
176
177 /// Does early resolution on the expressions that give enumeration constants their values
178 struct ResolveEnumInitializers final : public WithIndexer, public WithGuards, public WithVisitorRef<ResolveEnumInitializers>, public WithShortCircuiting {
179 ResolveEnumInitializers( const Indexer * indexer );
180 void postvisit( EnumDecl * enumDecl );
181
182 private:
183 const Indexer * local_indexer;
184
185 };
186
187 /// Replaces array and function types in forall lists by appropriate pointer type and assigns each Object and Function declaration a unique ID.
188 struct ForallPointerDecay_old final {
189 void previsit( ObjectDecl * object );
190 void previsit( FunctionDecl * func );
191 void previsit( FunctionType * ftype );
192 void previsit( StructDecl * aggrDecl );
193 void previsit( UnionDecl * aggrDecl );
194 };
195
196 // These structs are the sub-sub-passes of ForallPointerDecay_old.
197
198 struct TraitExpander_old final {
199 void previsit( FunctionType * );
200 void previsit( StructDecl * );
201 void previsit( UnionDecl * );
202 };
203
204 struct AssertionFixer_old final {
205 void previsit( FunctionType * );
206 void previsit( StructDecl * );
207 void previsit( UnionDecl * );
208 };
209
210 struct CheckOperatorTypes_old final {
211 void previsit( ObjectDecl * );
212 };
213
214 struct FixUniqueIds_old final {
215 void previsit( DeclarationWithType * );
216 };
217
218 struct ReturnChecker : public WithGuards {
219 /// Checks that return statements return nothing if their return type is void
220 /// and return something if the return type is non-void.
221 static void checkFunctionReturns( std::list< Declaration * > & translationUnit );
222
223 void previsit( FunctionDecl * functionDecl );
224 void previsit( ReturnStmt * returnStmt );
225
226 typedef std::list< DeclarationWithType * > ReturnVals;
227 ReturnVals returnVals;
228 };
229
230 struct ReplaceTypedef final : public WithVisitorRef<ReplaceTypedef>, public WithGuards, public WithShortCircuiting, public WithDeclsToAdd {
231 ReplaceTypedef() : scopeLevel( 0 ) {}
232 /// Replaces typedefs by forward declarations
233 static void replaceTypedef( std::list< Declaration * > &translationUnit );
234
235 void premutate( QualifiedType * );
236 Type * postmutate( QualifiedType * qualType );
237 Type * postmutate( TypeInstType * aggregateUseType );
238 Declaration * postmutate( TypedefDecl * typeDecl );
239 void premutate( TypeDecl * typeDecl );
240 void premutate( FunctionDecl * funcDecl );
241 void premutate( ObjectDecl * objDecl );
242 DeclarationWithType * postmutate( ObjectDecl * objDecl );
243
244 void premutate( CastExpr * castExpr );
245
246 void premutate( CompoundStmt * compoundStmt );
247
248 void premutate( StructDecl * structDecl );
249 void premutate( UnionDecl * unionDecl );
250 void premutate( EnumDecl * enumDecl );
251 void premutate( TraitDecl * );
252
253 void premutate( FunctionType * ftype );
254
255 private:
256 template<typename AggDecl>
257 void addImplicitTypedef( AggDecl * aggDecl );
258 template< typename AggDecl >
259 void handleAggregate( AggDecl * aggr );
260
261 typedef std::unique_ptr<TypedefDecl> TypedefDeclPtr;
262 typedef ScopedMap< std::string, std::pair< TypedefDeclPtr, int > > TypedefMap;
263 typedef ScopedMap< std::string, TypeDecl * > TypeDeclMap;
264 TypedefMap typedefNames;
265 TypeDeclMap typedeclNames;
266 int scopeLevel;
267 bool inFunctionType = false;
268 };
269
270 struct EliminateTypedef {
271 /// removes TypedefDecls from the AST
272 static void eliminateTypedef( std::list< Declaration * > &translationUnit );
273
274 template<typename AggDecl>
275 void handleAggregate( AggDecl * aggregateDecl );
276
277 void previsit( StructDecl * aggregateDecl );
278 void previsit( UnionDecl * aggregateDecl );
279 void previsit( CompoundStmt * compoundStmt );
280 };
281
282 struct VerifyCtorDtorAssign {
283 /// ensure that constructors, destructors, and assignment have at least one
284 /// parameter, the first of which must be a pointer, and that ctor/dtors have no
285 /// return values.
286 static void verify( std::list< Declaration * > &translationUnit );
287
288 void previsit( FunctionDecl * funcDecl );
289 };
290
291 /// ensure that generic types have the correct number of type arguments
292 struct ValidateGenericParameters {
293 void previsit( StructInstType * inst );
294 void previsit( UnionInstType * inst );
295 };
296
297 /// desugar declarations and uses of dimension paramaters like [N],
298 /// from type-system managed values, to tunnneling via ordinary types,
299 /// as char[-] in and sizeof(-) out
300 struct TranslateDimensionGenericParameters : public WithIndexer, public WithGuards {
301 static void translateDimensions( std::list< Declaration * > &translationUnit );
302 TranslateDimensionGenericParameters();
303
304 bool nextVisitedNodeIsChildOfSUIT = false; // SUIT = Struct or Union -Inst Type
305 bool visitingChildOfSUIT = false;
306 void changeState_ChildOfSUIT( bool newVal );
307 void premutate( StructInstType * sit );
308 void premutate( UnionInstType * uit );
309 void premutate( BaseSyntaxNode * node );
310
311 TypeDecl * postmutate( TypeDecl * td );
312 Expression * postmutate( DimensionExpr * de );
313 Expression * postmutate( Expression * e );
314 };
315
316 struct FixObjectType : public WithIndexer {
317 /// resolves typeof type in object, function, and type declarations
318 static void fix( std::list< Declaration * > & translationUnit );
319
320 void previsit( ObjectDecl * );
321 void previsit( FunctionDecl * );
322 void previsit( TypeDecl * );
323 };
324
325 struct InitializerLength {
326 /// for array types without an explicit length, compute the length and store it so that it
327 /// is known to the rest of the phases. For example,
328 /// int x[] = { 1, 2, 3 };
329 /// int y[][2] = { { 1, 2, 3 }, { 1, 2, 3 } };
330 /// here x and y are known at compile-time to have length 3, so change this into
331 /// int x[3] = { 1, 2, 3 };
332 /// int y[3][2] = { { 1, 2, 3 }, { 1, 2, 3 } };
333 static void computeLength( std::list< Declaration * > & translationUnit );
334
335 void previsit( ObjectDecl * objDecl );
336 };
337
338 struct ArrayLength : public WithIndexer {
339 static void computeLength( std::list< Declaration * > & translationUnit );
340
341 void previsit( ArrayType * arrayType );
342 };
343
344 struct CompoundLiteral final : public WithDeclsToAdd, public WithVisitorRef<CompoundLiteral> {
345 Type::StorageClasses storageClasses;
346
347 void premutate( ObjectDecl * objectDecl );
348 Expression * postmutate( CompoundLiteralExpr * compLitExpr );
349 };
350
351 struct LabelAddressFixer final : public WithGuards {
352 std::set< Label > labels;
353
354 void premutate( FunctionDecl * funcDecl );
355 Expression * postmutate( AddressExpr * addrExpr );
356 };
357
358 void validate_A( std::list< Declaration * > & translationUnit ) {
359 PassVisitor<EnumAndPointerDecay_old> epc;
360 PassVisitor<HoistTypeDecls> hoistDecls;
361 {
362 Stats::Heap::newPass("validate-A");
363 Stats::Time::BlockGuard guard("validate-A");
364 VerifyCtorDtorAssign::verify( translationUnit ); // must happen before autogen, because autogen examines existing ctor/dtors
365 acceptAll( translationUnit, hoistDecls );
366 ReplaceTypedef::replaceTypedef( translationUnit );
367 ReturnTypeFixer::fix( translationUnit ); // must happen before autogen
368 acceptAll( translationUnit, epc ); // must happen before VerifyCtorDtorAssign, because void return objects should not exist; before LinkReferenceToTypes_old because it is an indexer and needs correct types for mangling
369 }
370 }
371
372 void validate_B( std::list< Declaration * > & translationUnit ) {
373 PassVisitor<LinkReferenceToTypes_old> lrt( nullptr );
374 PassVisitor<FixQualifiedTypes> fixQual;
375 {
376 Stats::Heap::newPass("validate-B");
377 Stats::Time::BlockGuard guard("validate-B");
378 acceptAll( translationUnit, lrt ); // must happen before autogen, because sized flag needs to propagate to generated functions
379 mutateAll( translationUnit, fixQual ); // must happen after LinkReferenceToTypes_old, because aggregate members are accessed
380 HoistStruct::hoistStruct( translationUnit );
381 EliminateTypedef::eliminateTypedef( translationUnit );
382 }
383 }
384
385 void validate_C( std::list< Declaration * > & translationUnit ) {
386 PassVisitor<ValidateGenericParameters> genericParams;
387 PassVisitor<ResolveEnumInitializers> rei( nullptr );
388 {
389 Stats::Heap::newPass("validate-C");
390 Stats::Time::BlockGuard guard("validate-C");
391 Stats::Time::TimeBlock("Validate Generic Parameters", [&]() {
392 acceptAll( translationUnit, genericParams ); // check as early as possible - can't happen before LinkReferenceToTypes_old; observed failing when attempted before eliminateTypedef
393 });
394 Stats::Time::TimeBlock("Translate Dimensions", [&]() {
395 TranslateDimensionGenericParameters::translateDimensions( translationUnit );
396 });
397 if (!useNewAST) {
398 Stats::Time::TimeBlock("Resolve Enum Initializers", [&]() {
399 acceptAll( translationUnit, rei ); // must happen after translateDimensions because rei needs identifier lookup, which needs name mangling
400 });
401 }
402 Stats::Time::TimeBlock("Check Function Returns", [&]() {
403 ReturnChecker::checkFunctionReturns( translationUnit );
404 });
405 Stats::Time::TimeBlock("Fix Return Statements", [&]() {
406 InitTweak::fixReturnStatements( translationUnit ); // must happen before autogen
407 });
408 }
409 }
410
411 static void decayForallPointers( std::list< Declaration * > & translationUnit ) {
412 PassVisitor<TraitExpander_old> te;
413 acceptAll( translationUnit, te );
414 PassVisitor<AssertionFixer_old> af;
415 acceptAll( translationUnit, af );
416 PassVisitor<CheckOperatorTypes_old> cot;
417 acceptAll( translationUnit, cot );
418 PassVisitor<FixUniqueIds_old> fui;
419 acceptAll( translationUnit, fui );
420 }
421
422 void validate_D( std::list< Declaration * > & translationUnit ) {
423 {
424 Stats::Heap::newPass("validate-D");
425 Stats::Time::BlockGuard guard("validate-D");
426 Stats::Time::TimeBlock("Apply Concurrent Keywords", [&]() {
427 Concurrency::applyKeywords( translationUnit );
428 });
429 Stats::Time::TimeBlock("Forall Pointer Decay", [&]() {
430 decayForallPointers( translationUnit ); // must happen before autogenerateRoutines, after Concurrency::applyKeywords because uniqueIds must be set on declaration before resolution
431 });
432 Stats::Time::TimeBlock("Hoist Control Declarations", [&]() {
433 ControlStruct::hoistControlDecls( translationUnit ); // hoist initialization out of for statements; must happen before autogenerateRoutines
434 });
435 Stats::Time::TimeBlock("Generate Autogen routines", [&]() {
436 autogenerateRoutines( translationUnit ); // moved up, used to be below compoundLiteral - currently needs EnumAndPointerDecay_old
437 });
438 }
439 }
440
441 void validate_E( std::list< Declaration * > & translationUnit ) {
442 PassVisitor<CompoundLiteral> compoundliteral;
443 {
444 Stats::Heap::newPass("validate-E");
445 Stats::Time::BlockGuard guard("validate-E");
446 Stats::Time::TimeBlock("Implement Mutex Func", [&]() {
447 Concurrency::implementMutexFuncs( translationUnit );
448 });
449 Stats::Time::TimeBlock("Implement Thread Start", [&]() {
450 Concurrency::implementThreadStarter( translationUnit );
451 });
452 Stats::Time::TimeBlock("Compound Literal", [&]() {
453 mutateAll( translationUnit, compoundliteral );
454 });
455 if (!useNewAST) {
456 Stats::Time::TimeBlock("Resolve With Expressions", [&]() {
457 ResolvExpr::resolveWithExprs( translationUnit ); // must happen before FixObjectType because user-code is resolved and may contain with variables
458 });
459 }
460 }
461 }
462
463 void validate_F( std::list< Declaration * > & translationUnit ) {
464 PassVisitor<LabelAddressFixer> labelAddrFixer;
465 {
466 Stats::Heap::newPass("validate-F");
467 Stats::Time::BlockGuard guard("validate-F");
468 if (!useNewAST) {
469 Stats::Time::TimeCall("Fix Object Type",
470 FixObjectType::fix, translationUnit);
471 }
472 Stats::Time::TimeCall("Initializer Length",
473 InitializerLength::computeLength, translationUnit);
474 if (!useNewAST) {
475 Stats::Time::TimeCall("Array Length",
476 ArrayLength::computeLength, translationUnit);
477 }
478 Stats::Time::TimeCall("Find Special Declarations",
479 Validate::findSpecialDecls, translationUnit);
480 Stats::Time::TimeCall("Fix Label Address",
481 mutateAll<LabelAddressFixer>, translationUnit, labelAddrFixer);
482 if (!useNewAST) {
483 Stats::Time::TimeCall("Handle Attributes",
484 Validate::handleAttributes, translationUnit);
485 }
486 }
487 }
488
489 void validate( std::list< Declaration * > &translationUnit, __attribute__((unused)) bool doDebug ) {
490 validate_A( translationUnit );
491 validate_B( translationUnit );
492 validate_C( translationUnit );
493 validate_D( translationUnit );
494 validate_E( translationUnit );
495 validate_F( translationUnit );
496 }
497
498 void validateType( Type * type, const Indexer * indexer ) {
499 PassVisitor<EnumAndPointerDecay_old> epc;
500 PassVisitor<LinkReferenceToTypes_old> lrt( indexer );
501 PassVisitor<TraitExpander_old> te;
502 PassVisitor<AssertionFixer_old> af;
503 PassVisitor<CheckOperatorTypes_old> cot;
504 PassVisitor<FixUniqueIds_old> fui;
505 type->accept( epc );
506 type->accept( lrt );
507 type->accept( te );
508 type->accept( af );
509 type->accept( cot );
510 type->accept( fui );
511 }
512
513 void HoistTypeDecls::handleType( Type * type ) {
514 // some type declarations are buried in expressions and not easy to hoist during parsing; hoist them here
515 AggregateDecl * aggr = nullptr;
516 if ( StructInstType * inst = dynamic_cast< StructInstType * >( type ) ) {
517 aggr = inst->baseStruct;
518 } else if ( UnionInstType * inst = dynamic_cast< UnionInstType * >( type ) ) {
519 aggr = inst->baseUnion;
520 } else if ( EnumInstType * inst = dynamic_cast< EnumInstType * >( type ) ) {
521 aggr = inst->baseEnum;
522 }
523 if ( aggr && aggr->body ) {
524 declsToAddBefore.push_front( aggr );
525 }
526 }
527
528 void HoistTypeDecls::previsit( SizeofExpr * expr ) {
529 handleType( expr->type );
530 }
531
532 void HoistTypeDecls::previsit( AlignofExpr * expr ) {
533 handleType( expr->type );
534 }
535
536 void HoistTypeDecls::previsit( UntypedOffsetofExpr * expr ) {
537 handleType( expr->type );
538 }
539
540 void HoistTypeDecls::previsit( CompoundLiteralExpr * expr ) {
541 handleType( expr->result );
542 }
543
544
545 Type * FixQualifiedTypes::postmutate( QualifiedType * qualType ) {
546 Type * parent = qualType->parent;
547 Type * child = qualType->child;
548 if ( dynamic_cast< GlobalScopeType * >( qualType->parent ) ) {
549 // .T => lookup T at global scope
550 if ( TypeInstType * inst = dynamic_cast< TypeInstType * >( child ) ) {
551 auto td = indexer.globalLookupType( inst->name );
552 if ( ! td ) {
553 SemanticError( qualType->location, toString("Use of undefined global type ", inst->name) );
554 }
555 auto base = td->base;
556 assert( base );
557 Type * ret = base->clone();
558 ret->get_qualifiers() = qualType->get_qualifiers();
559 return ret;
560 } else {
561 // .T => T is not a type name
562 assertf( false, "unhandled global qualified child type: %s", toCString(child) );
563 }
564 } else {
565 // S.T => S must be an aggregate type, find the declaration for T in S.
566 AggregateDecl * aggr = nullptr;
567 if ( StructInstType * inst = dynamic_cast< StructInstType * >( parent ) ) {
568 aggr = inst->baseStruct;
569 } else if ( UnionInstType * inst = dynamic_cast< UnionInstType * > ( parent ) ) {
570 aggr = inst->baseUnion;
571 } else {
572 SemanticError( qualType->location, toString("Qualified type requires an aggregate on the left, but has: ", parent) );
573 }
574 assert( aggr ); // TODO: need to handle forward declarations
575 for ( Declaration * member : aggr->members ) {
576 if ( TypeInstType * inst = dynamic_cast< TypeInstType * >( child ) ) {
577 // name on the right is a typedef
578 if ( NamedTypeDecl * aggr = dynamic_cast< NamedTypeDecl * > ( member ) ) {
579 if ( aggr->name == inst->name ) {
580 assert( aggr->base );
581 Type * ret = aggr->base->clone();
582 ret->get_qualifiers() = qualType->get_qualifiers();
583 TypeSubstitution sub = parent->genericSubstitution();
584 sub.apply(ret);
585 return ret;
586 }
587 }
588 } else {
589 // S.T - S is not an aggregate => error
590 assertf( false, "unhandled qualified child type: %s", toCString(qualType) );
591 }
592 }
593 // failed to find a satisfying definition of type
594 SemanticError( qualType->location, toString("Undefined type in qualified type: ", qualType) );
595 }
596
597 // ... may want to link canonical SUE definition to each forward decl so that it becomes easier to lookup?
598 }
599
600
601 void HoistStruct::hoistStruct( std::list< Declaration * > &translationUnit ) {
602 PassVisitor<HoistStruct> hoister;
603 acceptAll( translationUnit, hoister );
604 }
605
606 bool shouldHoist( Declaration * decl ) {
607 return dynamic_cast< StructDecl * >( decl ) || dynamic_cast< UnionDecl * >( decl ) || dynamic_cast< StaticAssertDecl * >( decl );
608 }
609
610 namespace {
611 void qualifiedName( AggregateDecl * aggr, std::ostringstream & ss ) {
612 if ( aggr->parent ) qualifiedName( aggr->parent, ss );
613 ss << "__" << aggr->name;
614 }
615
616 // mangle nested type names using entire parent chain
617 std::string qualifiedName( AggregateDecl * aggr ) {
618 std::ostringstream ss;
619 qualifiedName( aggr, ss );
620 return ss.str();
621 }
622 }
623
624 template< typename AggDecl >
625 void HoistStruct::handleAggregate( AggDecl * aggregateDecl ) {
626 if ( parentAggr ) {
627 aggregateDecl->parent = parentAggr;
628 aggregateDecl->name = qualifiedName( aggregateDecl );
629 // Add elements in stack order corresponding to nesting structure.
630 declsToAddBefore.push_front( aggregateDecl );
631 } else {
632 GuardValue( parentAggr );
633 parentAggr = aggregateDecl;
634 } // if
635 // Always remove the hoisted aggregate from the inner structure.
636 GuardAction( [aggregateDecl]() { filter( aggregateDecl->members, shouldHoist, false ); } );
637 }
638
639 void HoistStruct::previsit( StaticAssertDecl * assertDecl ) {
640 if ( parentAggr ) {
641 declsToAddBefore.push_back( assertDecl );
642 }
643 }
644
645 void HoistStruct::previsit( StructDecl * aggregateDecl ) {
646 handleAggregate( aggregateDecl );
647 }
648
649 void HoistStruct::previsit( UnionDecl * aggregateDecl ) {
650 handleAggregate( aggregateDecl );
651 }
652
653 void HoistStruct::previsit( StructInstType * type ) {
654 // need to reset type name after expanding to qualified name
655 assert( type->baseStruct );
656 type->name = type->baseStruct->name;
657 }
658
659 void HoistStruct::previsit( UnionInstType * type ) {
660 assert( type->baseUnion );
661 type->name = type->baseUnion->name;
662 }
663
664 void HoistStruct::previsit( EnumInstType * type ) {
665 assert( type->baseEnum );
666 type->name = type->baseEnum->name;
667 }
668
669
670 bool isTypedef( Declaration * decl ) {
671 return dynamic_cast< TypedefDecl * >( decl );
672 }
673
674 void EliminateTypedef::eliminateTypedef( std::list< Declaration * > &translationUnit ) {
675 PassVisitor<EliminateTypedef> eliminator;
676 acceptAll( translationUnit, eliminator );
677 filter( translationUnit, isTypedef, true );
678 }
679
680 template< typename AggDecl >
681 void EliminateTypedef::handleAggregate( AggDecl * aggregateDecl ) {
682 filter( aggregateDecl->members, isTypedef, true );
683 }
684
685 void EliminateTypedef::previsit( StructDecl * aggregateDecl ) {
686 handleAggregate( aggregateDecl );
687 }
688
689 void EliminateTypedef::previsit( UnionDecl * aggregateDecl ) {
690 handleAggregate( aggregateDecl );
691 }
692
693 void EliminateTypedef::previsit( CompoundStmt * compoundStmt ) {
694 // remove and delete decl stmts
695 filter( compoundStmt->kids, [](Statement * stmt) {
696 if ( DeclStmt * declStmt = dynamic_cast< DeclStmt * >( stmt ) ) {
697 if ( dynamic_cast< TypedefDecl * >( declStmt->decl ) ) {
698 return true;
699 } // if
700 } // if
701 return false;
702 }, true);
703 }
704
705 void EnumAndPointerDecay_old::previsit( EnumDecl * enumDecl ) {
706 // Set the type of each member of the enumeration to be EnumConstant
707 for ( std::list< Declaration * >::iterator i = enumDecl->members.begin(); i != enumDecl->members.end(); ++i ) {
708 ObjectDecl * obj = dynamic_cast< ObjectDecl * >( * i );
709 assert( obj );
710 obj->set_type( new EnumInstType( Type::Qualifiers( Type::Const ), enumDecl->name ) );
711 } // for
712 }
713
714 namespace {
715 template< typename DWTList >
716 void fixFunctionList( DWTList & dwts, bool isVarArgs, FunctionType * func ) {
717 auto nvals = dwts.size();
718 bool containsVoid = false;
719 for ( auto & dwt : dwts ) {
720 // fix each DWT and record whether a void was found
721 containsVoid |= fixFunction( dwt );
722 }
723
724 // the only case in which "void" is valid is where it is the only one in the list
725 if ( containsVoid && ( nvals > 1 || isVarArgs ) ) {
726 SemanticError( func, "invalid type void in function type " );
727 }
728
729 // one void is the only thing in the list; remove it.
730 if ( containsVoid ) {
731 delete dwts.front();
732 dwts.clear();
733 }
734 }
735 }
736
737 void EnumAndPointerDecay_old::previsit( FunctionType * func ) {
738 // Fix up parameters and return types
739 fixFunctionList( func->parameters, func->isVarArgs, func );
740 fixFunctionList( func->returnVals, false, func );
741 }
742
743 LinkReferenceToTypes_old::LinkReferenceToTypes_old( const Indexer * other_indexer ) : WithIndexer( false ) {
744 if ( other_indexer ) {
745 local_indexer = other_indexer;
746 } else {
747 local_indexer = &indexer;
748 } // if
749 }
750
751 void LinkReferenceToTypes_old::postvisit( EnumInstType * enumInst ) {
752 const EnumDecl * st = local_indexer->lookupEnum( enumInst->name );
753 // it's not a semantic error if the enum is not found, just an implicit forward declaration
754 if ( st ) {
755 enumInst->baseEnum = const_cast<EnumDecl *>(st); // Just linking in the node
756 } // if
757 if ( ! st || ! st->body ) {
758 // use of forward declaration
759 forwardEnums[ enumInst->name ].push_back( enumInst );
760 } // if
761 }
762
763 void LinkReferenceToTypes_old::postvisit( StructInstType * structInst ) {
764 const StructDecl * st = local_indexer->lookupStruct( structInst->name );
765 // it's not a semantic error if the struct is not found, just an implicit forward declaration
766 if ( st ) {
767 structInst->baseStruct = const_cast<StructDecl *>(st); // Just linking in the node
768 } // if
769 if ( ! st || ! st->body ) {
770 // use of forward declaration
771 forwardStructs[ structInst->name ].push_back( structInst );
772 } // if
773 }
774
775 void LinkReferenceToTypes_old::postvisit( UnionInstType * unionInst ) {
776 const UnionDecl * un = local_indexer->lookupUnion( unionInst->name );
777 // it's not a semantic error if the union is not found, just an implicit forward declaration
778 if ( un ) {
779 unionInst->baseUnion = const_cast<UnionDecl *>(un); // Just linking in the node
780 } // if
781 if ( ! un || ! un->body ) {
782 // use of forward declaration
783 forwardUnions[ unionInst->name ].push_back( unionInst );
784 } // if
785 }
786
787 void LinkReferenceToTypes_old::previsit( QualifiedType * ) {
788 visit_children = false;
789 }
790
791 void LinkReferenceToTypes_old::postvisit( QualifiedType * qualType ) {
792 // linking only makes sense for the 'oldest ancestor' of the qualified type
793 qualType->parent->accept( * visitor );
794 }
795
796 template< typename Decl >
797 void normalizeAssertions( std::list< Decl * > & assertions ) {
798 // ensure no duplicate trait members after the clone
799 auto pred = [](Decl * d1, Decl * d2) {
800 // only care if they're equal
801 DeclarationWithType * dwt1 = dynamic_cast<DeclarationWithType *>( d1 );
802 DeclarationWithType * dwt2 = dynamic_cast<DeclarationWithType *>( d2 );
803 if ( dwt1 && dwt2 ) {
804 if ( dwt1->name == dwt2->name && ResolvExpr::typesCompatible( dwt1->get_type(), dwt2->get_type(), SymTab::Indexer() ) ) {
805 // std::cerr << "=========== equal:" << std::endl;
806 // std::cerr << "d1: " << d1 << std::endl;
807 // std::cerr << "d2: " << d2 << std::endl;
808 return false;
809 }
810 }
811 return d1 < d2;
812 };
813 std::set<Decl *, decltype(pred)> unique_members( assertions.begin(), assertions.end(), pred );
814 // if ( unique_members.size() != assertions.size() ) {
815 // std::cerr << "============different" << std::endl;
816 // std::cerr << unique_members.size() << " " << assertions.size() << std::endl;
817 // }
818
819 std::list< Decl * > order;
820 order.splice( order.end(), assertions );
821 std::copy_if( order.begin(), order.end(), back_inserter( assertions ), [&]( Decl * decl ) {
822 return unique_members.count( decl );
823 });
824 }
825
826 // expand assertions from trait instance, performing the appropriate type variable substitutions
827 template< typename Iterator >
828 void expandAssertions( TraitInstType * inst, Iterator out ) {
829 assertf( inst->baseTrait, "Trait instance not linked to base trait: %s", toCString( inst ) );
830 std::list< DeclarationWithType * > asserts;
831 for ( Declaration * decl : inst->baseTrait->members ) {
832 asserts.push_back( strict_dynamic_cast<DeclarationWithType *>( decl->clone() ) );
833 }
834 // substitute trait decl parameters for instance parameters
835 applySubstitution( inst->baseTrait->parameters.begin(), inst->baseTrait->parameters.end(), inst->parameters.begin(), asserts.begin(), asserts.end(), out );
836 }
837
838 void LinkReferenceToTypes_old::postvisit( TraitDecl * traitDecl ) {
839 if ( traitDecl->name == "sized" ) {
840 // "sized" is a special trait - flick the sized status on for the type variable
841 assertf( traitDecl->parameters.size() == 1, "Built-in trait 'sized' has incorrect number of parameters: %zd", traitDecl->parameters.size() );
842 TypeDecl * td = traitDecl->parameters.front();
843 td->set_sized( true );
844 }
845
846 // move assertions from type parameters into the body of the trait
847 for ( TypeDecl * td : traitDecl->parameters ) {
848 for ( DeclarationWithType * assert : td->assertions ) {
849 if ( TraitInstType * inst = dynamic_cast< TraitInstType * >( assert->get_type() ) ) {
850 expandAssertions( inst, back_inserter( traitDecl->members ) );
851 } else {
852 traitDecl->members.push_back( assert->clone() );
853 }
854 }
855 deleteAll( td->assertions );
856 td->assertions.clear();
857 } // for
858 }
859
860 void LinkReferenceToTypes_old::postvisit( TraitInstType * traitInst ) {
861 // handle other traits
862 const TraitDecl * traitDecl = local_indexer->lookupTrait( traitInst->name );
863 if ( ! traitDecl ) {
864 SemanticError( traitInst->location, "use of undeclared trait " + traitInst->name );
865 } // if
866 if ( traitDecl->parameters.size() != traitInst->parameters.size() ) {
867 SemanticError( traitInst, "incorrect number of trait parameters: " );
868 } // if
869 traitInst->baseTrait = const_cast<TraitDecl *>(traitDecl); // Just linking in the node
870
871 // need to carry over the 'sized' status of each decl in the instance
872 for ( auto p : group_iterate( traitDecl->parameters, traitInst->parameters ) ) {
873 TypeExpr * expr = dynamic_cast< TypeExpr * >( std::get<1>(p) );
874 if ( ! expr ) {
875 SemanticError( std::get<1>(p), "Expression parameters for trait instances are currently unsupported: " );
876 }
877 if ( TypeInstType * inst = dynamic_cast< TypeInstType * >( expr->get_type() ) ) {
878 TypeDecl * formalDecl = std::get<0>(p);
879 TypeDecl * instDecl = inst->baseType;
880 if ( formalDecl->get_sized() ) instDecl->set_sized( true );
881 }
882 }
883 // normalizeAssertions( traitInst->members );
884 }
885
886 void LinkReferenceToTypes_old::postvisit( EnumDecl * enumDecl ) {
887 // visit enum members first so that the types of self-referencing members are updated properly
888 if ( enumDecl->body ) {
889 ForwardEnumsType::iterator fwds = forwardEnums.find( enumDecl->name );
890 if ( fwds != forwardEnums.end() ) {
891 for ( std::list< EnumInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) {
892 (* inst)->baseEnum = enumDecl;
893 } // for
894 forwardEnums.erase( fwds );
895 } // if
896 } // if
897 }
898
899 void LinkReferenceToTypes_old::renameGenericParams( std::list< TypeDecl * > & params ) {
900 // rename generic type parameters uniquely so that they do not conflict with user-defined function forall parameters, e.g.
901 // forall(otype T)
902 // struct Box {
903 // T x;
904 // };
905 // forall(otype T)
906 // void f(Box(T) b) {
907 // ...
908 // }
909 // The T in Box and the T in f are different, so internally the naming must reflect that.
910 GuardValue( inGeneric );
911 inGeneric = ! params.empty();
912 for ( TypeDecl * td : params ) {
913 td->name = "__" + td->name + "_generic_";
914 }
915 }
916
917 void LinkReferenceToTypes_old::previsit( StructDecl * structDecl ) {
918 renameGenericParams( structDecl->parameters );
919 }
920
921 void LinkReferenceToTypes_old::previsit( UnionDecl * unionDecl ) {
922 renameGenericParams( unionDecl->parameters );
923 }
924
925 void LinkReferenceToTypes_old::postvisit( StructDecl * structDecl ) {
926 // visit struct members first so that the types of self-referencing members are updated properly
927 // xxx - need to ensure that type parameters match up between forward declarations and definition (most importantly, number of type parameters and their defaults)
928 if ( structDecl->body ) {
929 ForwardStructsType::iterator fwds = forwardStructs.find( structDecl->name );
930 if ( fwds != forwardStructs.end() ) {
931 for ( std::list< StructInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) {
932 (* inst)->baseStruct = structDecl;
933 } // for
934 forwardStructs.erase( fwds );
935 } // if
936 } // if
937 }
938
939 void LinkReferenceToTypes_old::postvisit( UnionDecl * unionDecl ) {
940 if ( unionDecl->body ) {
941 ForwardUnionsType::iterator fwds = forwardUnions.find( unionDecl->name );
942 if ( fwds != forwardUnions.end() ) {
943 for ( std::list< UnionInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) {
944 (* inst)->baseUnion = unionDecl;
945 } // for
946 forwardUnions.erase( fwds );
947 } // if
948 } // if
949 }
950
951 void LinkReferenceToTypes_old::postvisit( TypeInstType * typeInst ) {
952 // ensure generic parameter instances are renamed like the base type
953 if ( inGeneric && typeInst->baseType ) typeInst->name = typeInst->baseType->name;
954 if ( const NamedTypeDecl * namedTypeDecl = local_indexer->lookupType( typeInst->name ) ) {
955 if ( const TypeDecl * typeDecl = dynamic_cast< const TypeDecl * >( namedTypeDecl ) ) {
956 typeInst->set_isFtype( typeDecl->kind == TypeDecl::Ftype );
957 } // if
958 } // if
959 }
960
961 ResolveEnumInitializers::ResolveEnumInitializers( const Indexer * other_indexer ) : WithIndexer( true ) {
962 if ( other_indexer ) {
963 local_indexer = other_indexer;
964 } else {
965 local_indexer = &indexer;
966 } // if
967 }
968
969 void ResolveEnumInitializers::postvisit( EnumDecl * enumDecl ) {
970 if ( enumDecl->body ) {
971 for ( Declaration * member : enumDecl->members ) {
972 ObjectDecl * field = strict_dynamic_cast<ObjectDecl *>( member );
973 if ( field->init ) {
974 // need to resolve enumerator initializers early so that other passes that determine if an expression is constexpr have the appropriate information.
975 SingleInit * init = strict_dynamic_cast<SingleInit *>( field->init );
976 if ( !enumDecl->base || dynamic_cast<BasicType *>(enumDecl->base))
977 ResolvExpr::findSingleExpression( init->value, new BasicType( Type::Qualifiers(), BasicType::SignedInt ), indexer );
978 else {
979 if (dynamic_cast<PointerType *>(enumDecl->base)) {
980 auto typePtr = dynamic_cast<PointerType *>(enumDecl->base);
981 ResolvExpr::findSingleExpression( init->value,
982 new PointerType( Type::Qualifiers(), typePtr->base ), indexer );
983 } else {
984 ResolvExpr::findSingleExpression( init->value, new BasicType( Type::Qualifiers(), BasicType::SignedInt ), indexer );
985 }
986 }
987
988 }
989 }
990
991 } // if
992 }
993
994 /// Fix up assertions - flattens assertion lists, removing all trait instances
995 void forallFixer( std::list< TypeDecl * > & forall, BaseSyntaxNode * node ) {
996 for ( TypeDecl * type : forall ) {
997 std::list< DeclarationWithType * > asserts;
998 asserts.splice( asserts.end(), type->assertions );
999 // expand trait instances into their members
1000 for ( DeclarationWithType * assertion : asserts ) {
1001 if ( TraitInstType * traitInst = dynamic_cast< TraitInstType * >( assertion->get_type() ) ) {
1002 // expand trait instance into all of its members
1003 expandAssertions( traitInst, back_inserter( type->assertions ) );
1004 delete traitInst;
1005 } else {
1006 // pass other assertions through
1007 type->assertions.push_back( assertion );
1008 } // if
1009 } // for
1010 // apply FixFunction to every assertion to check for invalid void type
1011 for ( DeclarationWithType *& assertion : type->assertions ) {
1012 bool isVoid = fixFunction( assertion );
1013 if ( isVoid ) {
1014 SemanticError( node, "invalid type void in assertion of function " );
1015 } // if
1016 } // for
1017 // normalizeAssertions( type->assertions );
1018 } // for
1019 }
1020
1021 /// Replace all traits in assertion lists with their assertions.
1022 void expandTraits( std::list< TypeDecl * > & forall ) {
1023 for ( TypeDecl * type : forall ) {
1024 std::list< DeclarationWithType * > asserts;
1025 asserts.splice( asserts.end(), type->assertions );
1026 // expand trait instances into their members
1027 for ( DeclarationWithType * assertion : asserts ) {
1028 if ( TraitInstType * traitInst = dynamic_cast< TraitInstType * >( assertion->get_type() ) ) {
1029 // expand trait instance into all of its members
1030 expandAssertions( traitInst, back_inserter( type->assertions ) );
1031 delete traitInst;
1032 } else {
1033 // pass other assertions through
1034 type->assertions.push_back( assertion );
1035 } // if
1036 } // for
1037 }
1038 }
1039
1040 /// Fix each function in the assertion list and check for invalid void type.
1041 void fixAssertions(
1042 std::list< TypeDecl * > & forall, BaseSyntaxNode * node ) {
1043 for ( TypeDecl * type : forall ) {
1044 for ( DeclarationWithType *& assertion : type->assertions ) {
1045 bool isVoid = fixFunction( assertion );
1046 if ( isVoid ) {
1047 SemanticError( node, "invalid type void in assertion of function " );
1048 } // if
1049 } // for
1050 }
1051 }
1052
1053 void ForallPointerDecay_old::previsit( ObjectDecl * object ) {
1054 // ensure that operator names only apply to functions or function pointers
1055 if ( CodeGen::isOperator( object->name ) && ! dynamic_cast< FunctionType * >( object->type->stripDeclarator() ) ) {
1056 SemanticError( object->location, toCString( "operator ", object->name.c_str(), " is not a function or function pointer." ) );
1057 }
1058 object->fixUniqueId();
1059 }
1060
1061 void ForallPointerDecay_old::previsit( FunctionDecl * func ) {
1062 func->fixUniqueId();
1063 }
1064
1065 void ForallPointerDecay_old::previsit( FunctionType * ftype ) {
1066 forallFixer( ftype->forall, ftype );
1067 }
1068
1069 void ForallPointerDecay_old::previsit( StructDecl * aggrDecl ) {
1070 forallFixer( aggrDecl->parameters, aggrDecl );
1071 }
1072
1073 void ForallPointerDecay_old::previsit( UnionDecl * aggrDecl ) {
1074 forallFixer( aggrDecl->parameters, aggrDecl );
1075 }
1076
1077 void TraitExpander_old::previsit( FunctionType * ftype ) {
1078 expandTraits( ftype->forall );
1079 }
1080
1081 void TraitExpander_old::previsit( StructDecl * aggrDecl ) {
1082 expandTraits( aggrDecl->parameters );
1083 }
1084
1085 void TraitExpander_old::previsit( UnionDecl * aggrDecl ) {
1086 expandTraits( aggrDecl->parameters );
1087 }
1088
1089 void AssertionFixer_old::previsit( FunctionType * ftype ) {
1090 fixAssertions( ftype->forall, ftype );
1091 }
1092
1093 void AssertionFixer_old::previsit( StructDecl * aggrDecl ) {
1094 fixAssertions( aggrDecl->parameters, aggrDecl );
1095 }
1096
1097 void AssertionFixer_old::previsit( UnionDecl * aggrDecl ) {
1098 fixAssertions( aggrDecl->parameters, aggrDecl );
1099 }
1100
1101 void CheckOperatorTypes_old::previsit( ObjectDecl * object ) {
1102 // ensure that operator names only apply to functions or function pointers
1103 if ( CodeGen::isOperator( object->name ) && ! dynamic_cast< FunctionType * >( object->type->stripDeclarator() ) ) {
1104 SemanticError( object->location, toCString( "operator ", object->name.c_str(), " is not a function or function pointer." ) );
1105 }
1106 }
1107
1108 void FixUniqueIds_old::previsit( DeclarationWithType * decl ) {
1109 decl->fixUniqueId();
1110 }
1111
1112 void ReturnChecker::checkFunctionReturns( std::list< Declaration * > & translationUnit ) {
1113 PassVisitor<ReturnChecker> checker;
1114 acceptAll( translationUnit, checker );
1115 }
1116
1117 void ReturnChecker::previsit( FunctionDecl * functionDecl ) {
1118 GuardValue( returnVals );
1119 returnVals = functionDecl->get_functionType()->get_returnVals();
1120 }
1121
1122 void ReturnChecker::previsit( ReturnStmt * returnStmt ) {
1123 // Previously this also checked for the existence of an expr paired with no return values on
1124 // the function return type. This is incorrect, since you can have an expression attached to
1125 // a return statement in a void-returning function in C. The expression is treated as if it
1126 // were cast to void.
1127 if ( ! returnStmt->get_expr() && returnVals.size() != 0 ) {
1128 SemanticError( returnStmt, "Non-void function returns no values: " );
1129 }
1130 }
1131
1132
1133 void ReplaceTypedef::replaceTypedef( std::list< Declaration * > &translationUnit ) {
1134 PassVisitor<ReplaceTypedef> eliminator;
1135 mutateAll( translationUnit, eliminator );
1136 if ( eliminator.pass.typedefNames.count( "size_t" ) ) {
1137 // grab and remember declaration of size_t
1138 Validate::SizeType = eliminator.pass.typedefNames["size_t"].first->base->clone();
1139 } else {
1140 // xxx - missing global typedef for size_t - default to long unsigned int, even though that may be wrong
1141 // eventually should have a warning for this case.
1142 Validate::SizeType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
1143 }
1144 }
1145
1146 void ReplaceTypedef::premutate( QualifiedType * ) {
1147 visit_children = false;
1148 }
1149
1150 Type * ReplaceTypedef::postmutate( QualifiedType * qualType ) {
1151 // replacing typedefs only makes sense for the 'oldest ancestor' of the qualified type
1152 qualType->parent = qualType->parent->acceptMutator( * visitor );
1153 return qualType;
1154 }
1155
1156 static bool isNonParameterAttribute( Attribute * attr ) {
1157 static const std::vector<std::string> bad_names = {
1158 "aligned", "__aligned__",
1159 };
1160 for ( auto name : bad_names ) {
1161 if ( name == attr->name ) {
1162 return true;
1163 }
1164 }
1165 return false;
1166 }
1167
1168 Type * ReplaceTypedef::postmutate( TypeInstType * typeInst ) {
1169 // instances of typedef types will come here. If it is an instance
1170 // of a typdef type, link the instance to its actual type.
1171 TypedefMap::const_iterator def = typedefNames.find( typeInst->name );
1172 if ( def != typedefNames.end() ) {
1173 Type * ret = def->second.first->base->clone();
1174 ret->location = typeInst->location;
1175 ret->get_qualifiers() |= typeInst->get_qualifiers();
1176 // GCC ignores certain attributes if they arrive by typedef, this mimics that.
1177 if ( inFunctionType ) {
1178 ret->attributes.remove_if( isNonParameterAttribute );
1179 }
1180 ret->attributes.splice( ret->attributes.end(), typeInst->attributes );
1181 // place instance parameters on the typedef'd type
1182 if ( ! typeInst->parameters.empty() ) {
1183 ReferenceToType * rtt = dynamic_cast<ReferenceToType *>(ret);
1184 if ( ! rtt ) {
1185 SemanticError( typeInst->location, "Cannot apply type parameters to base type of " + typeInst->name );
1186 }
1187 rtt->parameters.clear();
1188 cloneAll( typeInst->parameters, rtt->parameters );
1189 mutateAll( rtt->parameters, * visitor ); // recursively fix typedefs on parameters
1190 } // if
1191 delete typeInst;
1192 return ret;
1193 } else {
1194 TypeDeclMap::const_iterator base = typedeclNames.find( typeInst->name );
1195 if ( base == typedeclNames.end() ) {
1196 SemanticError( typeInst->location, toString("Use of undefined type ", typeInst->name) );
1197 }
1198 typeInst->set_baseType( base->second );
1199 return typeInst;
1200 } // if
1201 assert( false );
1202 }
1203
1204 struct VarLenChecker : WithShortCircuiting {
1205 void previsit( FunctionType * ) { visit_children = false; }
1206 void previsit( ArrayType * at ) {
1207 isVarLen |= at->isVarLen;
1208 }
1209 bool isVarLen = false;
1210 };
1211
1212 bool isVariableLength( Type * t ) {
1213 PassVisitor<VarLenChecker> varLenChecker;
1214 maybeAccept( t, varLenChecker );
1215 return varLenChecker.pass.isVarLen;
1216 }
1217
1218 Declaration * ReplaceTypedef::postmutate( TypedefDecl * tyDecl ) {
1219 if ( typedefNames.count( tyDecl->name ) == 1 && typedefNames[ tyDecl->name ].second == scopeLevel ) {
1220 // typedef to the same name from the same scope
1221 // must be from the same type
1222
1223 Type * t1 = tyDecl->base;
1224 Type * t2 = typedefNames[ tyDecl->name ].first->base;
1225 if ( ! ResolvExpr::typesCompatible( t1, t2, Indexer() ) ) {
1226 SemanticError( tyDecl->location, "Cannot redefine typedef: " + tyDecl->name );
1227 }
1228 // Cannot redefine VLA typedefs. Note: this is slightly incorrect, because our notion of VLAs
1229 // at this point in the translator is imprecise. In particular, this will disallow redefining typedefs
1230 // with arrays whose dimension is an enumerator or a cast of a constant/enumerator. The effort required
1231 // to fix this corner case likely outweighs the utility of allowing it.
1232 if ( isVariableLength( t1 ) || isVariableLength( t2 ) ) {
1233 SemanticError( tyDecl->location, "Cannot redefine typedef: " + tyDecl->name );
1234 }
1235 } else {
1236 typedefNames[ tyDecl->name ] = std::make_pair( TypedefDeclPtr( tyDecl ), scopeLevel );
1237 } // if
1238
1239 // When a typedef is a forward declaration:
1240 // typedef struct screen SCREEN;
1241 // the declaration portion must be retained:
1242 // struct screen;
1243 // because the expansion of the typedef is:
1244 // void rtn( SCREEN * p ) => void rtn( struct screen * p )
1245 // hence the type-name "screen" must be defined.
1246 // Note, qualifiers on the typedef are superfluous for the forward declaration.
1247
1248 Type * designatorType = tyDecl->base->stripDeclarator();
1249 if ( StructInstType * aggDecl = dynamic_cast< StructInstType * >( designatorType ) ) {
1250 declsToAddBefore.push_back( new StructDecl( aggDecl->name, AggregateDecl::Struct, noAttributes, tyDecl->linkage ) );
1251 } else if ( UnionInstType * aggDecl = dynamic_cast< UnionInstType * >( designatorType ) ) {
1252 declsToAddBefore.push_back( new UnionDecl( aggDecl->name, noAttributes, tyDecl->linkage ) );
1253 } else if ( EnumInstType * enumDecl = dynamic_cast< EnumInstType * >( designatorType ) ) {
1254 // declsToAddBefore.push_back( new EnumDecl( enumDecl->name, noAttributes, tyDecl->linkage, enumDecl->baseEnum->base ) );
1255 if (enumDecl->baseEnum) {
1256 declsToAddBefore.push_back( new EnumDecl( enumDecl->name, noAttributes, tyDecl->linkage, enumDecl->baseEnum->base ) );
1257 } else {
1258 declsToAddBefore.push_back( new EnumDecl( enumDecl->name, noAttributes, tyDecl->linkage ) );
1259 }
1260 } // if
1261 return tyDecl->clone();
1262 }
1263
1264 void ReplaceTypedef::premutate( TypeDecl * typeDecl ) {
1265 TypedefMap::iterator i = typedefNames.find( typeDecl->name );
1266 if ( i != typedefNames.end() ) {
1267 typedefNames.erase( i ) ;
1268 } // if
1269
1270 typedeclNames.insert( typeDecl->name, typeDecl );
1271 }
1272
1273 void ReplaceTypedef::premutate( FunctionDecl * ) {
1274 GuardScope( typedefNames );
1275 GuardScope( typedeclNames );
1276 }
1277
1278 void ReplaceTypedef::premutate( ObjectDecl * ) {
1279 GuardScope( typedefNames );
1280 GuardScope( typedeclNames );
1281 }
1282
1283 DeclarationWithType * ReplaceTypedef::postmutate( ObjectDecl * objDecl ) {
1284 if ( FunctionType * funtype = dynamic_cast<FunctionType *>( objDecl->type ) ) { // function type?
1285 // replace the current object declaration with a function declaration
1286 FunctionDecl * newDecl = new FunctionDecl( objDecl->name, objDecl->get_storageClasses(), objDecl->linkage, funtype, 0, objDecl->attributes, objDecl->get_funcSpec() );
1287 objDecl->attributes.clear();
1288 objDecl->set_type( nullptr );
1289 delete objDecl;
1290 return newDecl;
1291 } // if
1292 return objDecl;
1293 }
1294
1295 void ReplaceTypedef::premutate( CastExpr * ) {
1296 GuardScope( typedefNames );
1297 GuardScope( typedeclNames );
1298 }
1299
1300 void ReplaceTypedef::premutate( CompoundStmt * ) {
1301 GuardScope( typedefNames );
1302 GuardScope( typedeclNames );
1303 scopeLevel += 1;
1304 GuardAction( [this](){ scopeLevel -= 1; } );
1305 }
1306
1307 template<typename AggDecl>
1308 void ReplaceTypedef::addImplicitTypedef( AggDecl * aggDecl ) {
1309 if ( typedefNames.count( aggDecl->get_name() ) == 0 ) {
1310 Type * type = nullptr;
1311 if ( StructDecl * newDeclStructDecl = dynamic_cast< StructDecl * >( aggDecl ) ) {
1312 type = new StructInstType( Type::Qualifiers(), newDeclStructDecl->get_name() );
1313 } else if ( UnionDecl * newDeclUnionDecl = dynamic_cast< UnionDecl * >( aggDecl ) ) {
1314 type = new UnionInstType( Type::Qualifiers(), newDeclUnionDecl->get_name() );
1315 } else if ( EnumDecl * newDeclEnumDecl = dynamic_cast< EnumDecl * >( aggDecl ) ) {
1316 type = new EnumInstType( Type::Qualifiers(), newDeclEnumDecl->get_name() );
1317 } // if
1318 TypedefDeclPtr tyDecl( new TypedefDecl( aggDecl->get_name(), aggDecl->location, Type::StorageClasses(), type, aggDecl->get_linkage() ) );
1319 typedefNames[ aggDecl->get_name() ] = std::make_pair( std::move( tyDecl ), scopeLevel );
1320 // add the implicit typedef to the AST
1321 declsToAddBefore.push_back( new TypedefDecl( aggDecl->get_name(), aggDecl->location, Type::StorageClasses(), type->clone(), aggDecl->get_linkage() ) );
1322 } // if
1323 }
1324
1325 template< typename AggDecl >
1326 void ReplaceTypedef::handleAggregate( AggDecl * aggr ) {
1327 SemanticErrorException errors;
1328
1329 ValueGuard< std::list<Declaration * > > oldBeforeDecls( declsToAddBefore );
1330 ValueGuard< std::list<Declaration * > > oldAfterDecls ( declsToAddAfter );
1331 declsToAddBefore.clear();
1332 declsToAddAfter.clear();
1333
1334 GuardScope( typedefNames );
1335 GuardScope( typedeclNames );
1336 mutateAll( aggr->parameters, * visitor );
1337 mutateAll( aggr->attributes, * visitor );
1338
1339 // unroll mutateAll for aggr->members so that implicit typedefs for nested types are added to the aggregate body.
1340 for ( std::list< Declaration * >::iterator i = aggr->members.begin(); i != aggr->members.end(); ++i ) {
1341 if ( !declsToAddAfter.empty() ) { aggr->members.splice( i, declsToAddAfter ); }
1342
1343 try {
1344 * i = maybeMutate( * i, * visitor );
1345 } catch ( SemanticErrorException &e ) {
1346 errors.append( e );
1347 }
1348
1349 if ( !declsToAddBefore.empty() ) { aggr->members.splice( i, declsToAddBefore ); }
1350 }
1351
1352 if ( !declsToAddAfter.empty() ) { aggr->members.splice( aggr->members.end(), declsToAddAfter ); }
1353 if ( !errors.isEmpty() ) { throw errors; }
1354 }
1355
1356 void ReplaceTypedef::premutate( StructDecl * structDecl ) {
1357 visit_children = false;
1358 addImplicitTypedef( structDecl );
1359 handleAggregate( structDecl );
1360 }
1361
1362 void ReplaceTypedef::premutate( UnionDecl * unionDecl ) {
1363 visit_children = false;
1364 addImplicitTypedef( unionDecl );
1365 handleAggregate( unionDecl );
1366 }
1367
1368 void ReplaceTypedef::premutate( EnumDecl * enumDecl ) {
1369 addImplicitTypedef( enumDecl );
1370 }
1371
1372 void ReplaceTypedef::premutate( FunctionType * ) {
1373 GuardValue( inFunctionType );
1374 inFunctionType = true;
1375 }
1376
1377 void ReplaceTypedef::premutate( TraitDecl * ) {
1378 GuardScope( typedefNames );
1379 GuardScope( typedeclNames);
1380 }
1381
1382 void VerifyCtorDtorAssign::verify( std::list< Declaration * > & translationUnit ) {
1383 PassVisitor<VerifyCtorDtorAssign> verifier;
1384 acceptAll( translationUnit, verifier );
1385 }
1386
1387 void VerifyCtorDtorAssign::previsit( FunctionDecl * funcDecl ) {
1388 FunctionType * funcType = funcDecl->get_functionType();
1389 std::list< DeclarationWithType * > &returnVals = funcType->get_returnVals();
1390 std::list< DeclarationWithType * > &params = funcType->get_parameters();
1391
1392 if ( CodeGen::isCtorDtorAssign( funcDecl->get_name() ) ) { // TODO: also check /=, etc.
1393 if ( params.size() == 0 ) {
1394 SemanticError( funcDecl->location, "Constructors, destructors, and assignment functions require at least one parameter." );
1395 }
1396 ReferenceType * refType = dynamic_cast< ReferenceType * >( params.front()->get_type() );
1397 if ( ! refType ) {
1398 SemanticError( funcDecl->location, "First parameter of a constructor, destructor, or assignment function must be a reference." );
1399 }
1400 if ( CodeGen::isCtorDtor( funcDecl->get_name() ) && returnVals.size() != 0 ) {
1401 if(!returnVals.front()->get_type()->isVoid()) {
1402 SemanticError( funcDecl->location, "Constructors and destructors cannot have explicit return values." );
1403 }
1404 }
1405 }
1406 }
1407
1408 // Test for special name on a generic parameter. Special treatment for the
1409 // special name is a bootstrapping hack. In most cases, the worlds of T's
1410 // and of N's don't overlap (normal treamtemt). The foundations in
1411 // array.hfa use tagging for both types and dimensions. Tagging treats
1412 // its subject parameter even more opaquely than T&, which assumes it is
1413 // possible to have a pointer/reference to such an object. Tagging only
1414 // seeks to identify the type-system resident at compile time. Both N's
1415 // and T's can make tags. The tag definition uses the special name, which
1416 // is treated as "an N or a T." This feature is not inteded to be used
1417 // outside of the definition and immediate uses of a tag.
1418 static inline bool isReservedTysysIdOnlyName( const std::string & name ) {
1419 // name's prefix was __CFA_tysys_id_only, before it got wrapped in __..._generic
1420 int foundAt = name.find("__CFA_tysys_id_only");
1421 if (foundAt == 0) return true;
1422 if (foundAt == 2 && name[0] == '_' && name[1] == '_') return true;
1423 return false;
1424 }
1425
1426 template< typename Aggr >
1427 void validateGeneric( Aggr * inst ) {
1428 std::list< TypeDecl * > * params = inst->get_baseParameters();
1429 if ( params ) {
1430 std::list< Expression * > & args = inst->get_parameters();
1431
1432 // insert defaults arguments when a type argument is missing (currently only supports missing arguments at the end of the list).
1433 // A substitution is used to ensure that defaults are replaced correctly, e.g.,
1434 // forall(otype T, otype alloc = heap_allocator(T)) struct vector;
1435 // vector(int) v;
1436 // after insertion of default values becomes
1437 // vector(int, heap_allocator(T))
1438 // and the substitution is built with T=int so that after substitution, the result is
1439 // vector(int, heap_allocator(int))
1440 TypeSubstitution sub;
1441 auto paramIter = params->begin();
1442 auto argIter = args.begin();
1443 for ( ; paramIter != params->end(); ++paramIter, ++argIter ) {
1444 if ( argIter != args.end() ) {
1445 TypeExpr * expr = dynamic_cast< TypeExpr * >( * argIter );
1446 if ( expr ) {
1447 sub.add( (* paramIter)->get_name(), expr->get_type()->clone() );
1448 }
1449 } else {
1450 Type * defaultType = (* paramIter)->get_init();
1451 if ( defaultType ) {
1452 args.push_back( new TypeExpr( defaultType->clone() ) );
1453 sub.add( (* paramIter)->get_name(), defaultType->clone() );
1454 argIter = std::prev(args.end());
1455 } else {
1456 SemanticError( inst, "Too few type arguments in generic type " );
1457 }
1458 }
1459 assert( argIter != args.end() );
1460 bool typeParamDeclared = (*paramIter)->kind != TypeDecl::Kind::Dimension;
1461 bool typeArgGiven;
1462 if ( isReservedTysysIdOnlyName( (*paramIter)->name ) ) {
1463 // coerce a match when declaration is reserved name, which means "either"
1464 typeArgGiven = typeParamDeclared;
1465 } else {
1466 typeArgGiven = dynamic_cast< TypeExpr * >( * argIter );
1467 }
1468 if ( ! typeParamDeclared && typeArgGiven ) SemanticError( inst, "Type argument given for value parameter: " );
1469 if ( typeParamDeclared && ! typeArgGiven ) SemanticError( inst, "Expression argument given for type parameter: " );
1470 }
1471
1472 sub.apply( inst );
1473 if ( args.size() > params->size() ) SemanticError( inst, "Too many type arguments in generic type " );
1474 }
1475 }
1476
1477 void ValidateGenericParameters::previsit( StructInstType * inst ) {
1478 validateGeneric( inst );
1479 }
1480
1481 void ValidateGenericParameters::previsit( UnionInstType * inst ) {
1482 validateGeneric( inst );
1483 }
1484
1485 void TranslateDimensionGenericParameters::translateDimensions( std::list< Declaration * > &translationUnit ) {
1486 PassVisitor<TranslateDimensionGenericParameters> translator;
1487 mutateAll( translationUnit, translator );
1488 }
1489
1490 TranslateDimensionGenericParameters::TranslateDimensionGenericParameters() : WithIndexer( false ) {}
1491
1492 // Declaration of type variable: forall( [N] ) -> forall( N & | sized( N ) )
1493 TypeDecl * TranslateDimensionGenericParameters::postmutate( TypeDecl * td ) {
1494 if ( td->kind == TypeDecl::Dimension ) {
1495 td->kind = TypeDecl::Dtype;
1496 if ( ! isReservedTysysIdOnlyName( td->name ) ) {
1497 td->sized = true;
1498 }
1499 }
1500 return td;
1501 }
1502
1503 // Situational awareness:
1504 // array( float, [[currentExpr]] ) has visitingChildOfSUIT == true
1505 // array( float, [[currentExpr]] - 1 ) has visitingChildOfSUIT == false
1506 // size_t x = [[currentExpr]] has visitingChildOfSUIT == false
1507 void TranslateDimensionGenericParameters::changeState_ChildOfSUIT( bool newVal ) {
1508 GuardValue( nextVisitedNodeIsChildOfSUIT );
1509 GuardValue( visitingChildOfSUIT );
1510 visitingChildOfSUIT = nextVisitedNodeIsChildOfSUIT;
1511 nextVisitedNodeIsChildOfSUIT = newVal;
1512 }
1513 void TranslateDimensionGenericParameters::premutate( StructInstType * sit ) {
1514 (void) sit;
1515 changeState_ChildOfSUIT(true);
1516 }
1517 void TranslateDimensionGenericParameters::premutate( UnionInstType * uit ) {
1518 (void) uit;
1519 changeState_ChildOfSUIT(true);
1520 }
1521 void TranslateDimensionGenericParameters::premutate( BaseSyntaxNode * node ) {
1522 (void) node;
1523 changeState_ChildOfSUIT(false);
1524 }
1525
1526 // Passing values as dimension arguments: array( float, 7 ) -> array( float, char[ 7 ] )
1527 // Consuming dimension parameters: size_t x = N - 1 ; -> size_t x = sizeof(N) - 1 ;
1528 // Intertwined reality: array( float, N ) -> array( float, N )
1529 // array( float, N - 1 ) -> array( float, char[ sizeof(N) - 1 ] )
1530 // Intertwined case 1 is not just an optimization.
1531 // Avoiding char[sizeof(-)] is necessary to enable the call of f to bind the value of N, in:
1532 // forall([N]) void f( array(float, N) & );
1533 // array(float, 7) a;
1534 // f(a);
1535
1536 Expression * TranslateDimensionGenericParameters::postmutate( DimensionExpr * de ) {
1537 // Expression de is an occurrence of N in LHS of above examples.
1538 // Look up the name that de references.
1539 // If we are in a struct body, then this reference can be to an entry of the stuct's forall list.
1540 // Whether or not we are in a struct body, this reference can be to an entry of a containing function's forall list.
1541 // If we are in a struct body, then the stuct's forall declarations are innermost (functions don't occur in structs).
1542 // Thus, a potential struct's declaration is highest priority.
1543 // A struct's forall declarations are already renamed with _generic_ suffix. Try that name variant first.
1544
1545 std::string useName = "__" + de->name + "_generic_";
1546 TypeDecl * namedParamDecl = const_cast<TypeDecl *>( strict_dynamic_cast<const TypeDecl *, nullptr >( indexer.lookupType( useName ) ) );
1547
1548 if ( ! namedParamDecl ) {
1549 useName = de->name;
1550 namedParamDecl = const_cast<TypeDecl *>( strict_dynamic_cast<const TypeDecl *, nullptr >( indexer.lookupType( useName ) ) );
1551 }
1552
1553 // Expect to find it always. A misspelled name would have been parsed as an identifier.
1554 assert( namedParamDecl && "Type-system-managed value name not found in symbol table" );
1555
1556 delete de;
1557
1558 TypeInstType * refToDecl = new TypeInstType( 0, useName, namedParamDecl );
1559
1560 if ( visitingChildOfSUIT ) {
1561 // As in postmutate( Expression * ), topmost expression needs a TypeExpr wrapper
1562 // But avoid ArrayType-Sizeof
1563 return new TypeExpr( refToDecl );
1564 } else {
1565 // the N occurrence is being used directly as a runtime value,
1566 // if we are in a type instantiation, then the N is within a bigger value computation
1567 return new SizeofExpr( refToDecl );
1568 }
1569 }
1570
1571 Expression * TranslateDimensionGenericParameters::postmutate( Expression * e ) {
1572 if ( visitingChildOfSUIT ) {
1573 // e is an expression used as an argument to instantiate a type
1574 if (! dynamic_cast< TypeExpr * >( e ) ) {
1575 // e is a value expression
1576 // but not a DimensionExpr, which has a distinct postmutate
1577 Type * typeExprContent = new ArrayType( 0, new BasicType( 0, BasicType::Char ), e, true, false );
1578 TypeExpr * result = new TypeExpr( typeExprContent );
1579 return result;
1580 }
1581 }
1582 return e;
1583 }
1584
1585 void CompoundLiteral::premutate( ObjectDecl * objectDecl ) {
1586 storageClasses = objectDecl->get_storageClasses();
1587 }
1588
1589 Expression * CompoundLiteral::postmutate( CompoundLiteralExpr * compLitExpr ) {
1590 // transform [storage_class] ... (struct S){ 3, ... };
1591 // into [storage_class] struct S temp = { 3, ... };
1592 static UniqueName indexName( "_compLit" );
1593
1594 ObjectDecl * tempvar = new ObjectDecl( indexName.newName(), storageClasses, LinkageSpec::C, nullptr, compLitExpr->get_result(), compLitExpr->get_initializer() );
1595 compLitExpr->set_result( nullptr );
1596 compLitExpr->set_initializer( nullptr );
1597 delete compLitExpr;
1598 declsToAddBefore.push_back( tempvar ); // add modified temporary to current block
1599 return new VariableExpr( tempvar );
1600 }
1601
1602 void ReturnTypeFixer::fix( std::list< Declaration * > &translationUnit ) {
1603 PassVisitor<ReturnTypeFixer> fixer;
1604 acceptAll( translationUnit, fixer );
1605 }
1606
1607 void ReturnTypeFixer::postvisit( FunctionDecl * functionDecl ) {
1608 FunctionType * ftype = functionDecl->get_functionType();
1609 std::list< DeclarationWithType * > & retVals = ftype->get_returnVals();
1610 assertf( retVals.size() == 0 || retVals.size() == 1, "Function %s has too many return values: %zu", functionDecl->get_name().c_str(), retVals.size() );
1611 if ( retVals.size() == 1 ) {
1612 // ensure all function return values have a name - use the name of the function to disambiguate (this also provides a nice bit of help for debugging).
1613 // ensure other return values have a name.
1614 DeclarationWithType * ret = retVals.front();
1615 if ( ret->get_name() == "" ) {
1616 ret->set_name( toString( "_retval_", CodeGen::genName( functionDecl ) ) );
1617 }
1618 ret->get_attributes().push_back( new Attribute( "unused" ) );
1619 }
1620 }
1621
1622 void ReturnTypeFixer::postvisit( FunctionType * ftype ) {
1623 // xxx - need to handle named return values - this information needs to be saved somehow
1624 // so that resolution has access to the names.
1625 // Note that this pass needs to happen early so that other passes which look for tuple types
1626 // find them in all of the right places, including function return types.
1627 std::list< DeclarationWithType * > & retVals = ftype->get_returnVals();
1628 if ( retVals.size() > 1 ) {
1629 // generate a single return parameter which is the tuple of all of the return values
1630 TupleType * tupleType = strict_dynamic_cast< TupleType * >( ResolvExpr::extractResultType( ftype ) );
1631 // ensure return value is not destructed by explicitly creating an empty ListInit node wherein maybeConstruct is false.
1632 ObjectDecl * newRet = new ObjectDecl( "", Type::StorageClasses(), LinkageSpec::Cforall, 0, tupleType, new ListInit( std::list<Initializer *>(), noDesignators, false ) );
1633 deleteAll( retVals );
1634 retVals.clear();
1635 retVals.push_back( newRet );
1636 }
1637 }
1638
1639 void FixObjectType::fix( std::list< Declaration * > & translationUnit ) {
1640 PassVisitor<FixObjectType> fixer;
1641 acceptAll( translationUnit, fixer );
1642 }
1643
1644 void FixObjectType::previsit( ObjectDecl * objDecl ) {
1645 Type * new_type = ResolvExpr::resolveTypeof( objDecl->get_type(), indexer );
1646 objDecl->set_type( new_type );
1647 }
1648
1649 void FixObjectType::previsit( FunctionDecl * funcDecl ) {
1650 Type * new_type = ResolvExpr::resolveTypeof( funcDecl->type, indexer );
1651 funcDecl->set_type( new_type );
1652 }
1653
1654 void FixObjectType::previsit( TypeDecl * typeDecl ) {
1655 if ( typeDecl->get_base() ) {
1656 Type * new_type = ResolvExpr::resolveTypeof( typeDecl->get_base(), indexer );
1657 typeDecl->set_base( new_type );
1658 } // if
1659 }
1660
1661 void InitializerLength::computeLength( std::list< Declaration * > & translationUnit ) {
1662 PassVisitor<InitializerLength> len;
1663 acceptAll( translationUnit, len );
1664 }
1665
1666 void ArrayLength::computeLength( std::list< Declaration * > & translationUnit ) {
1667 PassVisitor<ArrayLength> len;
1668 acceptAll( translationUnit, len );
1669 }
1670
1671 void InitializerLength::previsit( ObjectDecl * objDecl ) {
1672 if ( ArrayType * at = dynamic_cast< ArrayType * >( objDecl->type ) ) {
1673 if ( at->dimension ) return;
1674 if ( ListInit * init = dynamic_cast< ListInit * >( objDecl->init ) ) {
1675 at->dimension = new ConstantExpr( Constant::from_ulong( init->initializers.size() ) );
1676 }
1677 }
1678 }
1679
1680 void ArrayLength::previsit( ArrayType * type ) {
1681 if ( type->dimension ) {
1682 // need to resolve array dimensions early so that constructor code can correctly determine
1683 // if a type is a VLA (and hence whether its elements need to be constructed)
1684 ResolvExpr::findSingleExpression( type->dimension, Validate::SizeType->clone(), indexer );
1685
1686 // must re-evaluate whether a type is a VLA, now that more information is available
1687 // (e.g. the dimension may have been an enumerator, which was unknown prior to this step)
1688 type->isVarLen = ! InitTweak::isConstExpr( type->dimension );
1689 }
1690 }
1691
1692 struct LabelFinder {
1693 std::set< Label > & labels;
1694 LabelFinder( std::set< Label > & labels ) : labels( labels ) {}
1695 void previsit( Statement * stmt ) {
1696 for ( Label & l : stmt->labels ) {
1697 labels.insert( l );
1698 }
1699 }
1700 };
1701
1702 void LabelAddressFixer::premutate( FunctionDecl * funcDecl ) {
1703 GuardValue( labels );
1704 PassVisitor<LabelFinder> finder( labels );
1705 funcDecl->accept( finder );
1706 }
1707
1708 Expression * LabelAddressFixer::postmutate( AddressExpr * addrExpr ) {
1709 // convert &&label into label address
1710 if ( AddressExpr * inner = dynamic_cast< AddressExpr * >( addrExpr->arg ) ) {
1711 if ( NameExpr * nameExpr = dynamic_cast< NameExpr * >( inner->arg ) ) {
1712 if ( labels.count( nameExpr->name ) ) {
1713 Label name = nameExpr->name;
1714 delete addrExpr;
1715 return new LabelAddressExpr( name );
1716 }
1717 }
1718 }
1719 return addrExpr;
1720 }
1721
1722namespace {
1723 /// Replaces enum types by int, and function/array types in function parameter and return
1724 /// lists by appropriate pointers
1725 /*
1726 struct EnumAndPointerDecay_new {
1727 const ast::EnumDecl * previsit( const ast::EnumDecl * enumDecl ) {
1728 // set the type of each member of the enumeration to be EnumConstant
1729 for ( unsigned i = 0; i < enumDecl->members.size(); ++i ) {
1730 // build new version of object with EnumConstant
1731 ast::ptr< ast::ObjectDecl > obj =
1732 enumDecl->members[i].strict_as< ast::ObjectDecl >();
1733 obj.get_and_mutate()->type =
1734 new ast::EnumInstType{ enumDecl->name, ast::CV::Const };
1735
1736 // set into decl
1737 ast::EnumDecl * mut = mutate( enumDecl );
1738 mut->members[i] = obj.get();
1739 enumDecl = mut;
1740 }
1741 return enumDecl;
1742 }
1743
1744 static const ast::FunctionType * fixFunctionList(
1745 const ast::FunctionType * func,
1746 std::vector< ast::ptr< ast::DeclWithType > > ast::FunctionType::* field,
1747 ast::ArgumentFlag isVarArgs = ast::FixedArgs
1748 ) {
1749 const auto & dwts = func->* field;
1750 unsigned nvals = dwts.size();
1751 bool hasVoid = false;
1752 for ( unsigned i = 0; i < nvals; ++i ) {
1753 func = ast::mutate_field_index( func, field, i, fixFunction( dwts[i], hasVoid ) );
1754 }
1755
1756 // the only case in which "void" is valid is where it is the only one in the list
1757 if ( hasVoid && ( nvals > 1 || isVarArgs ) ) {
1758 SemanticError(
1759 dwts.front()->location, func, "invalid type void in function type" );
1760 }
1761
1762 // one void is the only thing in the list, remove it
1763 if ( hasVoid ) {
1764 func = ast::mutate_field(
1765 func, field, std::vector< ast::ptr< ast::DeclWithType > >{} );
1766 }
1767
1768 return func;
1769 }
1770
1771 const ast::FunctionType * previsit( const ast::FunctionType * func ) {
1772 func = fixFunctionList( func, &ast::FunctionType::params, func->isVarArgs );
1773 return fixFunctionList( func, &ast::FunctionType::returns );
1774 }
1775 };
1776
1777 /// expand assertions from a trait instance, performing appropriate type variable substitutions
1778 void expandAssertions(
1779 const ast::TraitInstType * inst, std::vector< ast::ptr< ast::DeclWithType > > & out
1780 ) {
1781 assertf( inst->base, "Trait instance not linked to base trait: %s", toCString( inst ) );
1782
1783 // build list of trait members, substituting trait decl parameters for instance parameters
1784 ast::TypeSubstitution sub{
1785 inst->base->params.begin(), inst->base->params.end(), inst->params.begin() };
1786 // deliberately take ast::ptr by-value to ensure this does not mutate inst->base
1787 for ( ast::ptr< ast::Decl > decl : inst->base->members ) {
1788 auto member = decl.strict_as< ast::DeclWithType >();
1789 sub.apply( member );
1790 out.emplace_back( member );
1791 }
1792 }
1793
1794 /// Associates forward declarations of aggregates with their definitions
1795 class LinkReferenceToTypes_new final
1796 : public ast::WithSymbolTable, public ast::WithGuards, public
1797 ast::WithVisitorRef<LinkReferenceToTypes_new>, public ast::WithShortCircuiting {
1798
1799 // these maps of uses of forward declarations of types need to have the actual type
1800 // declaration switched in * after * they have been traversed. To enable this in the
1801 // ast::Pass framework, any node that needs to be so mutated has mutate() called on it
1802 // before it is placed in the map, properly updating its parents in the usual traversal,
1803 // then can have the actual mutation applied later
1804 using ForwardEnumsType = std::unordered_multimap< std::string, ast::EnumInstType * >;
1805 using ForwardStructsType = std::unordered_multimap< std::string, ast::StructInstType * >;
1806 using ForwardUnionsType = std::unordered_multimap< std::string, ast::UnionInstType * >;
1807
1808 const CodeLocation & location;
1809 const ast::SymbolTable * localSymtab;
1810
1811 ForwardEnumsType forwardEnums;
1812 ForwardStructsType forwardStructs;
1813 ForwardUnionsType forwardUnions;
1814
1815 /// true if currently in a generic type body, so that type parameter instances can be
1816 /// renamed appropriately
1817 bool inGeneric = false;
1818
1819 public:
1820 /// contstruct using running symbol table
1821 LinkReferenceToTypes_new( const CodeLocation & loc )
1822 : location( loc ), localSymtab( &symtab ) {}
1823
1824 /// construct using provided symbol table
1825 LinkReferenceToTypes_new( const CodeLocation & loc, const ast::SymbolTable & syms )
1826 : location( loc ), localSymtab( &syms ) {}
1827
1828 const ast::Type * postvisit( const ast::TypeInstType * typeInst ) {
1829 // ensure generic parameter instances are renamed like the base type
1830 if ( inGeneric && typeInst->base ) {
1831 typeInst = ast::mutate_field(
1832 typeInst, &ast::TypeInstType::name, typeInst->base->name );
1833 }
1834
1835 if (
1836 auto typeDecl = dynamic_cast< const ast::TypeDecl * >(
1837 localSymtab->lookupType( typeInst->name ) )
1838 ) {
1839 typeInst = ast::mutate_field( typeInst, &ast::TypeInstType::kind, typeDecl->kind );
1840 }
1841
1842 return typeInst;
1843 }
1844
1845 const ast::Type * postvisit( const ast::EnumInstType * inst ) {
1846 const ast::EnumDecl * decl = localSymtab->lookupEnum( inst->name );
1847 // not a semantic error if the enum is not found, just an implicit forward declaration
1848 if ( decl ) {
1849 inst = ast::mutate_field( inst, &ast::EnumInstType::base, decl );
1850 }
1851 if ( ! decl || ! decl->body ) {
1852 // forward declaration
1853 auto mut = mutate( inst );
1854 forwardEnums.emplace( inst->name, mut );
1855 inst = mut;
1856 }
1857 return inst;
1858 }
1859
1860 void checkGenericParameters( const ast::BaseInstType * inst ) {
1861 for ( const ast::Expr * param : inst->params ) {
1862 if ( ! dynamic_cast< const ast::TypeExpr * >( param ) ) {
1863 SemanticError(
1864 location, inst, "Expression parameters for generic types are currently "
1865 "unsupported: " );
1866 }
1867 }
1868 }
1869
1870 const ast::StructInstType * postvisit( const ast::StructInstType * inst ) {
1871 const ast::StructDecl * decl = localSymtab->lookupStruct( inst->name );
1872 // not a semantic error if the struct is not found, just an implicit forward declaration
1873 if ( decl ) {
1874 inst = ast::mutate_field( inst, &ast::StructInstType::base, decl );
1875 }
1876 if ( ! decl || ! decl->body ) {
1877 // forward declaration
1878 auto mut = mutate( inst );
1879 forwardStructs.emplace( inst->name, mut );
1880 inst = mut;
1881 }
1882 checkGenericParameters( inst );
1883 return inst;
1884 }
1885
1886 const ast::UnionInstType * postvisit( const ast::UnionInstType * inst ) {
1887 const ast::UnionDecl * decl = localSymtab->lookupUnion( inst->name );
1888 // not a semantic error if the struct is not found, just an implicit forward declaration
1889 if ( decl ) {
1890 inst = ast::mutate_field( inst, &ast::UnionInstType::base, decl );
1891 }
1892 if ( ! decl || ! decl->body ) {
1893 // forward declaration
1894 auto mut = mutate( inst );
1895 forwardUnions.emplace( inst->name, mut );
1896 inst = mut;
1897 }
1898 checkGenericParameters( inst );
1899 return inst;
1900 }
1901
1902 const ast::Type * postvisit( const ast::TraitInstType * traitInst ) {
1903 // handle other traits
1904 const ast::TraitDecl * traitDecl = localSymtab->lookupTrait( traitInst->name );
1905 if ( ! traitDecl ) {
1906 SemanticError( location, "use of undeclared trait " + traitInst->name );
1907 }
1908 if ( traitDecl->params.size() != traitInst->params.size() ) {
1909 SemanticError( location, traitInst, "incorrect number of trait parameters: " );
1910 }
1911 traitInst = ast::mutate_field( traitInst, &ast::TraitInstType::base, traitDecl );
1912
1913 // need to carry over the "sized" status of each decl in the instance
1914 for ( unsigned i = 0; i < traitDecl->params.size(); ++i ) {
1915 auto expr = traitInst->params[i].as< ast::TypeExpr >();
1916 if ( ! expr ) {
1917 SemanticError(
1918 traitInst->params[i].get(), "Expression parameters for trait instances "
1919 "are currently unsupported: " );
1920 }
1921
1922 if ( auto inst = expr->type.as< ast::TypeInstType >() ) {
1923 if ( traitDecl->params[i]->sized && ! inst->base->sized ) {
1924 // traitInst = ast::mutate_field_index(
1925 // traitInst, &ast::TraitInstType::params, i,
1926 // ...
1927 // );
1928 ast::TraitInstType * mut = ast::mutate( traitInst );
1929 ast::chain_mutate( mut->params[i] )
1930 ( &ast::TypeExpr::type )
1931 ( &ast::TypeInstType::base )->sized = true;
1932 traitInst = mut;
1933 }
1934 }
1935 }
1936
1937 return traitInst;
1938 }
1939
1940 void previsit( const ast::QualifiedType * ) { visit_children = false; }
1941
1942 const ast::Type * postvisit( const ast::QualifiedType * qualType ) {
1943 // linking only makes sense for the "oldest ancestor" of the qualified type
1944 return ast::mutate_field(
1945 qualType, &ast::QualifiedType::parent, qualType->parent->accept( * visitor ) );
1946 }
1947
1948 const ast::Decl * postvisit( const ast::EnumDecl * enumDecl ) {
1949 // visit enum members first so that the types of self-referencing members are updated
1950 // properly
1951 if ( ! enumDecl->body ) return enumDecl;
1952
1953 // update forward declarations to point here
1954 auto fwds = forwardEnums.equal_range( enumDecl->name );
1955 if ( fwds.first != fwds.second ) {
1956 auto inst = fwds.first;
1957 do {
1958 // forward decl is stored * mutably * in map, can thus be updated
1959 inst->second->base = enumDecl;
1960 } while ( ++inst != fwds.second );
1961 forwardEnums.erase( fwds.first, fwds.second );
1962 }
1963
1964 // ensure that enumerator initializers are properly set
1965 for ( unsigned i = 0; i < enumDecl->members.size(); ++i ) {
1966 auto field = enumDecl->members[i].strict_as< ast::ObjectDecl >();
1967 if ( field->init ) {
1968 // need to resolve enumerator initializers early so that other passes that
1969 // determine if an expression is constexpr have appropriate information
1970 auto init = field->init.strict_as< ast::SingleInit >();
1971
1972 enumDecl = ast::mutate_field_index(
1973 enumDecl, &ast::EnumDecl::members, i,
1974 ast::mutate_field( field, &ast::ObjectDecl::init,
1975 ast::mutate_field( init, &ast::SingleInit::value,
1976 ResolvExpr::findSingleExpression(
1977 init->value, new ast::BasicType{ ast::BasicType::SignedInt },
1978 symtab ) ) ) );
1979 }
1980 }
1981
1982 return enumDecl;
1983 }
1984
1985 /// rename generic type parameters uniquely so that they do not conflict with user defined
1986 /// function forall parameters, e.g. the T in Box and the T in f, below
1987 /// forall(otype T)
1988 /// struct Box {
1989 /// T x;
1990 /// };
1991 /// forall(otype T)
1992 /// void f(Box(T) b) {
1993 /// ...
1994 /// }
1995 template< typename AggrDecl >
1996 const AggrDecl * renameGenericParams( const AggrDecl * aggr ) {
1997 GuardValue( inGeneric );
1998 inGeneric = ! aggr->params.empty();
1999
2000 for ( unsigned i = 0; i < aggr->params.size(); ++i ) {
2001 const ast::TypeDecl * td = aggr->params[i];
2002
2003 aggr = ast::mutate_field_index(
2004 aggr, &AggrDecl::params, i,
2005 ast::mutate_field( td, &ast::TypeDecl::name, "__" + td->name + "_generic_" ) );
2006 }
2007 return aggr;
2008 }
2009
2010 const ast::StructDecl * previsit( const ast::StructDecl * structDecl ) {
2011 return renameGenericParams( structDecl );
2012 }
2013
2014 void postvisit( const ast::StructDecl * structDecl ) {
2015 // visit struct members first so that the types of self-referencing members are
2016 // updated properly
2017 if ( ! structDecl->body ) return;
2018
2019 // update forward declarations to point here
2020 auto fwds = forwardStructs.equal_range( structDecl->name );
2021 if ( fwds.first != fwds.second ) {
2022 auto inst = fwds.first;
2023 do {
2024 // forward decl is stored * mutably * in map, can thus be updated
2025 inst->second->base = structDecl;
2026 } while ( ++inst != fwds.second );
2027 forwardStructs.erase( fwds.first, fwds.second );
2028 }
2029 }
2030
2031 const ast::UnionDecl * previsit( const ast::UnionDecl * unionDecl ) {
2032 return renameGenericParams( unionDecl );
2033 }
2034
2035 void postvisit( const ast::UnionDecl * unionDecl ) {
2036 // visit union members first so that the types of self-referencing members are updated
2037 // properly
2038 if ( ! unionDecl->body ) return;
2039
2040 // update forward declarations to point here
2041 auto fwds = forwardUnions.equal_range( unionDecl->name );
2042 if ( fwds.first != fwds.second ) {
2043 auto inst = fwds.first;
2044 do {
2045 // forward decl is stored * mutably * in map, can thus be updated
2046 inst->second->base = unionDecl;
2047 } while ( ++inst != fwds.second );
2048 forwardUnions.erase( fwds.first, fwds.second );
2049 }
2050 }
2051
2052 const ast::Decl * postvisit( const ast::TraitDecl * traitDecl ) {
2053 // set the "sized" status for the special "sized" trait
2054 if ( traitDecl->name == "sized" ) {
2055 assertf( traitDecl->params.size() == 1, "Built-in trait 'sized' has incorrect "
2056 "number of parameters: %zd", traitDecl->params.size() );
2057
2058 traitDecl = ast::mutate_field_index(
2059 traitDecl, &ast::TraitDecl::params, 0,
2060 ast::mutate_field(
2061 traitDecl->params.front().get(), &ast::TypeDecl::sized, true ) );
2062 }
2063
2064 // move assertions from type parameters into the body of the trait
2065 std::vector< ast::ptr< ast::DeclWithType > > added;
2066 for ( const ast::TypeDecl * td : traitDecl->params ) {
2067 for ( const ast::DeclWithType * assn : td->assertions ) {
2068 auto inst = dynamic_cast< const ast::TraitInstType * >( assn->get_type() );
2069 if ( inst ) {
2070 expandAssertions( inst, added );
2071 } else {
2072 added.emplace_back( assn );
2073 }
2074 }
2075 }
2076 if ( ! added.empty() ) {
2077 auto mut = mutate( traitDecl );
2078 for ( const ast::DeclWithType * decl : added ) {
2079 mut->members.emplace_back( decl );
2080 }
2081 traitDecl = mut;
2082 }
2083
2084 return traitDecl;
2085 }
2086 };
2087
2088 /// Replaces array and function types in forall lists by appropriate pointer type and assigns
2089 /// each object and function declaration a unique ID
2090 class ForallPointerDecay_new {
2091 const CodeLocation & location;
2092 public:
2093 ForallPointerDecay_new( const CodeLocation & loc ) : location( loc ) {}
2094
2095 const ast::ObjectDecl * previsit( const ast::ObjectDecl * obj ) {
2096 // ensure that operator names only apply to functions or function pointers
2097 if (
2098 CodeGen::isOperator( obj->name )
2099 && ! dynamic_cast< const ast::FunctionType * >( obj->type->stripDeclarator() )
2100 ) {
2101 SemanticError( obj->location, toCString( "operator ", obj->name.c_str(), " is not "
2102 "a function or function pointer." ) );
2103 }
2104
2105 // ensure object has unique ID
2106 if ( obj->uniqueId ) return obj;
2107 auto mut = mutate( obj );
2108 mut->fixUniqueId();
2109 return mut;
2110 }
2111
2112 const ast::FunctionDecl * previsit( const ast::FunctionDecl * func ) {
2113 // ensure function has unique ID
2114 if ( func->uniqueId ) return func;
2115 auto mut = mutate( func );
2116 mut->fixUniqueId();
2117 return mut;
2118 }
2119
2120 /// Fix up assertions -- flattens assertion lists, removing all trait instances
2121 template< typename node_t, typename parent_t >
2122 static const node_t * forallFixer(
2123 const CodeLocation & loc, const node_t * node,
2124 ast::FunctionType::ForallList parent_t::* forallField
2125 ) {
2126 for ( unsigned i = 0; i < (node->* forallField).size(); ++i ) {
2127 const ast::TypeDecl * type = (node->* forallField)[i];
2128 if ( type->assertions.empty() ) continue;
2129
2130 std::vector< ast::ptr< ast::DeclWithType > > asserts;
2131 asserts.reserve( type->assertions.size() );
2132
2133 // expand trait instances into their members
2134 for ( const ast::DeclWithType * assn : type->assertions ) {
2135 auto traitInst =
2136 dynamic_cast< const ast::TraitInstType * >( assn->get_type() );
2137 if ( traitInst ) {
2138 // expand trait instance to all its members
2139 expandAssertions( traitInst, asserts );
2140 } else {
2141 // pass other assertions through
2142 asserts.emplace_back( assn );
2143 }
2144 }
2145
2146 // apply FixFunction to every assertion to check for invalid void type
2147 for ( ast::ptr< ast::DeclWithType > & assn : asserts ) {
2148 bool isVoid = false;
2149 assn = fixFunction( assn, isVoid );
2150 if ( isVoid ) {
2151 SemanticError( loc, node, "invalid type void in assertion of function " );
2152 }
2153 }
2154
2155 // place mutated assertion list in node
2156 auto mut = mutate( type );
2157 mut->assertions = move( asserts );
2158 node = ast::mutate_field_index( node, forallField, i, mut );
2159 }
2160 return node;
2161 }
2162
2163 const ast::FunctionType * previsit( const ast::FunctionType * ftype ) {
2164 return forallFixer( location, ftype, &ast::FunctionType::forall );
2165 }
2166
2167 const ast::StructDecl * previsit( const ast::StructDecl * aggrDecl ) {
2168 return forallFixer( aggrDecl->location, aggrDecl, &ast::StructDecl::params );
2169 }
2170
2171 const ast::UnionDecl * previsit( const ast::UnionDecl * aggrDecl ) {
2172 return forallFixer( aggrDecl->location, aggrDecl, &ast::UnionDecl::params );
2173 }
2174 };
2175 */
2176} // anonymous namespace
2177
2178/*
2179const ast::Type * validateType(
2180 const CodeLocation & loc, const ast::Type * type, const ast::SymbolTable & symtab ) {
2181 // ast::Pass< EnumAndPointerDecay_new > epc;
2182 ast::Pass< LinkReferenceToTypes_new > lrt{ loc, symtab };
2183 ast::Pass< ForallPointerDecay_new > fpd{ loc };
2184
2185 return type->accept( lrt )->accept( fpd );
2186}
2187*/
2188
2189} // namespace SymTab
2190
2191// Local Variables: //
2192// tab-width: 4 //
2193// mode: c++ //
2194// compile-command: "make install" //
2195// End: //
Note: See TracBrowser for help on using the repository browser.