source: src/SymTab/Validate.cc@ 22226e4

ADT ast-experimental enum pthread-emulation qualifiedEnum
Last change on this file since 22226e4 was 9490621, checked in by Andrew Beach <ajbeach@…>, 4 years ago

My work in progress implementation of ForallPointerDecay for Fangren.

  • Property mode set to 100644
File size: 82.6 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Validate.cc --
8//
9// Author : Richard C. Bilson
10// Created On : Sun May 17 21:50:04 2015
11// Last Modified By : Andrew Beach
12// Last Modified On : Fri Nov 12 11:00:00 2021
13// Update Count : 364
14//
15
16// The "validate" phase of translation is used to take a syntax tree and convert it into a standard form that aims to be
17// as regular in structure as possible. Some assumptions can be made regarding the state of the tree after this pass is
18// complete, including:
19//
20// - No nested structure or union definitions; any in the input are "hoisted" to the level of the containing struct or
21// union.
22//
23// - All enumeration constants have type EnumInstType.
24//
25// - The type "void" never occurs in lists of function parameter or return types. A function
26// taking no arguments has no argument types.
27//
28// - No context instances exist; they are all replaced by the set of declarations signified by the context, instantiated
29// by the particular set of type arguments.
30//
31// - Every declaration is assigned a unique id.
32//
33// - No typedef declarations or instances exist; the actual type is substituted for each instance.
34//
35// - Each type, struct, and union definition is followed by an appropriate assignment operator.
36//
37// - Each use of a struct or union is connected to a complete definition of that struct or union, even if that
38// definition occurs later in the input.
39
40#include "Validate.h"
41
42#include <cassert> // for assertf, assert
43#include <cstddef> // for size_t
44#include <list> // for list
45#include <string> // for string
46#include <unordered_map> // for unordered_map
47#include <utility> // for pair
48
49#include "AST/Chain.hpp"
50#include "AST/Decl.hpp"
51#include "AST/Node.hpp"
52#include "AST/Pass.hpp"
53#include "AST/SymbolTable.hpp"
54#include "AST/Type.hpp"
55#include "AST/TypeSubstitution.hpp"
56#include "CodeGen/CodeGenerator.h" // for genName
57#include "CodeGen/OperatorTable.h" // for isCtorDtor, isCtorDtorAssign
58#include "ControlStruct/Mutate.h" // for ForExprMutator
59#include "Common/CodeLocation.h" // for CodeLocation
60#include "Common/Stats.h" // for Stats::Heap
61#include "Common/PassVisitor.h" // for PassVisitor, WithDeclsToAdd
62#include "Common/ScopedMap.h" // for ScopedMap
63#include "Common/SemanticError.h" // for SemanticError
64#include "Common/UniqueName.h" // for UniqueName
65#include "Common/utility.h" // for operator+, cloneAll, deleteAll
66#include "CompilationState.h" // skip some passes in new-ast build
67#include "Concurrency/Keywords.h" // for applyKeywords
68#include "FixFunction.h" // for FixFunction
69#include "Indexer.h" // for Indexer
70#include "InitTweak/GenInit.h" // for fixReturnStatements
71#include "InitTweak/InitTweak.h" // for isCtorDtorAssign
72#include "ResolvExpr/typeops.h" // for typesCompatible
73#include "ResolvExpr/Resolver.h" // for findSingleExpression
74#include "ResolvExpr/ResolveTypeof.h" // for resolveTypeof
75#include "SymTab/Autogen.h" // for SizeType
76#include "SynTree/LinkageSpec.h" // for C
77#include "SynTree/Attribute.h" // for noAttributes, Attribute
78#include "SynTree/Constant.h" // for Constant
79#include "SynTree/Declaration.h" // for ObjectDecl, DeclarationWithType
80#include "SynTree/Expression.h" // for CompoundLiteralExpr, Expressio...
81#include "SynTree/Initializer.h" // for ListInit, Initializer
82#include "SynTree/Label.h" // for operator==, Label
83#include "SynTree/Mutator.h" // for Mutator
84#include "SynTree/Type.h" // for Type, TypeInstType, EnumInstType
85#include "SynTree/TypeSubstitution.h" // for TypeSubstitution
86#include "SynTree/Visitor.h" // for Visitor
87#include "Validate/HandleAttributes.h" // for handleAttributes
88#include "Validate/FindSpecialDecls.h" // for FindSpecialDecls
89
90class CompoundStmt;
91class ReturnStmt;
92class SwitchStmt;
93
94#define debugPrint( x ) if ( doDebug ) x
95
96namespace SymTab {
97 /// hoists declarations that are difficult to hoist while parsing
98 struct HoistTypeDecls final : public WithDeclsToAdd {
99 void previsit( SizeofExpr * );
100 void previsit( AlignofExpr * );
101 void previsit( UntypedOffsetofExpr * );
102 void previsit( CompoundLiteralExpr * );
103 void handleType( Type * );
104 };
105
106 struct FixQualifiedTypes final : public WithIndexer {
107 FixQualifiedTypes() : WithIndexer(false) {}
108 Type * postmutate( QualifiedType * );
109 };
110
111 struct HoistStruct final : public WithDeclsToAdd, public WithGuards {
112 /// Flattens nested struct types
113 static void hoistStruct( std::list< Declaration * > &translationUnit );
114
115 void previsit( StructDecl * aggregateDecl );
116 void previsit( UnionDecl * aggregateDecl );
117 void previsit( StaticAssertDecl * assertDecl );
118 void previsit( StructInstType * type );
119 void previsit( UnionInstType * type );
120 void previsit( EnumInstType * type );
121
122 private:
123 template< typename AggDecl > void handleAggregate( AggDecl * aggregateDecl );
124
125 AggregateDecl * parentAggr = nullptr;
126 };
127
128 /// Fix return types so that every function returns exactly one value
129 struct ReturnTypeFixer {
130 static void fix( std::list< Declaration * > &translationUnit );
131
132 void postvisit( FunctionDecl * functionDecl );
133 void postvisit( FunctionType * ftype );
134 };
135
136 /// Replaces enum types by int, and function or array types in function parameter and return lists by appropriate pointers.
137 struct EnumAndPointerDecay_old {
138 void previsit( EnumDecl * aggregateDecl );
139 void previsit( FunctionType * func );
140 };
141
142 /// Associates forward declarations of aggregates with their definitions
143 struct LinkReferenceToTypes_old final : public WithIndexer, public WithGuards, public WithVisitorRef<LinkReferenceToTypes_old>, public WithShortCircuiting {
144 LinkReferenceToTypes_old( const Indexer * indexer );
145 void postvisit( TypeInstType * typeInst );
146
147 void postvisit( EnumInstType * enumInst );
148 void postvisit( StructInstType * structInst );
149 void postvisit( UnionInstType * unionInst );
150 void postvisit( TraitInstType * traitInst );
151 void previsit( QualifiedType * qualType );
152 void postvisit( QualifiedType * qualType );
153
154 void postvisit( EnumDecl * enumDecl );
155 void postvisit( StructDecl * structDecl );
156 void postvisit( UnionDecl * unionDecl );
157 void postvisit( TraitDecl * traitDecl );
158
159 void previsit( StructDecl * structDecl );
160 void previsit( UnionDecl * unionDecl );
161
162 void renameGenericParams( std::list< TypeDecl * > & params );
163
164 private:
165 const Indexer * local_indexer;
166
167 typedef std::map< std::string, std::list< EnumInstType * > > ForwardEnumsType;
168 typedef std::map< std::string, std::list< StructInstType * > > ForwardStructsType;
169 typedef std::map< std::string, std::list< UnionInstType * > > ForwardUnionsType;
170 ForwardEnumsType forwardEnums;
171 ForwardStructsType forwardStructs;
172 ForwardUnionsType forwardUnions;
173 /// true if currently in a generic type body, so that type parameter instances can be renamed appropriately
174 bool inGeneric = false;
175 };
176
177 /// Does early resolution on the expressions that give enumeration constants their values
178 struct ResolveEnumInitializers final : public WithIndexer, public WithGuards, public WithVisitorRef<ResolveEnumInitializers>, public WithShortCircuiting {
179 ResolveEnumInitializers( const Indexer * indexer );
180 void postvisit( EnumDecl * enumDecl );
181
182 private:
183 const Indexer * local_indexer;
184
185 };
186
187 /// Replaces array and function types in forall lists by appropriate pointer type and assigns each Object and Function declaration a unique ID.
188 struct ForallPointerDecay_old final {
189 void previsit( ObjectDecl * object );
190 void previsit( FunctionDecl * func );
191 void previsit( FunctionType * ftype );
192 void previsit( StructDecl * aggrDecl );
193 void previsit( UnionDecl * aggrDecl );
194 };
195
196 // These structs are the sub-sub-passes of ForallPointerDecay_old.
197
198 struct TraitExpander_old final {
199 void previsit( FunctionType * );
200 void previsit( StructDecl * );
201 void previsit( UnionDecl * );
202 };
203
204 struct AssertionFixer_old final {
205 void previsit( FunctionType * );
206 void previsit( StructDecl * );
207 void previsit( UnionDecl * );
208 };
209
210 struct CheckOperatorTypes_old final {
211 void previsit( ObjectDecl * );
212 };
213
214 struct FixUniqueIds_old final {
215 void previsit( DeclarationWithType * );
216 };
217
218 struct ReturnChecker : public WithGuards {
219 /// Checks that return statements return nothing if their return type is void
220 /// and return something if the return type is non-void.
221 static void checkFunctionReturns( std::list< Declaration * > & translationUnit );
222
223 void previsit( FunctionDecl * functionDecl );
224 void previsit( ReturnStmt * returnStmt );
225
226 typedef std::list< DeclarationWithType * > ReturnVals;
227 ReturnVals returnVals;
228 };
229
230 struct ReplaceTypedef final : public WithVisitorRef<ReplaceTypedef>, public WithGuards, public WithShortCircuiting, public WithDeclsToAdd {
231 ReplaceTypedef() : scopeLevel( 0 ) {}
232 /// Replaces typedefs by forward declarations
233 static void replaceTypedef( std::list< Declaration * > &translationUnit );
234
235 void premutate( QualifiedType * );
236 Type * postmutate( QualifiedType * qualType );
237 Type * postmutate( TypeInstType * aggregateUseType );
238 Declaration * postmutate( TypedefDecl * typeDecl );
239 void premutate( TypeDecl * typeDecl );
240 void premutate( FunctionDecl * funcDecl );
241 void premutate( ObjectDecl * objDecl );
242 DeclarationWithType * postmutate( ObjectDecl * objDecl );
243
244 void premutate( CastExpr * castExpr );
245
246 void premutate( CompoundStmt * compoundStmt );
247
248 void premutate( StructDecl * structDecl );
249 void premutate( UnionDecl * unionDecl );
250 void premutate( EnumDecl * enumDecl );
251 void premutate( TraitDecl * );
252
253 void premutate( FunctionType * ftype );
254
255 private:
256 template<typename AggDecl>
257 void addImplicitTypedef( AggDecl * aggDecl );
258 template< typename AggDecl >
259 void handleAggregate( AggDecl * aggr );
260
261 typedef std::unique_ptr<TypedefDecl> TypedefDeclPtr;
262 typedef ScopedMap< std::string, std::pair< TypedefDeclPtr, int > > TypedefMap;
263 typedef ScopedMap< std::string, TypeDecl * > TypeDeclMap;
264 TypedefMap typedefNames;
265 TypeDeclMap typedeclNames;
266 int scopeLevel;
267 bool inFunctionType = false;
268 };
269
270 struct EliminateTypedef {
271 /// removes TypedefDecls from the AST
272 static void eliminateTypedef( std::list< Declaration * > &translationUnit );
273
274 template<typename AggDecl>
275 void handleAggregate( AggDecl * aggregateDecl );
276
277 void previsit( StructDecl * aggregateDecl );
278 void previsit( UnionDecl * aggregateDecl );
279 void previsit( CompoundStmt * compoundStmt );
280 };
281
282 struct VerifyCtorDtorAssign {
283 /// ensure that constructors, destructors, and assignment have at least one
284 /// parameter, the first of which must be a pointer, and that ctor/dtors have no
285 /// return values.
286 static void verify( std::list< Declaration * > &translationUnit );
287
288 void previsit( FunctionDecl * funcDecl );
289 };
290
291 /// ensure that generic types have the correct number of type arguments
292 struct ValidateGenericParameters {
293 void previsit( StructInstType * inst );
294 void previsit( UnionInstType * inst );
295 };
296
297 /// desugar declarations and uses of dimension paramaters like [N],
298 /// from type-system managed values, to tunnneling via ordinary types,
299 /// as char[-] in and sizeof(-) out
300 struct TranslateDimensionGenericParameters : public WithIndexer, public WithGuards {
301 static void translateDimensions( std::list< Declaration * > &translationUnit );
302 TranslateDimensionGenericParameters();
303
304 bool nextVisitedNodeIsChildOfSUIT = false; // SUIT = Struct or Union -Inst Type
305 bool visitingChildOfSUIT = false;
306 void changeState_ChildOfSUIT( bool newVal );
307 void premutate( StructInstType * sit );
308 void premutate( UnionInstType * uit );
309 void premutate( BaseSyntaxNode * node );
310
311 TypeDecl * postmutate( TypeDecl * td );
312 Expression * postmutate( DimensionExpr * de );
313 Expression * postmutate( Expression * e );
314 };
315
316 struct FixObjectType : public WithIndexer {
317 /// resolves typeof type in object, function, and type declarations
318 static void fix( std::list< Declaration * > & translationUnit );
319
320 void previsit( ObjectDecl * );
321 void previsit( FunctionDecl * );
322 void previsit( TypeDecl * );
323 };
324
325 struct InitializerLength {
326 /// for array types without an explicit length, compute the length and store it so that it
327 /// is known to the rest of the phases. For example,
328 /// int x[] = { 1, 2, 3 };
329 /// int y[][2] = { { 1, 2, 3 }, { 1, 2, 3 } };
330 /// here x and y are known at compile-time to have length 3, so change this into
331 /// int x[3] = { 1, 2, 3 };
332 /// int y[3][2] = { { 1, 2, 3 }, { 1, 2, 3 } };
333 static void computeLength( std::list< Declaration * > & translationUnit );
334
335 void previsit( ObjectDecl * objDecl );
336 };
337
338 struct ArrayLength : public WithIndexer {
339 static void computeLength( std::list< Declaration * > & translationUnit );
340
341 void previsit( ArrayType * arrayType );
342 };
343
344 struct CompoundLiteral final : public WithDeclsToAdd, public WithVisitorRef<CompoundLiteral> {
345 Type::StorageClasses storageClasses;
346
347 void premutate( ObjectDecl * objectDecl );
348 Expression * postmutate( CompoundLiteralExpr * compLitExpr );
349 };
350
351 struct LabelAddressFixer final : public WithGuards {
352 std::set< Label > labels;
353
354 void premutate( FunctionDecl * funcDecl );
355 Expression * postmutate( AddressExpr * addrExpr );
356 };
357
358 void validate_A( std::list< Declaration * > & translationUnit ) {
359 PassVisitor<EnumAndPointerDecay_old> epc;
360 PassVisitor<HoistTypeDecls> hoistDecls;
361 {
362 Stats::Heap::newPass("validate-A");
363 Stats::Time::BlockGuard guard("validate-A");
364 VerifyCtorDtorAssign::verify( translationUnit ); // must happen before autogen, because autogen examines existing ctor/dtors
365 acceptAll( translationUnit, hoistDecls );
366 ReplaceTypedef::replaceTypedef( translationUnit );
367 ReturnTypeFixer::fix( translationUnit ); // must happen before autogen
368 acceptAll( translationUnit, epc ); // must happen before VerifyCtorDtorAssign, because void return objects should not exist; before LinkReferenceToTypes_old because it is an indexer and needs correct types for mangling
369 }
370 }
371
372 void validate_B( std::list< Declaration * > & translationUnit ) {
373 PassVisitor<LinkReferenceToTypes_old> lrt( nullptr );
374 PassVisitor<FixQualifiedTypes> fixQual;
375 {
376 Stats::Heap::newPass("validate-B");
377 Stats::Time::BlockGuard guard("validate-B");
378 acceptAll( translationUnit, lrt ); // must happen before autogen, because sized flag needs to propagate to generated functions
379 mutateAll( translationUnit, fixQual ); // must happen after LinkReferenceToTypes_old, because aggregate members are accessed
380 HoistStruct::hoistStruct( translationUnit );
381 EliminateTypedef::eliminateTypedef( translationUnit );
382 }
383 }
384
385 void validate_C( std::list< Declaration * > & translationUnit ) {
386 PassVisitor<ValidateGenericParameters> genericParams;
387 PassVisitor<ResolveEnumInitializers> rei( nullptr );
388 {
389 Stats::Heap::newPass("validate-C");
390 Stats::Time::BlockGuard guard("validate-C");
391 Stats::Time::TimeBlock("Validate Generic Parameters", [&]() {
392 acceptAll( translationUnit, genericParams ); // check as early as possible - can't happen before LinkReferenceToTypes_old; observed failing when attempted before eliminateTypedef
393 });
394 Stats::Time::TimeBlock("Translate Dimensions", [&]() {
395 TranslateDimensionGenericParameters::translateDimensions( translationUnit );
396 });
397 Stats::Time::TimeBlock("Resolve Enum Initializers", [&]() {
398 acceptAll( translationUnit, rei ); // must happen after translateDimensions because rei needs identifier lookup, which needs name mangling
399 });
400 Stats::Time::TimeBlock("Check Function Returns", [&]() {
401 ReturnChecker::checkFunctionReturns( translationUnit );
402 });
403 Stats::Time::TimeBlock("Fix Return Statements", [&]() {
404 InitTweak::fixReturnStatements( translationUnit ); // must happen before autogen
405 });
406 }
407 }
408
409 void validate_D( std::list< Declaration * > & translationUnit ) {
410 {
411 Stats::Heap::newPass("validate-D");
412 Stats::Time::BlockGuard guard("validate-D");
413 Stats::Time::TimeBlock("Apply Concurrent Keywords", [&]() {
414 Concurrency::applyKeywords( translationUnit );
415 });
416 Stats::Time::TimeBlock("Forall Pointer Decay", [&]() {
417 decayForallPointers( translationUnit ); // must happen before autogenerateRoutines, after Concurrency::applyKeywords because uniqueIds must be set on declaration before resolution
418 });
419 Stats::Time::TimeBlock("Hoist Control Declarations", [&]() {
420 ControlStruct::hoistControlDecls( translationUnit ); // hoist initialization out of for statements; must happen before autogenerateRoutines
421 });
422 Stats::Time::TimeBlock("Generate Autogen routines", [&]() {
423 autogenerateRoutines( translationUnit ); // moved up, used to be below compoundLiteral - currently needs EnumAndPointerDecay_old
424 });
425 }
426 }
427
428 void validate_E( std::list< Declaration * > & translationUnit ) {
429 PassVisitor<CompoundLiteral> compoundliteral;
430 {
431 Stats::Heap::newPass("validate-E");
432 Stats::Time::BlockGuard guard("validate-E");
433 Stats::Time::TimeBlock("Implement Mutex Func", [&]() {
434 Concurrency::implementMutexFuncs( translationUnit );
435 });
436 Stats::Time::TimeBlock("Implement Thread Start", [&]() {
437 Concurrency::implementThreadStarter( translationUnit );
438 });
439 Stats::Time::TimeBlock("Compound Literal", [&]() {
440 mutateAll( translationUnit, compoundliteral );
441 });
442 if (!useNewAST) {
443 Stats::Time::TimeBlock("Resolve With Expressions", [&]() {
444 ResolvExpr::resolveWithExprs( translationUnit ); // must happen before FixObjectType because user-code is resolved and may contain with variables
445 });
446 }
447 }
448 }
449
450 void validate_F( std::list< Declaration * > & translationUnit ) {
451 PassVisitor<LabelAddressFixer> labelAddrFixer;
452 {
453 Stats::Heap::newPass("validate-F");
454 Stats::Time::BlockGuard guard("validate-F");
455 if (!useNewAST) {
456 Stats::Time::TimeCall("Fix Object Type",
457 FixObjectType::fix, translationUnit);
458 }
459 Stats::Time::TimeCall("Initializer Length",
460 InitializerLength::computeLength, translationUnit);
461 if (!useNewAST) {
462 Stats::Time::TimeCall("Array Length",
463 ArrayLength::computeLength, translationUnit);
464 }
465 Stats::Time::TimeCall("Find Special Declarations",
466 Validate::findSpecialDecls, translationUnit);
467 Stats::Time::TimeCall("Fix Label Address",
468 mutateAll<LabelAddressFixer>, translationUnit, labelAddrFixer);
469 if (!useNewAST) {
470 Stats::Time::TimeCall("Handle Attributes",
471 Validate::handleAttributes, translationUnit);
472 }
473 }
474 }
475
476 void decayForallPointers( std::list< Declaration * > & translationUnit ) {
477 PassVisitor<TraitExpander_old> te;
478 acceptAll( translationUnit, te );
479 PassVisitor<AssertionFixer_old> af;
480 acceptAll( translationUnit, af );
481 PassVisitor<CheckOperatorTypes_old> cot;
482 acceptAll( translationUnit, cot );
483 PassVisitor<FixUniqueIds_old> fui;
484 acceptAll( translationUnit, fui );
485 }
486
487 void decayForallPointersA( std::list< Declaration * > & translationUnit ) {
488 PassVisitor<TraitExpander_old> te;
489 acceptAll( translationUnit, te );
490 }
491 void decayForallPointersB( std::list< Declaration * > & translationUnit ) {
492 PassVisitor<AssertionFixer_old> af;
493 acceptAll( translationUnit, af );
494 }
495 void decayForallPointersC( std::list< Declaration * > & translationUnit ) {
496 PassVisitor<CheckOperatorTypes_old> cot;
497 acceptAll( translationUnit, cot );
498 }
499 void decayForallPointersD( std::list< Declaration * > & translationUnit ) {
500 PassVisitor<FixUniqueIds_old> fui;
501 acceptAll( translationUnit, fui );
502 }
503
504 void validate( std::list< Declaration * > &translationUnit, __attribute__((unused)) bool doDebug ) {
505 validate_A( translationUnit );
506 validate_B( translationUnit );
507 validate_C( translationUnit );
508 validate_D( translationUnit );
509 validate_E( translationUnit );
510 validate_F( translationUnit );
511 }
512
513 void validateType( Type * type, const Indexer * indexer ) {
514 PassVisitor<EnumAndPointerDecay_old> epc;
515 PassVisitor<LinkReferenceToTypes_old> lrt( indexer );
516 PassVisitor<TraitExpander_old> te;
517 PassVisitor<AssertionFixer_old> af;
518 PassVisitor<CheckOperatorTypes_old> cot;
519 PassVisitor<FixUniqueIds_old> fui;
520 type->accept( epc );
521 type->accept( lrt );
522 type->accept( te );
523 type->accept( af );
524 type->accept( cot );
525 type->accept( fui );
526 }
527
528 void HoistTypeDecls::handleType( Type * type ) {
529 // some type declarations are buried in expressions and not easy to hoist during parsing; hoist them here
530 AggregateDecl * aggr = nullptr;
531 if ( StructInstType * inst = dynamic_cast< StructInstType * >( type ) ) {
532 aggr = inst->baseStruct;
533 } else if ( UnionInstType * inst = dynamic_cast< UnionInstType * >( type ) ) {
534 aggr = inst->baseUnion;
535 } else if ( EnumInstType * inst = dynamic_cast< EnumInstType * >( type ) ) {
536 aggr = inst->baseEnum;
537 }
538 if ( aggr && aggr->body ) {
539 declsToAddBefore.push_front( aggr );
540 }
541 }
542
543 void HoistTypeDecls::previsit( SizeofExpr * expr ) {
544 handleType( expr->type );
545 }
546
547 void HoistTypeDecls::previsit( AlignofExpr * expr ) {
548 handleType( expr->type );
549 }
550
551 void HoistTypeDecls::previsit( UntypedOffsetofExpr * expr ) {
552 handleType( expr->type );
553 }
554
555 void HoistTypeDecls::previsit( CompoundLiteralExpr * expr ) {
556 handleType( expr->result );
557 }
558
559
560 Type * FixQualifiedTypes::postmutate( QualifiedType * qualType ) {
561 Type * parent = qualType->parent;
562 Type * child = qualType->child;
563 if ( dynamic_cast< GlobalScopeType * >( qualType->parent ) ) {
564 // .T => lookup T at global scope
565 if ( TypeInstType * inst = dynamic_cast< TypeInstType * >( child ) ) {
566 auto td = indexer.globalLookupType( inst->name );
567 if ( ! td ) {
568 SemanticError( qualType->location, toString("Use of undefined global type ", inst->name) );
569 }
570 auto base = td->base;
571 assert( base );
572 Type * ret = base->clone();
573 ret->get_qualifiers() = qualType->get_qualifiers();
574 return ret;
575 } else {
576 // .T => T is not a type name
577 assertf( false, "unhandled global qualified child type: %s", toCString(child) );
578 }
579 } else {
580 // S.T => S must be an aggregate type, find the declaration for T in S.
581 AggregateDecl * aggr = nullptr;
582 if ( StructInstType * inst = dynamic_cast< StructInstType * >( parent ) ) {
583 aggr = inst->baseStruct;
584 } else if ( UnionInstType * inst = dynamic_cast< UnionInstType * > ( parent ) ) {
585 aggr = inst->baseUnion;
586 } else {
587 SemanticError( qualType->location, toString("Qualified type requires an aggregate on the left, but has: ", parent) );
588 }
589 assert( aggr ); // TODO: need to handle forward declarations
590 for ( Declaration * member : aggr->members ) {
591 if ( TypeInstType * inst = dynamic_cast< TypeInstType * >( child ) ) {
592 // name on the right is a typedef
593 if ( NamedTypeDecl * aggr = dynamic_cast< NamedTypeDecl * > ( member ) ) {
594 if ( aggr->name == inst->name ) {
595 assert( aggr->base );
596 Type * ret = aggr->base->clone();
597 ret->get_qualifiers() = qualType->get_qualifiers();
598 TypeSubstitution sub = parent->genericSubstitution();
599 sub.apply(ret);
600 return ret;
601 }
602 }
603 } else {
604 // S.T - S is not an aggregate => error
605 assertf( false, "unhandled qualified child type: %s", toCString(qualType) );
606 }
607 }
608 // failed to find a satisfying definition of type
609 SemanticError( qualType->location, toString("Undefined type in qualified type: ", qualType) );
610 }
611
612 // ... may want to link canonical SUE definition to each forward decl so that it becomes easier to lookup?
613 }
614
615
616 void HoistStruct::hoistStruct( std::list< Declaration * > &translationUnit ) {
617 PassVisitor<HoistStruct> hoister;
618 acceptAll( translationUnit, hoister );
619 }
620
621 bool shouldHoist( Declaration * decl ) {
622 return dynamic_cast< StructDecl * >( decl ) || dynamic_cast< UnionDecl * >( decl ) || dynamic_cast< StaticAssertDecl * >( decl );
623 }
624
625 namespace {
626 void qualifiedName( AggregateDecl * aggr, std::ostringstream & ss ) {
627 if ( aggr->parent ) qualifiedName( aggr->parent, ss );
628 ss << "__" << aggr->name;
629 }
630
631 // mangle nested type names using entire parent chain
632 std::string qualifiedName( AggregateDecl * aggr ) {
633 std::ostringstream ss;
634 qualifiedName( aggr, ss );
635 return ss.str();
636 }
637 }
638
639 template< typename AggDecl >
640 void HoistStruct::handleAggregate( AggDecl * aggregateDecl ) {
641 if ( parentAggr ) {
642 aggregateDecl->parent = parentAggr;
643 aggregateDecl->name = qualifiedName( aggregateDecl );
644 // Add elements in stack order corresponding to nesting structure.
645 declsToAddBefore.push_front( aggregateDecl );
646 } else {
647 GuardValue( parentAggr );
648 parentAggr = aggregateDecl;
649 } // if
650 // Always remove the hoisted aggregate from the inner structure.
651 GuardAction( [aggregateDecl]() { filter( aggregateDecl->members, shouldHoist, false ); } );
652 }
653
654 void HoistStruct::previsit( StaticAssertDecl * assertDecl ) {
655 if ( parentAggr ) {
656 declsToAddBefore.push_back( assertDecl );
657 }
658 }
659
660 void HoistStruct::previsit( StructDecl * aggregateDecl ) {
661 handleAggregate( aggregateDecl );
662 }
663
664 void HoistStruct::previsit( UnionDecl * aggregateDecl ) {
665 handleAggregate( aggregateDecl );
666 }
667
668 void HoistStruct::previsit( StructInstType * type ) {
669 // need to reset type name after expanding to qualified name
670 assert( type->baseStruct );
671 type->name = type->baseStruct->name;
672 }
673
674 void HoistStruct::previsit( UnionInstType * type ) {
675 assert( type->baseUnion );
676 type->name = type->baseUnion->name;
677 }
678
679 void HoistStruct::previsit( EnumInstType * type ) {
680 assert( type->baseEnum );
681 type->name = type->baseEnum->name;
682 }
683
684
685 bool isTypedef( Declaration * decl ) {
686 return dynamic_cast< TypedefDecl * >( decl );
687 }
688
689 void EliminateTypedef::eliminateTypedef( std::list< Declaration * > &translationUnit ) {
690 PassVisitor<EliminateTypedef> eliminator;
691 acceptAll( translationUnit, eliminator );
692 filter( translationUnit, isTypedef, true );
693 }
694
695 template< typename AggDecl >
696 void EliminateTypedef::handleAggregate( AggDecl * aggregateDecl ) {
697 filter( aggregateDecl->members, isTypedef, true );
698 }
699
700 void EliminateTypedef::previsit( StructDecl * aggregateDecl ) {
701 handleAggregate( aggregateDecl );
702 }
703
704 void EliminateTypedef::previsit( UnionDecl * aggregateDecl ) {
705 handleAggregate( aggregateDecl );
706 }
707
708 void EliminateTypedef::previsit( CompoundStmt * compoundStmt ) {
709 // remove and delete decl stmts
710 filter( compoundStmt->kids, [](Statement * stmt) {
711 if ( DeclStmt * declStmt = dynamic_cast< DeclStmt * >( stmt ) ) {
712 if ( dynamic_cast< TypedefDecl * >( declStmt->decl ) ) {
713 return true;
714 } // if
715 } // if
716 return false;
717 }, true);
718 }
719
720 void EnumAndPointerDecay_old::previsit( EnumDecl * enumDecl ) {
721 // Set the type of each member of the enumeration to be EnumConstant
722 for ( std::list< Declaration * >::iterator i = enumDecl->members.begin(); i != enumDecl->members.end(); ++i ) {
723 ObjectDecl * obj = dynamic_cast< ObjectDecl * >( * i );
724 assert( obj );
725 obj->set_type( new EnumInstType( Type::Qualifiers( Type::Const ), enumDecl->name ) );
726 } // for
727 }
728
729 namespace {
730 template< typename DWTList >
731 void fixFunctionList( DWTList & dwts, bool isVarArgs, FunctionType * func ) {
732 auto nvals = dwts.size();
733 bool containsVoid = false;
734 for ( auto & dwt : dwts ) {
735 // fix each DWT and record whether a void was found
736 containsVoid |= fixFunction( dwt );
737 }
738
739 // the only case in which "void" is valid is where it is the only one in the list
740 if ( containsVoid && ( nvals > 1 || isVarArgs ) ) {
741 SemanticError( func, "invalid type void in function type " );
742 }
743
744 // one void is the only thing in the list; remove it.
745 if ( containsVoid ) {
746 delete dwts.front();
747 dwts.clear();
748 }
749 }
750 }
751
752 void EnumAndPointerDecay_old::previsit( FunctionType * func ) {
753 // Fix up parameters and return types
754 fixFunctionList( func->parameters, func->isVarArgs, func );
755 fixFunctionList( func->returnVals, false, func );
756 }
757
758 LinkReferenceToTypes_old::LinkReferenceToTypes_old( const Indexer * other_indexer ) : WithIndexer( false ) {
759 if ( other_indexer ) {
760 local_indexer = other_indexer;
761 } else {
762 local_indexer = &indexer;
763 } // if
764 }
765
766 void LinkReferenceToTypes_old::postvisit( EnumInstType * enumInst ) {
767 const EnumDecl * st = local_indexer->lookupEnum( enumInst->name );
768 // it's not a semantic error if the enum is not found, just an implicit forward declaration
769 if ( st ) {
770 enumInst->baseEnum = const_cast<EnumDecl *>(st); // Just linking in the node
771 } // if
772 if ( ! st || ! st->body ) {
773 // use of forward declaration
774 forwardEnums[ enumInst->name ].push_back( enumInst );
775 } // if
776 }
777
778 void LinkReferenceToTypes_old::postvisit( StructInstType * structInst ) {
779 const StructDecl * st = local_indexer->lookupStruct( structInst->name );
780 // it's not a semantic error if the struct is not found, just an implicit forward declaration
781 if ( st ) {
782 structInst->baseStruct = const_cast<StructDecl *>(st); // Just linking in the node
783 } // if
784 if ( ! st || ! st->body ) {
785 // use of forward declaration
786 forwardStructs[ structInst->name ].push_back( structInst );
787 } // if
788 }
789
790 void LinkReferenceToTypes_old::postvisit( UnionInstType * unionInst ) {
791 const UnionDecl * un = local_indexer->lookupUnion( unionInst->name );
792 // it's not a semantic error if the union is not found, just an implicit forward declaration
793 if ( un ) {
794 unionInst->baseUnion = const_cast<UnionDecl *>(un); // Just linking in the node
795 } // if
796 if ( ! un || ! un->body ) {
797 // use of forward declaration
798 forwardUnions[ unionInst->name ].push_back( unionInst );
799 } // if
800 }
801
802 void LinkReferenceToTypes_old::previsit( QualifiedType * ) {
803 visit_children = false;
804 }
805
806 void LinkReferenceToTypes_old::postvisit( QualifiedType * qualType ) {
807 // linking only makes sense for the 'oldest ancestor' of the qualified type
808 qualType->parent->accept( * visitor );
809 }
810
811 template< typename Decl >
812 void normalizeAssertions( std::list< Decl * > & assertions ) {
813 // ensure no duplicate trait members after the clone
814 auto pred = [](Decl * d1, Decl * d2) {
815 // only care if they're equal
816 DeclarationWithType * dwt1 = dynamic_cast<DeclarationWithType *>( d1 );
817 DeclarationWithType * dwt2 = dynamic_cast<DeclarationWithType *>( d2 );
818 if ( dwt1 && dwt2 ) {
819 if ( dwt1->name == dwt2->name && ResolvExpr::typesCompatible( dwt1->get_type(), dwt2->get_type(), SymTab::Indexer() ) ) {
820 // std::cerr << "=========== equal:" << std::endl;
821 // std::cerr << "d1: " << d1 << std::endl;
822 // std::cerr << "d2: " << d2 << std::endl;
823 return false;
824 }
825 }
826 return d1 < d2;
827 };
828 std::set<Decl *, decltype(pred)> unique_members( assertions.begin(), assertions.end(), pred );
829 // if ( unique_members.size() != assertions.size() ) {
830 // std::cerr << "============different" << std::endl;
831 // std::cerr << unique_members.size() << " " << assertions.size() << std::endl;
832 // }
833
834 std::list< Decl * > order;
835 order.splice( order.end(), assertions );
836 std::copy_if( order.begin(), order.end(), back_inserter( assertions ), [&]( Decl * decl ) {
837 return unique_members.count( decl );
838 });
839 }
840
841 // expand assertions from trait instance, performing the appropriate type variable substitutions
842 template< typename Iterator >
843 void expandAssertions( TraitInstType * inst, Iterator out ) {
844 assertf( inst->baseTrait, "Trait instance not linked to base trait: %s", toCString( inst ) );
845 std::list< DeclarationWithType * > asserts;
846 for ( Declaration * decl : inst->baseTrait->members ) {
847 asserts.push_back( strict_dynamic_cast<DeclarationWithType *>( decl->clone() ) );
848 }
849 // substitute trait decl parameters for instance parameters
850 applySubstitution( inst->baseTrait->parameters.begin(), inst->baseTrait->parameters.end(), inst->parameters.begin(), asserts.begin(), asserts.end(), out );
851 }
852
853 void LinkReferenceToTypes_old::postvisit( TraitDecl * traitDecl ) {
854 if ( traitDecl->name == "sized" ) {
855 // "sized" is a special trait - flick the sized status on for the type variable
856 assertf( traitDecl->parameters.size() == 1, "Built-in trait 'sized' has incorrect number of parameters: %zd", traitDecl->parameters.size() );
857 TypeDecl * td = traitDecl->parameters.front();
858 td->set_sized( true );
859 }
860
861 // move assertions from type parameters into the body of the trait
862 for ( TypeDecl * td : traitDecl->parameters ) {
863 for ( DeclarationWithType * assert : td->assertions ) {
864 if ( TraitInstType * inst = dynamic_cast< TraitInstType * >( assert->get_type() ) ) {
865 expandAssertions( inst, back_inserter( traitDecl->members ) );
866 } else {
867 traitDecl->members.push_back( assert->clone() );
868 }
869 }
870 deleteAll( td->assertions );
871 td->assertions.clear();
872 } // for
873 }
874
875 void LinkReferenceToTypes_old::postvisit( TraitInstType * traitInst ) {
876 // handle other traits
877 const TraitDecl * traitDecl = local_indexer->lookupTrait( traitInst->name );
878 if ( ! traitDecl ) {
879 SemanticError( traitInst->location, "use of undeclared trait " + traitInst->name );
880 } // if
881 if ( traitDecl->parameters.size() != traitInst->parameters.size() ) {
882 SemanticError( traitInst, "incorrect number of trait parameters: " );
883 } // if
884 traitInst->baseTrait = const_cast<TraitDecl *>(traitDecl); // Just linking in the node
885
886 // need to carry over the 'sized' status of each decl in the instance
887 for ( auto p : group_iterate( traitDecl->parameters, traitInst->parameters ) ) {
888 TypeExpr * expr = dynamic_cast< TypeExpr * >( std::get<1>(p) );
889 if ( ! expr ) {
890 SemanticError( std::get<1>(p), "Expression parameters for trait instances are currently unsupported: " );
891 }
892 if ( TypeInstType * inst = dynamic_cast< TypeInstType * >( expr->get_type() ) ) {
893 TypeDecl * formalDecl = std::get<0>(p);
894 TypeDecl * instDecl = inst->baseType;
895 if ( formalDecl->get_sized() ) instDecl->set_sized( true );
896 }
897 }
898 // normalizeAssertions( traitInst->members );
899 }
900
901 void LinkReferenceToTypes_old::postvisit( EnumDecl * enumDecl ) {
902 // visit enum members first so that the types of self-referencing members are updated properly
903 if ( enumDecl->body ) {
904 ForwardEnumsType::iterator fwds = forwardEnums.find( enumDecl->name );
905 if ( fwds != forwardEnums.end() ) {
906 for ( std::list< EnumInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) {
907 (* inst)->baseEnum = enumDecl;
908 } // for
909 forwardEnums.erase( fwds );
910 } // if
911 } // if
912 }
913
914 void LinkReferenceToTypes_old::renameGenericParams( std::list< TypeDecl * > & params ) {
915 // rename generic type parameters uniquely so that they do not conflict with user-defined function forall parameters, e.g.
916 // forall(otype T)
917 // struct Box {
918 // T x;
919 // };
920 // forall(otype T)
921 // void f(Box(T) b) {
922 // ...
923 // }
924 // The T in Box and the T in f are different, so internally the naming must reflect that.
925 GuardValue( inGeneric );
926 inGeneric = ! params.empty();
927 for ( TypeDecl * td : params ) {
928 td->name = "__" + td->name + "_generic_";
929 }
930 }
931
932 void LinkReferenceToTypes_old::previsit( StructDecl * structDecl ) {
933 renameGenericParams( structDecl->parameters );
934 }
935
936 void LinkReferenceToTypes_old::previsit( UnionDecl * unionDecl ) {
937 renameGenericParams( unionDecl->parameters );
938 }
939
940 void LinkReferenceToTypes_old::postvisit( StructDecl * structDecl ) {
941 // visit struct members first so that the types of self-referencing members are updated properly
942 // xxx - need to ensure that type parameters match up between forward declarations and definition (most importantly, number of type parameters and their defaults)
943 if ( structDecl->body ) {
944 ForwardStructsType::iterator fwds = forwardStructs.find( structDecl->name );
945 if ( fwds != forwardStructs.end() ) {
946 for ( std::list< StructInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) {
947 (* inst)->baseStruct = structDecl;
948 } // for
949 forwardStructs.erase( fwds );
950 } // if
951 } // if
952 }
953
954 void LinkReferenceToTypes_old::postvisit( UnionDecl * unionDecl ) {
955 if ( unionDecl->body ) {
956 ForwardUnionsType::iterator fwds = forwardUnions.find( unionDecl->name );
957 if ( fwds != forwardUnions.end() ) {
958 for ( std::list< UnionInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) {
959 (* inst)->baseUnion = unionDecl;
960 } // for
961 forwardUnions.erase( fwds );
962 } // if
963 } // if
964 }
965
966 void LinkReferenceToTypes_old::postvisit( TypeInstType * typeInst ) {
967 // ensure generic parameter instances are renamed like the base type
968 if ( inGeneric && typeInst->baseType ) typeInst->name = typeInst->baseType->name;
969 if ( const NamedTypeDecl * namedTypeDecl = local_indexer->lookupType( typeInst->name ) ) {
970 if ( const TypeDecl * typeDecl = dynamic_cast< const TypeDecl * >( namedTypeDecl ) ) {
971 typeInst->set_isFtype( typeDecl->kind == TypeDecl::Ftype );
972 } // if
973 } // if
974 }
975
976 ResolveEnumInitializers::ResolveEnumInitializers( const Indexer * other_indexer ) : WithIndexer( true ) {
977 if ( other_indexer ) {
978 local_indexer = other_indexer;
979 } else {
980 local_indexer = &indexer;
981 } // if
982 }
983
984 void ResolveEnumInitializers::postvisit( EnumDecl * enumDecl ) {
985 if ( enumDecl->body ) {
986 for ( Declaration * member : enumDecl->members ) {
987 ObjectDecl * field = strict_dynamic_cast<ObjectDecl *>( member );
988 if ( field->init ) {
989 // need to resolve enumerator initializers early so that other passes that determine if an expression is constexpr have the appropriate information.
990 SingleInit * init = strict_dynamic_cast<SingleInit *>( field->init );
991 ResolvExpr::findSingleExpression( init->value, new BasicType( Type::Qualifiers(), BasicType::SignedInt ), indexer );
992 }
993 }
994 } // if
995 }
996
997 /// Fix up assertions - flattens assertion lists, removing all trait instances
998 void forallFixer( std::list< TypeDecl * > & forall, BaseSyntaxNode * node ) {
999 for ( TypeDecl * type : forall ) {
1000 std::list< DeclarationWithType * > asserts;
1001 asserts.splice( asserts.end(), type->assertions );
1002 // expand trait instances into their members
1003 for ( DeclarationWithType * assertion : asserts ) {
1004 if ( TraitInstType * traitInst = dynamic_cast< TraitInstType * >( assertion->get_type() ) ) {
1005 // expand trait instance into all of its members
1006 expandAssertions( traitInst, back_inserter( type->assertions ) );
1007 delete traitInst;
1008 } else {
1009 // pass other assertions through
1010 type->assertions.push_back( assertion );
1011 } // if
1012 } // for
1013 // apply FixFunction to every assertion to check for invalid void type
1014 for ( DeclarationWithType *& assertion : type->assertions ) {
1015 bool isVoid = fixFunction( assertion );
1016 if ( isVoid ) {
1017 SemanticError( node, "invalid type void in assertion of function " );
1018 } // if
1019 } // for
1020 // normalizeAssertions( type->assertions );
1021 } // for
1022 }
1023
1024 /// Replace all traits in assertion lists with their assertions.
1025 void expandTraits( std::list< TypeDecl * > & forall ) {
1026 for ( TypeDecl * type : forall ) {
1027 std::list< DeclarationWithType * > asserts;
1028 asserts.splice( asserts.end(), type->assertions );
1029 // expand trait instances into their members
1030 for ( DeclarationWithType * assertion : asserts ) {
1031 if ( TraitInstType * traitInst = dynamic_cast< TraitInstType * >( assertion->get_type() ) ) {
1032 // expand trait instance into all of its members
1033 expandAssertions( traitInst, back_inserter( type->assertions ) );
1034 delete traitInst;
1035 } else {
1036 // pass other assertions through
1037 type->assertions.push_back( assertion );
1038 } // if
1039 } // for
1040 }
1041 }
1042
1043 /// Fix each function in the assertion list and check for invalid void type.
1044 void fixAssertions(
1045 std::list< TypeDecl * > & forall, BaseSyntaxNode * node ) {
1046 for ( TypeDecl * type : forall ) {
1047 for ( DeclarationWithType *& assertion : type->assertions ) {
1048 bool isVoid = fixFunction( assertion );
1049 if ( isVoid ) {
1050 SemanticError( node, "invalid type void in assertion of function " );
1051 } // if
1052 } // for
1053 }
1054 }
1055
1056 void ForallPointerDecay_old::previsit( ObjectDecl * object ) {
1057 // ensure that operator names only apply to functions or function pointers
1058 if ( CodeGen::isOperator( object->name ) && ! dynamic_cast< FunctionType * >( object->type->stripDeclarator() ) ) {
1059 SemanticError( object->location, toCString( "operator ", object->name.c_str(), " is not a function or function pointer." ) );
1060 }
1061 object->fixUniqueId();
1062 }
1063
1064 void ForallPointerDecay_old::previsit( FunctionDecl * func ) {
1065 func->fixUniqueId();
1066 }
1067
1068 void ForallPointerDecay_old::previsit( FunctionType * ftype ) {
1069 forallFixer( ftype->forall, ftype );
1070 }
1071
1072 void ForallPointerDecay_old::previsit( StructDecl * aggrDecl ) {
1073 forallFixer( aggrDecl->parameters, aggrDecl );
1074 }
1075
1076 void ForallPointerDecay_old::previsit( UnionDecl * aggrDecl ) {
1077 forallFixer( aggrDecl->parameters, aggrDecl );
1078 }
1079
1080 void TraitExpander_old::previsit( FunctionType * ftype ) {
1081 expandTraits( ftype->forall );
1082 }
1083
1084 void TraitExpander_old::previsit( StructDecl * aggrDecl ) {
1085 expandTraits( aggrDecl->parameters );
1086 }
1087
1088 void TraitExpander_old::previsit( UnionDecl * aggrDecl ) {
1089 expandTraits( aggrDecl->parameters );
1090 }
1091
1092 void AssertionFixer_old::previsit( FunctionType * ftype ) {
1093 fixAssertions( ftype->forall, ftype );
1094 }
1095
1096 void AssertionFixer_old::previsit( StructDecl * aggrDecl ) {
1097 fixAssertions( aggrDecl->parameters, aggrDecl );
1098 }
1099
1100 void AssertionFixer_old::previsit( UnionDecl * aggrDecl ) {
1101 fixAssertions( aggrDecl->parameters, aggrDecl );
1102 }
1103
1104 void CheckOperatorTypes_old::previsit( ObjectDecl * object ) {
1105 // ensure that operator names only apply to functions or function pointers
1106 if ( CodeGen::isOperator( object->name ) && ! dynamic_cast< FunctionType * >( object->type->stripDeclarator() ) ) {
1107 SemanticError( object->location, toCString( "operator ", object->name.c_str(), " is not a function or function pointer." ) );
1108 }
1109 }
1110
1111 void FixUniqueIds_old::previsit( DeclarationWithType * decl ) {
1112 decl->fixUniqueId();
1113 }
1114
1115 void ReturnChecker::checkFunctionReturns( std::list< Declaration * > & translationUnit ) {
1116 PassVisitor<ReturnChecker> checker;
1117 acceptAll( translationUnit, checker );
1118 }
1119
1120 void ReturnChecker::previsit( FunctionDecl * functionDecl ) {
1121 GuardValue( returnVals );
1122 returnVals = functionDecl->get_functionType()->get_returnVals();
1123 }
1124
1125 void ReturnChecker::previsit( ReturnStmt * returnStmt ) {
1126 // Previously this also checked for the existence of an expr paired with no return values on
1127 // the function return type. This is incorrect, since you can have an expression attached to
1128 // a return statement in a void-returning function in C. The expression is treated as if it
1129 // were cast to void.
1130 if ( ! returnStmt->get_expr() && returnVals.size() != 0 ) {
1131 SemanticError( returnStmt, "Non-void function returns no values: " );
1132 }
1133 }
1134
1135
1136 void ReplaceTypedef::replaceTypedef( std::list< Declaration * > &translationUnit ) {
1137 PassVisitor<ReplaceTypedef> eliminator;
1138 mutateAll( translationUnit, eliminator );
1139 if ( eliminator.pass.typedefNames.count( "size_t" ) ) {
1140 // grab and remember declaration of size_t
1141 Validate::SizeType = eliminator.pass.typedefNames["size_t"].first->base->clone();
1142 } else {
1143 // xxx - missing global typedef for size_t - default to long unsigned int, even though that may be wrong
1144 // eventually should have a warning for this case.
1145 Validate::SizeType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
1146 }
1147 }
1148
1149 void ReplaceTypedef::premutate( QualifiedType * ) {
1150 visit_children = false;
1151 }
1152
1153 Type * ReplaceTypedef::postmutate( QualifiedType * qualType ) {
1154 // replacing typedefs only makes sense for the 'oldest ancestor' of the qualified type
1155 qualType->parent = qualType->parent->acceptMutator( * visitor );
1156 return qualType;
1157 }
1158
1159 static bool isNonParameterAttribute( Attribute * attr ) {
1160 static const std::vector<std::string> bad_names = {
1161 "aligned", "__aligned__",
1162 };
1163 for ( auto name : bad_names ) {
1164 if ( name == attr->name ) {
1165 return true;
1166 }
1167 }
1168 return false;
1169 }
1170
1171 Type * ReplaceTypedef::postmutate( TypeInstType * typeInst ) {
1172 // instances of typedef types will come here. If it is an instance
1173 // of a typdef type, link the instance to its actual type.
1174 TypedefMap::const_iterator def = typedefNames.find( typeInst->name );
1175 if ( def != typedefNames.end() ) {
1176 Type * ret = def->second.first->base->clone();
1177 ret->location = typeInst->location;
1178 ret->get_qualifiers() |= typeInst->get_qualifiers();
1179 // GCC ignores certain attributes if they arrive by typedef, this mimics that.
1180 if ( inFunctionType ) {
1181 ret->attributes.remove_if( isNonParameterAttribute );
1182 }
1183 ret->attributes.splice( ret->attributes.end(), typeInst->attributes );
1184 // place instance parameters on the typedef'd type
1185 if ( ! typeInst->parameters.empty() ) {
1186 ReferenceToType * rtt = dynamic_cast<ReferenceToType *>(ret);
1187 if ( ! rtt ) {
1188 SemanticError( typeInst->location, "Cannot apply type parameters to base type of " + typeInst->name );
1189 }
1190 rtt->parameters.clear();
1191 cloneAll( typeInst->parameters, rtt->parameters );
1192 mutateAll( rtt->parameters, * visitor ); // recursively fix typedefs on parameters
1193 } // if
1194 delete typeInst;
1195 return ret;
1196 } else {
1197 TypeDeclMap::const_iterator base = typedeclNames.find( typeInst->name );
1198 if ( base == typedeclNames.end() ) {
1199 SemanticError( typeInst->location, toString("Use of undefined type ", typeInst->name) );
1200 }
1201 typeInst->set_baseType( base->second );
1202 return typeInst;
1203 } // if
1204 assert( false );
1205 }
1206
1207 struct VarLenChecker : WithShortCircuiting {
1208 void previsit( FunctionType * ) { visit_children = false; }
1209 void previsit( ArrayType * at ) {
1210 isVarLen |= at->isVarLen;
1211 }
1212 bool isVarLen = false;
1213 };
1214
1215 bool isVariableLength( Type * t ) {
1216 PassVisitor<VarLenChecker> varLenChecker;
1217 maybeAccept( t, varLenChecker );
1218 return varLenChecker.pass.isVarLen;
1219 }
1220
1221 Declaration * ReplaceTypedef::postmutate( TypedefDecl * tyDecl ) {
1222 if ( typedefNames.count( tyDecl->name ) == 1 && typedefNames[ tyDecl->name ].second == scopeLevel ) {
1223 // typedef to the same name from the same scope
1224 // must be from the same type
1225
1226 Type * t1 = tyDecl->base;
1227 Type * t2 = typedefNames[ tyDecl->name ].first->base;
1228 if ( ! ResolvExpr::typesCompatible( t1, t2, Indexer() ) ) {
1229 SemanticError( tyDecl->location, "Cannot redefine typedef: " + tyDecl->name );
1230 }
1231 // Cannot redefine VLA typedefs. Note: this is slightly incorrect, because our notion of VLAs
1232 // at this point in the translator is imprecise. In particular, this will disallow redefining typedefs
1233 // with arrays whose dimension is an enumerator or a cast of a constant/enumerator. The effort required
1234 // to fix this corner case likely outweighs the utility of allowing it.
1235 if ( isVariableLength( t1 ) || isVariableLength( t2 ) ) {
1236 SemanticError( tyDecl->location, "Cannot redefine typedef: " + tyDecl->name );
1237 }
1238 } else {
1239 typedefNames[ tyDecl->name ] = std::make_pair( TypedefDeclPtr( tyDecl ), scopeLevel );
1240 } // if
1241
1242 // When a typedef is a forward declaration:
1243 // typedef struct screen SCREEN;
1244 // the declaration portion must be retained:
1245 // struct screen;
1246 // because the expansion of the typedef is:
1247 // void rtn( SCREEN * p ) => void rtn( struct screen * p )
1248 // hence the type-name "screen" must be defined.
1249 // Note, qualifiers on the typedef are superfluous for the forward declaration.
1250
1251 Type * designatorType = tyDecl->base->stripDeclarator();
1252 if ( StructInstType * aggDecl = dynamic_cast< StructInstType * >( designatorType ) ) {
1253 declsToAddBefore.push_back( new StructDecl( aggDecl->name, AggregateDecl::Struct, noAttributes, tyDecl->linkage ) );
1254 } else if ( UnionInstType * aggDecl = dynamic_cast< UnionInstType * >( designatorType ) ) {
1255 declsToAddBefore.push_back( new UnionDecl( aggDecl->name, noAttributes, tyDecl->linkage ) );
1256 } else if ( EnumInstType * enumDecl = dynamic_cast< EnumInstType * >( designatorType ) ) {
1257 declsToAddBefore.push_back( new EnumDecl( enumDecl->name, noAttributes, tyDecl->linkage ) );
1258 } // if
1259 return tyDecl->clone();
1260 }
1261
1262 void ReplaceTypedef::premutate( TypeDecl * typeDecl ) {
1263 TypedefMap::iterator i = typedefNames.find( typeDecl->name );
1264 if ( i != typedefNames.end() ) {
1265 typedefNames.erase( i ) ;
1266 } // if
1267
1268 typedeclNames.insert( typeDecl->name, typeDecl );
1269 }
1270
1271 void ReplaceTypedef::premutate( FunctionDecl * ) {
1272 GuardScope( typedefNames );
1273 GuardScope( typedeclNames );
1274 }
1275
1276 void ReplaceTypedef::premutate( ObjectDecl * ) {
1277 GuardScope( typedefNames );
1278 GuardScope( typedeclNames );
1279 }
1280
1281 DeclarationWithType * ReplaceTypedef::postmutate( ObjectDecl * objDecl ) {
1282 if ( FunctionType * funtype = dynamic_cast<FunctionType *>( objDecl->type ) ) { // function type?
1283 // replace the current object declaration with a function declaration
1284 FunctionDecl * newDecl = new FunctionDecl( objDecl->name, objDecl->get_storageClasses(), objDecl->linkage, funtype, 0, objDecl->attributes, objDecl->get_funcSpec() );
1285 objDecl->attributes.clear();
1286 objDecl->set_type( nullptr );
1287 delete objDecl;
1288 return newDecl;
1289 } // if
1290 return objDecl;
1291 }
1292
1293 void ReplaceTypedef::premutate( CastExpr * ) {
1294 GuardScope( typedefNames );
1295 GuardScope( typedeclNames );
1296 }
1297
1298 void ReplaceTypedef::premutate( CompoundStmt * ) {
1299 GuardScope( typedefNames );
1300 GuardScope( typedeclNames );
1301 scopeLevel += 1;
1302 GuardAction( [this](){ scopeLevel -= 1; } );
1303 }
1304
1305 template<typename AggDecl>
1306 void ReplaceTypedef::addImplicitTypedef( AggDecl * aggDecl ) {
1307 if ( typedefNames.count( aggDecl->get_name() ) == 0 ) {
1308 Type * type = nullptr;
1309 if ( StructDecl * newDeclStructDecl = dynamic_cast< StructDecl * >( aggDecl ) ) {
1310 type = new StructInstType( Type::Qualifiers(), newDeclStructDecl->get_name() );
1311 } else if ( UnionDecl * newDeclUnionDecl = dynamic_cast< UnionDecl * >( aggDecl ) ) {
1312 type = new UnionInstType( Type::Qualifiers(), newDeclUnionDecl->get_name() );
1313 } else if ( EnumDecl * newDeclEnumDecl = dynamic_cast< EnumDecl * >( aggDecl ) ) {
1314 type = new EnumInstType( Type::Qualifiers(), newDeclEnumDecl->get_name() );
1315 } // if
1316 TypedefDeclPtr tyDecl( new TypedefDecl( aggDecl->get_name(), aggDecl->location, Type::StorageClasses(), type, aggDecl->get_linkage() ) );
1317 typedefNames[ aggDecl->get_name() ] = std::make_pair( std::move( tyDecl ), scopeLevel );
1318 // add the implicit typedef to the AST
1319 declsToAddBefore.push_back( new TypedefDecl( aggDecl->get_name(), aggDecl->location, Type::StorageClasses(), type->clone(), aggDecl->get_linkage() ) );
1320 } // if
1321 }
1322
1323 template< typename AggDecl >
1324 void ReplaceTypedef::handleAggregate( AggDecl * aggr ) {
1325 SemanticErrorException errors;
1326
1327 ValueGuard< std::list<Declaration * > > oldBeforeDecls( declsToAddBefore );
1328 ValueGuard< std::list<Declaration * > > oldAfterDecls ( declsToAddAfter );
1329 declsToAddBefore.clear();
1330 declsToAddAfter.clear();
1331
1332 GuardScope( typedefNames );
1333 GuardScope( typedeclNames );
1334 mutateAll( aggr->parameters, * visitor );
1335 mutateAll( aggr->attributes, * visitor );
1336
1337 // unroll mutateAll for aggr->members so that implicit typedefs for nested types are added to the aggregate body.
1338 for ( std::list< Declaration * >::iterator i = aggr->members.begin(); i != aggr->members.end(); ++i ) {
1339 if ( !declsToAddAfter.empty() ) { aggr->members.splice( i, declsToAddAfter ); }
1340
1341 try {
1342 * i = maybeMutate( * i, * visitor );
1343 } catch ( SemanticErrorException &e ) {
1344 errors.append( e );
1345 }
1346
1347 if ( !declsToAddBefore.empty() ) { aggr->members.splice( i, declsToAddBefore ); }
1348 }
1349
1350 if ( !declsToAddAfter.empty() ) { aggr->members.splice( aggr->members.end(), declsToAddAfter ); }
1351 if ( !errors.isEmpty() ) { throw errors; }
1352 }
1353
1354 void ReplaceTypedef::premutate( StructDecl * structDecl ) {
1355 visit_children = false;
1356 addImplicitTypedef( structDecl );
1357 handleAggregate( structDecl );
1358 }
1359
1360 void ReplaceTypedef::premutate( UnionDecl * unionDecl ) {
1361 visit_children = false;
1362 addImplicitTypedef( unionDecl );
1363 handleAggregate( unionDecl );
1364 }
1365
1366 void ReplaceTypedef::premutate( EnumDecl * enumDecl ) {
1367 addImplicitTypedef( enumDecl );
1368 }
1369
1370 void ReplaceTypedef::premutate( FunctionType * ) {
1371 GuardValue( inFunctionType );
1372 inFunctionType = true;
1373 }
1374
1375 void ReplaceTypedef::premutate( TraitDecl * ) {
1376 GuardScope( typedefNames );
1377 GuardScope( typedeclNames);
1378 }
1379
1380 void VerifyCtorDtorAssign::verify( std::list< Declaration * > & translationUnit ) {
1381 PassVisitor<VerifyCtorDtorAssign> verifier;
1382 acceptAll( translationUnit, verifier );
1383 }
1384
1385 void VerifyCtorDtorAssign::previsit( FunctionDecl * funcDecl ) {
1386 FunctionType * funcType = funcDecl->get_functionType();
1387 std::list< DeclarationWithType * > &returnVals = funcType->get_returnVals();
1388 std::list< DeclarationWithType * > &params = funcType->get_parameters();
1389
1390 if ( CodeGen::isCtorDtorAssign( funcDecl->get_name() ) ) { // TODO: also check /=, etc.
1391 if ( params.size() == 0 ) {
1392 SemanticError( funcDecl->location, "Constructors, destructors, and assignment functions require at least one parameter." );
1393 }
1394 ReferenceType * refType = dynamic_cast< ReferenceType * >( params.front()->get_type() );
1395 if ( ! refType ) {
1396 SemanticError( funcDecl->location, "First parameter of a constructor, destructor, or assignment function must be a reference." );
1397 }
1398 if ( CodeGen::isCtorDtor( funcDecl->get_name() ) && returnVals.size() != 0 ) {
1399 if(!returnVals.front()->get_type()->isVoid()) {
1400 SemanticError( funcDecl->location, "Constructors and destructors cannot have explicit return values." );
1401 }
1402 }
1403 }
1404 }
1405
1406 // Test for special name on a generic parameter. Special treatment for the
1407 // special name is a bootstrapping hack. In most cases, the worlds of T's
1408 // and of N's don't overlap (normal treamtemt). The foundations in
1409 // array.hfa use tagging for both types and dimensions. Tagging treats
1410 // its subject parameter even more opaquely than T&, which assumes it is
1411 // possible to have a pointer/reference to such an object. Tagging only
1412 // seeks to identify the type-system resident at compile time. Both N's
1413 // and T's can make tags. The tag definition uses the special name, which
1414 // is treated as "an N or a T." This feature is not inteded to be used
1415 // outside of the definition and immediate uses of a tag.
1416 static inline bool isReservedTysysIdOnlyName( const std::string & name ) {
1417 // name's prefix was __CFA_tysys_id_only, before it got wrapped in __..._generic
1418 int foundAt = name.find("__CFA_tysys_id_only");
1419 if (foundAt == 0) return true;
1420 if (foundAt == 2 && name[0] == '_' && name[1] == '_') return true;
1421 return false;
1422 }
1423
1424 template< typename Aggr >
1425 void validateGeneric( Aggr * inst ) {
1426 std::list< TypeDecl * > * params = inst->get_baseParameters();
1427 if ( params ) {
1428 std::list< Expression * > & args = inst->get_parameters();
1429
1430 // insert defaults arguments when a type argument is missing (currently only supports missing arguments at the end of the list).
1431 // A substitution is used to ensure that defaults are replaced correctly, e.g.,
1432 // forall(otype T, otype alloc = heap_allocator(T)) struct vector;
1433 // vector(int) v;
1434 // after insertion of default values becomes
1435 // vector(int, heap_allocator(T))
1436 // and the substitution is built with T=int so that after substitution, the result is
1437 // vector(int, heap_allocator(int))
1438 TypeSubstitution sub;
1439 auto paramIter = params->begin();
1440 auto argIter = args.begin();
1441 for ( ; paramIter != params->end(); ++paramIter, ++argIter ) {
1442 if ( argIter != args.end() ) {
1443 TypeExpr * expr = dynamic_cast< TypeExpr * >( * argIter );
1444 if ( expr ) {
1445 sub.add( (* paramIter)->get_name(), expr->get_type()->clone() );
1446 }
1447 } else {
1448 Type * defaultType = (* paramIter)->get_init();
1449 if ( defaultType ) {
1450 args.push_back( new TypeExpr( defaultType->clone() ) );
1451 sub.add( (* paramIter)->get_name(), defaultType->clone() );
1452 argIter = std::prev(args.end());
1453 } else {
1454 SemanticError( inst, "Too few type arguments in generic type " );
1455 }
1456 }
1457 assert( argIter != args.end() );
1458 bool typeParamDeclared = (*paramIter)->kind != TypeDecl::Kind::Dimension;
1459 bool typeArgGiven;
1460 if ( isReservedTysysIdOnlyName( (*paramIter)->name ) ) {
1461 // coerce a match when declaration is reserved name, which means "either"
1462 typeArgGiven = typeParamDeclared;
1463 } else {
1464 typeArgGiven = dynamic_cast< TypeExpr * >( * argIter );
1465 }
1466 if ( ! typeParamDeclared && typeArgGiven ) SemanticError( inst, "Type argument given for value parameter: " );
1467 if ( typeParamDeclared && ! typeArgGiven ) SemanticError( inst, "Expression argument given for type parameter: " );
1468 }
1469
1470 sub.apply( inst );
1471 if ( args.size() > params->size() ) SemanticError( inst, "Too many type arguments in generic type " );
1472 }
1473 }
1474
1475 void ValidateGenericParameters::previsit( StructInstType * inst ) {
1476 validateGeneric( inst );
1477 }
1478
1479 void ValidateGenericParameters::previsit( UnionInstType * inst ) {
1480 validateGeneric( inst );
1481 }
1482
1483 void TranslateDimensionGenericParameters::translateDimensions( std::list< Declaration * > &translationUnit ) {
1484 PassVisitor<TranslateDimensionGenericParameters> translator;
1485 mutateAll( translationUnit, translator );
1486 }
1487
1488 TranslateDimensionGenericParameters::TranslateDimensionGenericParameters() : WithIndexer( false ) {}
1489
1490 // Declaration of type variable: forall( [N] ) -> forall( N & | sized( N ) )
1491 TypeDecl * TranslateDimensionGenericParameters::postmutate( TypeDecl * td ) {
1492 if ( td->kind == TypeDecl::Dimension ) {
1493 td->kind = TypeDecl::Dtype;
1494 if ( ! isReservedTysysIdOnlyName( td->name ) ) {
1495 td->sized = true;
1496 }
1497 }
1498 return td;
1499 }
1500
1501 // Situational awareness:
1502 // array( float, [[currentExpr]] ) has visitingChildOfSUIT == true
1503 // array( float, [[currentExpr]] - 1 ) has visitingChildOfSUIT == false
1504 // size_t x = [[currentExpr]] has visitingChildOfSUIT == false
1505 void TranslateDimensionGenericParameters::changeState_ChildOfSUIT( bool newVal ) {
1506 GuardValue( nextVisitedNodeIsChildOfSUIT );
1507 GuardValue( visitingChildOfSUIT );
1508 visitingChildOfSUIT = nextVisitedNodeIsChildOfSUIT;
1509 nextVisitedNodeIsChildOfSUIT = newVal;
1510 }
1511 void TranslateDimensionGenericParameters::premutate( StructInstType * sit ) {
1512 (void) sit;
1513 changeState_ChildOfSUIT(true);
1514 }
1515 void TranslateDimensionGenericParameters::premutate( UnionInstType * uit ) {
1516 (void) uit;
1517 changeState_ChildOfSUIT(true);
1518 }
1519 void TranslateDimensionGenericParameters::premutate( BaseSyntaxNode * node ) {
1520 (void) node;
1521 changeState_ChildOfSUIT(false);
1522 }
1523
1524 // Passing values as dimension arguments: array( float, 7 ) -> array( float, char[ 7 ] )
1525 // Consuming dimension parameters: size_t x = N - 1 ; -> size_t x = sizeof(N) - 1 ;
1526 // Intertwined reality: array( float, N ) -> array( float, N )
1527 // array( float, N - 1 ) -> array( float, char[ sizeof(N) - 1 ] )
1528 // Intertwined case 1 is not just an optimization.
1529 // Avoiding char[sizeof(-)] is necessary to enable the call of f to bind the value of N, in:
1530 // forall([N]) void f( array(float, N) & );
1531 // array(float, 7) a;
1532 // f(a);
1533
1534 Expression * TranslateDimensionGenericParameters::postmutate( DimensionExpr * de ) {
1535 // Expression de is an occurrence of N in LHS of above examples.
1536 // Look up the name that de references.
1537 // If we are in a struct body, then this reference can be to an entry of the stuct's forall list.
1538 // Whether or not we are in a struct body, this reference can be to an entry of a containing function's forall list.
1539 // If we are in a struct body, then the stuct's forall declarations are innermost (functions don't occur in structs).
1540 // Thus, a potential struct's declaration is highest priority.
1541 // A struct's forall declarations are already renamed with _generic_ suffix. Try that name variant first.
1542
1543 std::string useName = "__" + de->name + "_generic_";
1544 TypeDecl * namedParamDecl = const_cast<TypeDecl *>( strict_dynamic_cast<const TypeDecl *, nullptr >( indexer.lookupType( useName ) ) );
1545
1546 if ( ! namedParamDecl ) {
1547 useName = de->name;
1548 namedParamDecl = const_cast<TypeDecl *>( strict_dynamic_cast<const TypeDecl *, nullptr >( indexer.lookupType( useName ) ) );
1549 }
1550
1551 // Expect to find it always. A misspelled name would have been parsed as an identifier.
1552 assert( namedParamDecl && "Type-system-managed value name not found in symbol table" );
1553
1554 delete de;
1555
1556 TypeInstType * refToDecl = new TypeInstType( 0, useName, namedParamDecl );
1557
1558 if ( visitingChildOfSUIT ) {
1559 // As in postmutate( Expression * ), topmost expression needs a TypeExpr wrapper
1560 // But avoid ArrayType-Sizeof
1561 return new TypeExpr( refToDecl );
1562 } else {
1563 // the N occurrence is being used directly as a runtime value,
1564 // if we are in a type instantiation, then the N is within a bigger value computation
1565 return new SizeofExpr( refToDecl );
1566 }
1567 }
1568
1569 Expression * TranslateDimensionGenericParameters::postmutate( Expression * e ) {
1570 if ( visitingChildOfSUIT ) {
1571 // e is an expression used as an argument to instantiate a type
1572 if (! dynamic_cast< TypeExpr * >( e ) ) {
1573 // e is a value expression
1574 // but not a DimensionExpr, which has a distinct postmutate
1575 Type * typeExprContent = new ArrayType( 0, new BasicType( 0, BasicType::Char ), e, true, false );
1576 TypeExpr * result = new TypeExpr( typeExprContent );
1577 return result;
1578 }
1579 }
1580 return e;
1581 }
1582
1583 void CompoundLiteral::premutate( ObjectDecl * objectDecl ) {
1584 storageClasses = objectDecl->get_storageClasses();
1585 }
1586
1587 Expression * CompoundLiteral::postmutate( CompoundLiteralExpr * compLitExpr ) {
1588 // transform [storage_class] ... (struct S){ 3, ... };
1589 // into [storage_class] struct S temp = { 3, ... };
1590 static UniqueName indexName( "_compLit" );
1591
1592 ObjectDecl * tempvar = new ObjectDecl( indexName.newName(), storageClasses, LinkageSpec::C, nullptr, compLitExpr->get_result(), compLitExpr->get_initializer() );
1593 compLitExpr->set_result( nullptr );
1594 compLitExpr->set_initializer( nullptr );
1595 delete compLitExpr;
1596 declsToAddBefore.push_back( tempvar ); // add modified temporary to current block
1597 return new VariableExpr( tempvar );
1598 }
1599
1600 void ReturnTypeFixer::fix( std::list< Declaration * > &translationUnit ) {
1601 PassVisitor<ReturnTypeFixer> fixer;
1602 acceptAll( translationUnit, fixer );
1603 }
1604
1605 void ReturnTypeFixer::postvisit( FunctionDecl * functionDecl ) {
1606 FunctionType * ftype = functionDecl->get_functionType();
1607 std::list< DeclarationWithType * > & retVals = ftype->get_returnVals();
1608 assertf( retVals.size() == 0 || retVals.size() == 1, "Function %s has too many return values: %zu", functionDecl->get_name().c_str(), retVals.size() );
1609 if ( retVals.size() == 1 ) {
1610 // ensure all function return values have a name - use the name of the function to disambiguate (this also provides a nice bit of help for debugging).
1611 // ensure other return values have a name.
1612 DeclarationWithType * ret = retVals.front();
1613 if ( ret->get_name() == "" ) {
1614 ret->set_name( toString( "_retval_", CodeGen::genName( functionDecl ) ) );
1615 }
1616 ret->get_attributes().push_back( new Attribute( "unused" ) );
1617 }
1618 }
1619
1620 void ReturnTypeFixer::postvisit( FunctionType * ftype ) {
1621 // xxx - need to handle named return values - this information needs to be saved somehow
1622 // so that resolution has access to the names.
1623 // Note that this pass needs to happen early so that other passes which look for tuple types
1624 // find them in all of the right places, including function return types.
1625 std::list< DeclarationWithType * > & retVals = ftype->get_returnVals();
1626 if ( retVals.size() > 1 ) {
1627 // generate a single return parameter which is the tuple of all of the return values
1628 TupleType * tupleType = strict_dynamic_cast< TupleType * >( ResolvExpr::extractResultType( ftype ) );
1629 // ensure return value is not destructed by explicitly creating an empty ListInit node wherein maybeConstruct is false.
1630 ObjectDecl * newRet = new ObjectDecl( "", Type::StorageClasses(), LinkageSpec::Cforall, 0, tupleType, new ListInit( std::list<Initializer *>(), noDesignators, false ) );
1631 deleteAll( retVals );
1632 retVals.clear();
1633 retVals.push_back( newRet );
1634 }
1635 }
1636
1637 void FixObjectType::fix( std::list< Declaration * > & translationUnit ) {
1638 PassVisitor<FixObjectType> fixer;
1639 acceptAll( translationUnit, fixer );
1640 }
1641
1642 void FixObjectType::previsit( ObjectDecl * objDecl ) {
1643 Type * new_type = ResolvExpr::resolveTypeof( objDecl->get_type(), indexer );
1644 objDecl->set_type( new_type );
1645 }
1646
1647 void FixObjectType::previsit( FunctionDecl * funcDecl ) {
1648 Type * new_type = ResolvExpr::resolveTypeof( funcDecl->type, indexer );
1649 funcDecl->set_type( new_type );
1650 }
1651
1652 void FixObjectType::previsit( TypeDecl * typeDecl ) {
1653 if ( typeDecl->get_base() ) {
1654 Type * new_type = ResolvExpr::resolveTypeof( typeDecl->get_base(), indexer );
1655 typeDecl->set_base( new_type );
1656 } // if
1657 }
1658
1659 void InitializerLength::computeLength( std::list< Declaration * > & translationUnit ) {
1660 PassVisitor<InitializerLength> len;
1661 acceptAll( translationUnit, len );
1662 }
1663
1664 void ArrayLength::computeLength( std::list< Declaration * > & translationUnit ) {
1665 PassVisitor<ArrayLength> len;
1666 acceptAll( translationUnit, len );
1667 }
1668
1669 void InitializerLength::previsit( ObjectDecl * objDecl ) {
1670 if ( ArrayType * at = dynamic_cast< ArrayType * >( objDecl->type ) ) {
1671 if ( at->dimension ) return;
1672 if ( ListInit * init = dynamic_cast< ListInit * >( objDecl->init ) ) {
1673 at->dimension = new ConstantExpr( Constant::from_ulong( init->initializers.size() ) );
1674 }
1675 }
1676 }
1677
1678 void ArrayLength::previsit( ArrayType * type ) {
1679 if ( type->dimension ) {
1680 // need to resolve array dimensions early so that constructor code can correctly determine
1681 // if a type is a VLA (and hence whether its elements need to be constructed)
1682 ResolvExpr::findSingleExpression( type->dimension, Validate::SizeType->clone(), indexer );
1683
1684 // must re-evaluate whether a type is a VLA, now that more information is available
1685 // (e.g. the dimension may have been an enumerator, which was unknown prior to this step)
1686 type->isVarLen = ! InitTweak::isConstExpr( type->dimension );
1687 }
1688 }
1689
1690 struct LabelFinder {
1691 std::set< Label > & labels;
1692 LabelFinder( std::set< Label > & labels ) : labels( labels ) {}
1693 void previsit( Statement * stmt ) {
1694 for ( Label & l : stmt->labels ) {
1695 labels.insert( l );
1696 }
1697 }
1698 };
1699
1700 void LabelAddressFixer::premutate( FunctionDecl * funcDecl ) {
1701 GuardValue( labels );
1702 PassVisitor<LabelFinder> finder( labels );
1703 funcDecl->accept( finder );
1704 }
1705
1706 Expression * LabelAddressFixer::postmutate( AddressExpr * addrExpr ) {
1707 // convert &&label into label address
1708 if ( AddressExpr * inner = dynamic_cast< AddressExpr * >( addrExpr->arg ) ) {
1709 if ( NameExpr * nameExpr = dynamic_cast< NameExpr * >( inner->arg ) ) {
1710 if ( labels.count( nameExpr->name ) ) {
1711 Label name = nameExpr->name;
1712 delete addrExpr;
1713 return new LabelAddressExpr( name );
1714 }
1715 }
1716 }
1717 return addrExpr;
1718 }
1719
1720namespace {
1721 /// Replaces enum types by int, and function/array types in function parameter and return
1722 /// lists by appropriate pointers
1723 /*
1724 struct EnumAndPointerDecay_new {
1725 const ast::EnumDecl * previsit( const ast::EnumDecl * enumDecl ) {
1726 // set the type of each member of the enumeration to be EnumConstant
1727 for ( unsigned i = 0; i < enumDecl->members.size(); ++i ) {
1728 // build new version of object with EnumConstant
1729 ast::ptr< ast::ObjectDecl > obj =
1730 enumDecl->members[i].strict_as< ast::ObjectDecl >();
1731 obj.get_and_mutate()->type =
1732 new ast::EnumInstType{ enumDecl->name, ast::CV::Const };
1733
1734 // set into decl
1735 ast::EnumDecl * mut = mutate( enumDecl );
1736 mut->members[i] = obj.get();
1737 enumDecl = mut;
1738 }
1739 return enumDecl;
1740 }
1741
1742 static const ast::FunctionType * fixFunctionList(
1743 const ast::FunctionType * func,
1744 std::vector< ast::ptr< ast::DeclWithType > > ast::FunctionType::* field,
1745 ast::ArgumentFlag isVarArgs = ast::FixedArgs
1746 ) {
1747 const auto & dwts = func->* field;
1748 unsigned nvals = dwts.size();
1749 bool hasVoid = false;
1750 for ( unsigned i = 0; i < nvals; ++i ) {
1751 func = ast::mutate_field_index( func, field, i, fixFunction( dwts[i], hasVoid ) );
1752 }
1753
1754 // the only case in which "void" is valid is where it is the only one in the list
1755 if ( hasVoid && ( nvals > 1 || isVarArgs ) ) {
1756 SemanticError(
1757 dwts.front()->location, func, "invalid type void in function type" );
1758 }
1759
1760 // one void is the only thing in the list, remove it
1761 if ( hasVoid ) {
1762 func = ast::mutate_field(
1763 func, field, std::vector< ast::ptr< ast::DeclWithType > >{} );
1764 }
1765
1766 return func;
1767 }
1768
1769 const ast::FunctionType * previsit( const ast::FunctionType * func ) {
1770 func = fixFunctionList( func, &ast::FunctionType::params, func->isVarArgs );
1771 return fixFunctionList( func, &ast::FunctionType::returns );
1772 }
1773 };
1774
1775 /// expand assertions from a trait instance, performing appropriate type variable substitutions
1776 void expandAssertions(
1777 const ast::TraitInstType * inst, std::vector< ast::ptr< ast::DeclWithType > > & out
1778 ) {
1779 assertf( inst->base, "Trait instance not linked to base trait: %s", toCString( inst ) );
1780
1781 // build list of trait members, substituting trait decl parameters for instance parameters
1782 ast::TypeSubstitution sub{
1783 inst->base->params.begin(), inst->base->params.end(), inst->params.begin() };
1784 // deliberately take ast::ptr by-value to ensure this does not mutate inst->base
1785 for ( ast::ptr< ast::Decl > decl : inst->base->members ) {
1786 auto member = decl.strict_as< ast::DeclWithType >();
1787 sub.apply( member );
1788 out.emplace_back( member );
1789 }
1790 }
1791
1792 /// Associates forward declarations of aggregates with their definitions
1793 class LinkReferenceToTypes_new final
1794 : public ast::WithSymbolTable, public ast::WithGuards, public
1795 ast::WithVisitorRef<LinkReferenceToTypes_new>, public ast::WithShortCircuiting {
1796
1797 // these maps of uses of forward declarations of types need to have the actual type
1798 // declaration switched in * after * they have been traversed. To enable this in the
1799 // ast::Pass framework, any node that needs to be so mutated has mutate() called on it
1800 // before it is placed in the map, properly updating its parents in the usual traversal,
1801 // then can have the actual mutation applied later
1802 using ForwardEnumsType = std::unordered_multimap< std::string, ast::EnumInstType * >;
1803 using ForwardStructsType = std::unordered_multimap< std::string, ast::StructInstType * >;
1804 using ForwardUnionsType = std::unordered_multimap< std::string, ast::UnionInstType * >;
1805
1806 const CodeLocation & location;
1807 const ast::SymbolTable * localSymtab;
1808
1809 ForwardEnumsType forwardEnums;
1810 ForwardStructsType forwardStructs;
1811 ForwardUnionsType forwardUnions;
1812
1813 /// true if currently in a generic type body, so that type parameter instances can be
1814 /// renamed appropriately
1815 bool inGeneric = false;
1816
1817 public:
1818 /// contstruct using running symbol table
1819 LinkReferenceToTypes_new( const CodeLocation & loc )
1820 : location( loc ), localSymtab( &symtab ) {}
1821
1822 /// construct using provided symbol table
1823 LinkReferenceToTypes_new( const CodeLocation & loc, const ast::SymbolTable & syms )
1824 : location( loc ), localSymtab( &syms ) {}
1825
1826 const ast::Type * postvisit( const ast::TypeInstType * typeInst ) {
1827 // ensure generic parameter instances are renamed like the base type
1828 if ( inGeneric && typeInst->base ) {
1829 typeInst = ast::mutate_field(
1830 typeInst, &ast::TypeInstType::name, typeInst->base->name );
1831 }
1832
1833 if (
1834 auto typeDecl = dynamic_cast< const ast::TypeDecl * >(
1835 localSymtab->lookupType( typeInst->name ) )
1836 ) {
1837 typeInst = ast::mutate_field( typeInst, &ast::TypeInstType::kind, typeDecl->kind );
1838 }
1839
1840 return typeInst;
1841 }
1842
1843 const ast::Type * postvisit( const ast::EnumInstType * inst ) {
1844 const ast::EnumDecl * decl = localSymtab->lookupEnum( inst->name );
1845 // not a semantic error if the enum is not found, just an implicit forward declaration
1846 if ( decl ) {
1847 inst = ast::mutate_field( inst, &ast::EnumInstType::base, decl );
1848 }
1849 if ( ! decl || ! decl->body ) {
1850 // forward declaration
1851 auto mut = mutate( inst );
1852 forwardEnums.emplace( inst->name, mut );
1853 inst = mut;
1854 }
1855 return inst;
1856 }
1857
1858 void checkGenericParameters( const ast::BaseInstType * inst ) {
1859 for ( const ast::Expr * param : inst->params ) {
1860 if ( ! dynamic_cast< const ast::TypeExpr * >( param ) ) {
1861 SemanticError(
1862 location, inst, "Expression parameters for generic types are currently "
1863 "unsupported: " );
1864 }
1865 }
1866 }
1867
1868 const ast::StructInstType * postvisit( const ast::StructInstType * inst ) {
1869 const ast::StructDecl * decl = localSymtab->lookupStruct( inst->name );
1870 // not a semantic error if the struct is not found, just an implicit forward declaration
1871 if ( decl ) {
1872 inst = ast::mutate_field( inst, &ast::StructInstType::base, decl );
1873 }
1874 if ( ! decl || ! decl->body ) {
1875 // forward declaration
1876 auto mut = mutate( inst );
1877 forwardStructs.emplace( inst->name, mut );
1878 inst = mut;
1879 }
1880 checkGenericParameters( inst );
1881 return inst;
1882 }
1883
1884 const ast::UnionInstType * postvisit( const ast::UnionInstType * inst ) {
1885 const ast::UnionDecl * decl = localSymtab->lookupUnion( inst->name );
1886 // not a semantic error if the struct is not found, just an implicit forward declaration
1887 if ( decl ) {
1888 inst = ast::mutate_field( inst, &ast::UnionInstType::base, decl );
1889 }
1890 if ( ! decl || ! decl->body ) {
1891 // forward declaration
1892 auto mut = mutate( inst );
1893 forwardUnions.emplace( inst->name, mut );
1894 inst = mut;
1895 }
1896 checkGenericParameters( inst );
1897 return inst;
1898 }
1899
1900 const ast::Type * postvisit( const ast::TraitInstType * traitInst ) {
1901 // handle other traits
1902 const ast::TraitDecl * traitDecl = localSymtab->lookupTrait( traitInst->name );
1903 if ( ! traitDecl ) {
1904 SemanticError( location, "use of undeclared trait " + traitInst->name );
1905 }
1906 if ( traitDecl->params.size() != traitInst->params.size() ) {
1907 SemanticError( location, traitInst, "incorrect number of trait parameters: " );
1908 }
1909 traitInst = ast::mutate_field( traitInst, &ast::TraitInstType::base, traitDecl );
1910
1911 // need to carry over the "sized" status of each decl in the instance
1912 for ( unsigned i = 0; i < traitDecl->params.size(); ++i ) {
1913 auto expr = traitInst->params[i].as< ast::TypeExpr >();
1914 if ( ! expr ) {
1915 SemanticError(
1916 traitInst->params[i].get(), "Expression parameters for trait instances "
1917 "are currently unsupported: " );
1918 }
1919
1920 if ( auto inst = expr->type.as< ast::TypeInstType >() ) {
1921 if ( traitDecl->params[i]->sized && ! inst->base->sized ) {
1922 // traitInst = ast::mutate_field_index(
1923 // traitInst, &ast::TraitInstType::params, i,
1924 // ...
1925 // );
1926 ast::TraitInstType * mut = ast::mutate( traitInst );
1927 ast::chain_mutate( mut->params[i] )
1928 ( &ast::TypeExpr::type )
1929 ( &ast::TypeInstType::base )->sized = true;
1930 traitInst = mut;
1931 }
1932 }
1933 }
1934
1935 return traitInst;
1936 }
1937
1938 void previsit( const ast::QualifiedType * ) { visit_children = false; }
1939
1940 const ast::Type * postvisit( const ast::QualifiedType * qualType ) {
1941 // linking only makes sense for the "oldest ancestor" of the qualified type
1942 return ast::mutate_field(
1943 qualType, &ast::QualifiedType::parent, qualType->parent->accept( * visitor ) );
1944 }
1945
1946 const ast::Decl * postvisit( const ast::EnumDecl * enumDecl ) {
1947 // visit enum members first so that the types of self-referencing members are updated
1948 // properly
1949 if ( ! enumDecl->body ) return enumDecl;
1950
1951 // update forward declarations to point here
1952 auto fwds = forwardEnums.equal_range( enumDecl->name );
1953 if ( fwds.first != fwds.second ) {
1954 auto inst = fwds.first;
1955 do {
1956 // forward decl is stored * mutably * in map, can thus be updated
1957 inst->second->base = enumDecl;
1958 } while ( ++inst != fwds.second );
1959 forwardEnums.erase( fwds.first, fwds.second );
1960 }
1961
1962 // ensure that enumerator initializers are properly set
1963 for ( unsigned i = 0; i < enumDecl->members.size(); ++i ) {
1964 auto field = enumDecl->members[i].strict_as< ast::ObjectDecl >();
1965 if ( field->init ) {
1966 // need to resolve enumerator initializers early so that other passes that
1967 // determine if an expression is constexpr have appropriate information
1968 auto init = field->init.strict_as< ast::SingleInit >();
1969
1970 enumDecl = ast::mutate_field_index(
1971 enumDecl, &ast::EnumDecl::members, i,
1972 ast::mutate_field( field, &ast::ObjectDecl::init,
1973 ast::mutate_field( init, &ast::SingleInit::value,
1974 ResolvExpr::findSingleExpression(
1975 init->value, new ast::BasicType{ ast::BasicType::SignedInt },
1976 symtab ) ) ) );
1977 }
1978 }
1979
1980 return enumDecl;
1981 }
1982
1983 /// rename generic type parameters uniquely so that they do not conflict with user defined
1984 /// function forall parameters, e.g. the T in Box and the T in f, below
1985 /// forall(otype T)
1986 /// struct Box {
1987 /// T x;
1988 /// };
1989 /// forall(otype T)
1990 /// void f(Box(T) b) {
1991 /// ...
1992 /// }
1993 template< typename AggrDecl >
1994 const AggrDecl * renameGenericParams( const AggrDecl * aggr ) {
1995 GuardValue( inGeneric );
1996 inGeneric = ! aggr->params.empty();
1997
1998 for ( unsigned i = 0; i < aggr->params.size(); ++i ) {
1999 const ast::TypeDecl * td = aggr->params[i];
2000
2001 aggr = ast::mutate_field_index(
2002 aggr, &AggrDecl::params, i,
2003 ast::mutate_field( td, &ast::TypeDecl::name, "__" + td->name + "_generic_" ) );
2004 }
2005 return aggr;
2006 }
2007
2008 const ast::StructDecl * previsit( const ast::StructDecl * structDecl ) {
2009 return renameGenericParams( structDecl );
2010 }
2011
2012 void postvisit( const ast::StructDecl * structDecl ) {
2013 // visit struct members first so that the types of self-referencing members are
2014 // updated properly
2015 if ( ! structDecl->body ) return;
2016
2017 // update forward declarations to point here
2018 auto fwds = forwardStructs.equal_range( structDecl->name );
2019 if ( fwds.first != fwds.second ) {
2020 auto inst = fwds.first;
2021 do {
2022 // forward decl is stored * mutably * in map, can thus be updated
2023 inst->second->base = structDecl;
2024 } while ( ++inst != fwds.second );
2025 forwardStructs.erase( fwds.first, fwds.second );
2026 }
2027 }
2028
2029 const ast::UnionDecl * previsit( const ast::UnionDecl * unionDecl ) {
2030 return renameGenericParams( unionDecl );
2031 }
2032
2033 void postvisit( const ast::UnionDecl * unionDecl ) {
2034 // visit union members first so that the types of self-referencing members are updated
2035 // properly
2036 if ( ! unionDecl->body ) return;
2037
2038 // update forward declarations to point here
2039 auto fwds = forwardUnions.equal_range( unionDecl->name );
2040 if ( fwds.first != fwds.second ) {
2041 auto inst = fwds.first;
2042 do {
2043 // forward decl is stored * mutably * in map, can thus be updated
2044 inst->second->base = unionDecl;
2045 } while ( ++inst != fwds.second );
2046 forwardUnions.erase( fwds.first, fwds.second );
2047 }
2048 }
2049
2050 const ast::Decl * postvisit( const ast::TraitDecl * traitDecl ) {
2051 // set the "sized" status for the special "sized" trait
2052 if ( traitDecl->name == "sized" ) {
2053 assertf( traitDecl->params.size() == 1, "Built-in trait 'sized' has incorrect "
2054 "number of parameters: %zd", traitDecl->params.size() );
2055
2056 traitDecl = ast::mutate_field_index(
2057 traitDecl, &ast::TraitDecl::params, 0,
2058 ast::mutate_field(
2059 traitDecl->params.front().get(), &ast::TypeDecl::sized, true ) );
2060 }
2061
2062 // move assertions from type parameters into the body of the trait
2063 std::vector< ast::ptr< ast::DeclWithType > > added;
2064 for ( const ast::TypeDecl * td : traitDecl->params ) {
2065 for ( const ast::DeclWithType * assn : td->assertions ) {
2066 auto inst = dynamic_cast< const ast::TraitInstType * >( assn->get_type() );
2067 if ( inst ) {
2068 expandAssertions( inst, added );
2069 } else {
2070 added.emplace_back( assn );
2071 }
2072 }
2073 }
2074 if ( ! added.empty() ) {
2075 auto mut = mutate( traitDecl );
2076 for ( const ast::DeclWithType * decl : added ) {
2077 mut->members.emplace_back( decl );
2078 }
2079 traitDecl = mut;
2080 }
2081
2082 return traitDecl;
2083 }
2084 };
2085
2086 /// Replaces array and function types in forall lists by appropriate pointer type and assigns
2087 /// each object and function declaration a unique ID
2088 class ForallPointerDecay_new {
2089 const CodeLocation & location;
2090 public:
2091 ForallPointerDecay_new( const CodeLocation & loc ) : location( loc ) {}
2092
2093 const ast::ObjectDecl * previsit( const ast::ObjectDecl * obj ) {
2094 // ensure that operator names only apply to functions or function pointers
2095 if (
2096 CodeGen::isOperator( obj->name )
2097 && ! dynamic_cast< const ast::FunctionType * >( obj->type->stripDeclarator() )
2098 ) {
2099 SemanticError( obj->location, toCString( "operator ", obj->name.c_str(), " is not "
2100 "a function or function pointer." ) );
2101 }
2102
2103 // ensure object has unique ID
2104 if ( obj->uniqueId ) return obj;
2105 auto mut = mutate( obj );
2106 mut->fixUniqueId();
2107 return mut;
2108 }
2109
2110 const ast::FunctionDecl * previsit( const ast::FunctionDecl * func ) {
2111 // ensure function has unique ID
2112 if ( func->uniqueId ) return func;
2113 auto mut = mutate( func );
2114 mut->fixUniqueId();
2115 return mut;
2116 }
2117
2118 /// Fix up assertions -- flattens assertion lists, removing all trait instances
2119 template< typename node_t, typename parent_t >
2120 static const node_t * forallFixer(
2121 const CodeLocation & loc, const node_t * node,
2122 ast::FunctionType::ForallList parent_t::* forallField
2123 ) {
2124 for ( unsigned i = 0; i < (node->* forallField).size(); ++i ) {
2125 const ast::TypeDecl * type = (node->* forallField)[i];
2126 if ( type->assertions.empty() ) continue;
2127
2128 std::vector< ast::ptr< ast::DeclWithType > > asserts;
2129 asserts.reserve( type->assertions.size() );
2130
2131 // expand trait instances into their members
2132 for ( const ast::DeclWithType * assn : type->assertions ) {
2133 auto traitInst =
2134 dynamic_cast< const ast::TraitInstType * >( assn->get_type() );
2135 if ( traitInst ) {
2136 // expand trait instance to all its members
2137 expandAssertions( traitInst, asserts );
2138 } else {
2139 // pass other assertions through
2140 asserts.emplace_back( assn );
2141 }
2142 }
2143
2144 // apply FixFunction to every assertion to check for invalid void type
2145 for ( ast::ptr< ast::DeclWithType > & assn : asserts ) {
2146 bool isVoid = false;
2147 assn = fixFunction( assn, isVoid );
2148 if ( isVoid ) {
2149 SemanticError( loc, node, "invalid type void in assertion of function " );
2150 }
2151 }
2152
2153 // place mutated assertion list in node
2154 auto mut = mutate( type );
2155 mut->assertions = move( asserts );
2156 node = ast::mutate_field_index( node, forallField, i, mut );
2157 }
2158 return node;
2159 }
2160
2161 const ast::FunctionType * previsit( const ast::FunctionType * ftype ) {
2162 return forallFixer( location, ftype, &ast::FunctionType::forall );
2163 }
2164
2165 const ast::StructDecl * previsit( const ast::StructDecl * aggrDecl ) {
2166 return forallFixer( aggrDecl->location, aggrDecl, &ast::StructDecl::params );
2167 }
2168
2169 const ast::UnionDecl * previsit( const ast::UnionDecl * aggrDecl ) {
2170 return forallFixer( aggrDecl->location, aggrDecl, &ast::UnionDecl::params );
2171 }
2172 };
2173 */
2174} // anonymous namespace
2175
2176/*
2177const ast::Type * validateType(
2178 const CodeLocation & loc, const ast::Type * type, const ast::SymbolTable & symtab ) {
2179 // ast::Pass< EnumAndPointerDecay_new > epc;
2180 ast::Pass< LinkReferenceToTypes_new > lrt{ loc, symtab };
2181 ast::Pass< ForallPointerDecay_new > fpd{ loc };
2182
2183 return type->accept( lrt )->accept( fpd );
2184}
2185*/
2186
2187} // namespace SymTab
2188
2189// Local Variables: //
2190// tab-width: 4 //
2191// mode: c++ //
2192// compile-command: "make install" //
2193// End: //
Note: See TracBrowser for help on using the repository browser.