source: src/SymTab/Validate.cc@ 0050a5f

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr persistent-indexer pthread-emulation qualifiedEnum
Last change on this file since 0050a5f was 7abee38, checked in by tdelisle <tdelisle@…>, 7 years ago

Cleaned some module.mk files and preparing for better stats in the compiler

  • Property mode set to 100644
File size: 52.1 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Validate.cc --
8//
9// Author : Richard C. Bilson
10// Created On : Sun May 17 21:50:04 2015
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Mon Aug 28 13:47:23 2017
13// Update Count : 359
14//
15
16// The "validate" phase of translation is used to take a syntax tree and convert it into a standard form that aims to be
17// as regular in structure as possible. Some assumptions can be made regarding the state of the tree after this pass is
18// complete, including:
19//
20// - No nested structure or union definitions; any in the input are "hoisted" to the level of the containing struct or
21// union.
22//
23// - All enumeration constants have type EnumInstType.
24//
25// - The type "void" never occurs in lists of function parameter or return types. A function
26// taking no arguments has no argument types.
27//
28// - No context instances exist; they are all replaced by the set of declarations signified by the context, instantiated
29// by the particular set of type arguments.
30//
31// - Every declaration is assigned a unique id.
32//
33// - No typedef declarations or instances exist; the actual type is substituted for each instance.
34//
35// - Each type, struct, and union definition is followed by an appropriate assignment operator.
36//
37// - Each use of a struct or union is connected to a complete definition of that struct or union, even if that
38// definition occurs later in the input.
39
40#include "Validate.h"
41
42#include <cassert> // for assertf, assert
43#include <cstddef> // for size_t
44#include <list> // for list
45#include <string> // for string
46#include <utility> // for pair
47
48#include "CodeGen/CodeGenerator.h" // for genName
49#include "CodeGen/OperatorTable.h" // for isCtorDtor, isCtorDtorAssign
50#include "ControlStruct/Mutate.h" // for ForExprMutator
51#include "Common/Stats.h" // for Stats::Heap
52#include "Common/PassVisitor.h" // for PassVisitor, WithDeclsToAdd
53#include "Common/ScopedMap.h" // for ScopedMap
54#include "Common/SemanticError.h" // for SemanticError
55#include "Common/UniqueName.h" // for UniqueName
56#include "Common/utility.h" // for operator+, cloneAll, deleteAll
57#include "Concurrency/Keywords.h" // for applyKeywords
58#include "FixFunction.h" // for FixFunction
59#include "Indexer.h" // for Indexer
60#include "InitTweak/GenInit.h" // for fixReturnStatements
61#include "InitTweak/InitTweak.h" // for isCtorDtorAssign
62#include "Parser/LinkageSpec.h" // for C
63#include "ResolvExpr/typeops.h" // for typesCompatible
64#include "ResolvExpr/Resolver.h" // for findSingleExpression
65#include "ResolvExpr/ResolveTypeof.h" // for resolveTypeof
66#include "SymTab/Autogen.h" // for SizeType
67#include "SynTree/Attribute.h" // for noAttributes, Attribute
68#include "SynTree/Constant.h" // for Constant
69#include "SynTree/Declaration.h" // for ObjectDecl, DeclarationWithType
70#include "SynTree/Expression.h" // for CompoundLiteralExpr, Expressio...
71#include "SynTree/Initializer.h" // for ListInit, Initializer
72#include "SynTree/Label.h" // for operator==, Label
73#include "SynTree/Mutator.h" // for Mutator
74#include "SynTree/Type.h" // for Type, TypeInstType, EnumInstType
75#include "SynTree/TypeSubstitution.h" // for TypeSubstitution
76#include "SynTree/Visitor.h" // for Visitor
77#include "Validate/HandleAttributes.h" // for handleAttributes
78
79class CompoundStmt;
80class ReturnStmt;
81class SwitchStmt;
82
83#define debugPrint( x ) if ( doDebug ) x
84
85namespace SymTab {
86 /// hoists declarations that are difficult to hoist while parsing
87 struct HoistTypeDecls final : public WithDeclsToAdd {
88 void previsit( SizeofExpr * );
89 void previsit( AlignofExpr * );
90 void previsit( UntypedOffsetofExpr * );
91 void previsit( CompoundLiteralExpr * );
92 void handleType( Type * );
93 };
94
95 struct FixQualifiedTypes final : public WithIndexer {
96 Type * postmutate( QualifiedType * );
97 };
98
99 struct HoistStruct final : public WithDeclsToAdd, public WithGuards {
100 /// Flattens nested struct types
101 static void hoistStruct( std::list< Declaration * > &translationUnit );
102
103 void previsit( StructDecl * aggregateDecl );
104 void previsit( UnionDecl * aggregateDecl );
105 void previsit( StaticAssertDecl * assertDecl );
106 void previsit( StructInstType * type );
107 void previsit( UnionInstType * type );
108 void previsit( EnumInstType * type );
109
110 private:
111 template< typename AggDecl > void handleAggregate( AggDecl *aggregateDecl );
112
113 AggregateDecl * parentAggr = nullptr;
114 };
115
116 /// Fix return types so that every function returns exactly one value
117 struct ReturnTypeFixer {
118 static void fix( std::list< Declaration * > &translationUnit );
119
120 void postvisit( FunctionDecl * functionDecl );
121 void postvisit( FunctionType * ftype );
122 };
123
124 /// Replaces enum types by int, and function or array types in function parameter and return lists by appropriate pointers.
125 struct EnumAndPointerDecay {
126 void previsit( EnumDecl *aggregateDecl );
127 void previsit( FunctionType *func );
128 };
129
130 /// Associates forward declarations of aggregates with their definitions
131 struct LinkReferenceToTypes final : public WithIndexer, public WithGuards, public WithVisitorRef<LinkReferenceToTypes>, public WithShortCircuiting {
132 LinkReferenceToTypes( const Indexer *indexer );
133 void postvisit( TypeInstType *typeInst );
134
135 void postvisit( EnumInstType *enumInst );
136 void postvisit( StructInstType *structInst );
137 void postvisit( UnionInstType *unionInst );
138 void postvisit( TraitInstType *traitInst );
139 void previsit( QualifiedType * qualType );
140 void postvisit( QualifiedType * qualType );
141
142 void postvisit( EnumDecl *enumDecl );
143 void postvisit( StructDecl *structDecl );
144 void postvisit( UnionDecl *unionDecl );
145 void postvisit( TraitDecl * traitDecl );
146
147 void previsit( StructDecl *structDecl );
148 void previsit( UnionDecl *unionDecl );
149
150 void renameGenericParams( std::list< TypeDecl * > & params );
151
152 private:
153 const Indexer *local_indexer;
154
155 typedef std::map< std::string, std::list< EnumInstType * > > ForwardEnumsType;
156 typedef std::map< std::string, std::list< StructInstType * > > ForwardStructsType;
157 typedef std::map< std::string, std::list< UnionInstType * > > ForwardUnionsType;
158 ForwardEnumsType forwardEnums;
159 ForwardStructsType forwardStructs;
160 ForwardUnionsType forwardUnions;
161 /// true if currently in a generic type body, so that type parameter instances can be renamed appropriately
162 bool inGeneric = false;
163 };
164
165 /// Replaces array and function types in forall lists by appropriate pointer type and assigns each Object and Function declaration a unique ID.
166 struct ForallPointerDecay final {
167 void previsit( ObjectDecl * object );
168 void previsit( FunctionDecl * func );
169 void previsit( FunctionType * ftype );
170 void previsit( StructDecl * aggrDecl );
171 void previsit( UnionDecl * aggrDecl );
172 };
173
174 struct ReturnChecker : public WithGuards {
175 /// Checks that return statements return nothing if their return type is void
176 /// and return something if the return type is non-void.
177 static void checkFunctionReturns( std::list< Declaration * > & translationUnit );
178
179 void previsit( FunctionDecl * functionDecl );
180 void previsit( ReturnStmt * returnStmt );
181
182 typedef std::list< DeclarationWithType * > ReturnVals;
183 ReturnVals returnVals;
184 };
185
186 struct ReplaceTypedef final : public WithVisitorRef<ReplaceTypedef>, public WithGuards, public WithShortCircuiting, public WithDeclsToAdd {
187 ReplaceTypedef() : scopeLevel( 0 ) {}
188 /// Replaces typedefs by forward declarations
189 static void replaceTypedef( std::list< Declaration * > &translationUnit );
190
191 void premutate( QualifiedType * );
192 Type * postmutate( QualifiedType * qualType );
193 Type * postmutate( TypeInstType * aggregateUseType );
194 Declaration * postmutate( TypedefDecl * typeDecl );
195 void premutate( TypeDecl * typeDecl );
196 void premutate( FunctionDecl * funcDecl );
197 void premutate( ObjectDecl * objDecl );
198 DeclarationWithType * postmutate( ObjectDecl * objDecl );
199
200 void premutate( CastExpr * castExpr );
201
202 void premutate( CompoundStmt * compoundStmt );
203
204 void premutate( StructDecl * structDecl );
205 void premutate( UnionDecl * unionDecl );
206 void premutate( EnumDecl * enumDecl );
207 void premutate( TraitDecl * );
208
209 void premutate( FunctionType * ftype );
210
211 private:
212 template<typename AggDecl>
213 void addImplicitTypedef( AggDecl * aggDecl );
214 template< typename AggDecl >
215 void handleAggregate( AggDecl * aggr );
216
217 typedef std::unique_ptr<TypedefDecl> TypedefDeclPtr;
218 typedef ScopedMap< std::string, std::pair< TypedefDeclPtr, int > > TypedefMap;
219 typedef ScopedMap< std::string, TypeDecl * > TypeDeclMap;
220 TypedefMap typedefNames;
221 TypeDeclMap typedeclNames;
222 int scopeLevel;
223 bool inFunctionType = false;
224 };
225
226 struct EliminateTypedef {
227 /// removes TypedefDecls from the AST
228 static void eliminateTypedef( std::list< Declaration * > &translationUnit );
229
230 template<typename AggDecl>
231 void handleAggregate( AggDecl *aggregateDecl );
232
233 void previsit( StructDecl * aggregateDecl );
234 void previsit( UnionDecl * aggregateDecl );
235 void previsit( CompoundStmt * compoundStmt );
236 };
237
238 struct VerifyCtorDtorAssign {
239 /// ensure that constructors, destructors, and assignment have at least one
240 /// parameter, the first of which must be a pointer, and that ctor/dtors have no
241 /// return values.
242 static void verify( std::list< Declaration * > &translationUnit );
243
244 void previsit( FunctionDecl *funcDecl );
245 };
246
247 /// ensure that generic types have the correct number of type arguments
248 struct ValidateGenericParameters {
249 void previsit( StructInstType * inst );
250 void previsit( UnionInstType * inst );
251 };
252
253 struct FixObjectType : public WithIndexer {
254 /// resolves typeof type in object, function, and type declarations
255 static void fix( std::list< Declaration * > & translationUnit );
256
257 void previsit( ObjectDecl * );
258 void previsit( FunctionDecl * );
259 void previsit( TypeDecl * );
260 };
261
262 struct ArrayLength : public WithIndexer {
263 /// for array types without an explicit length, compute the length and store it so that it
264 /// is known to the rest of the phases. For example,
265 /// int x[] = { 1, 2, 3 };
266 /// int y[][2] = { { 1, 2, 3 }, { 1, 2, 3 } };
267 /// here x and y are known at compile-time to have length 3, so change this into
268 /// int x[3] = { 1, 2, 3 };
269 /// int y[3][2] = { { 1, 2, 3 }, { 1, 2, 3 } };
270 static void computeLength( std::list< Declaration * > & translationUnit );
271
272 void previsit( ObjectDecl * objDecl );
273 void previsit( ArrayType * arrayType );
274 };
275
276 struct CompoundLiteral final : public WithDeclsToAdd, public WithVisitorRef<CompoundLiteral> {
277 Type::StorageClasses storageClasses;
278
279 void premutate( ObjectDecl *objectDecl );
280 Expression * postmutate( CompoundLiteralExpr *compLitExpr );
281 };
282
283 struct LabelAddressFixer final : public WithGuards {
284 std::set< Label > labels;
285
286 void premutate( FunctionDecl * funcDecl );
287 Expression * postmutate( AddressExpr * addrExpr );
288 };
289
290 FunctionDecl * dereferenceOperator = nullptr;
291 struct FindSpecialDeclarations final {
292 void previsit( FunctionDecl * funcDecl );
293 };
294
295 void validate( std::list< Declaration * > &translationUnit, __attribute__((unused)) bool doDebug ) {
296 PassVisitor<EnumAndPointerDecay> epc;
297 PassVisitor<LinkReferenceToTypes> lrt( nullptr );
298 PassVisitor<ForallPointerDecay> fpd;
299 PassVisitor<CompoundLiteral> compoundliteral;
300 PassVisitor<ValidateGenericParameters> genericParams;
301 PassVisitor<FindSpecialDeclarations> finder;
302 PassVisitor<LabelAddressFixer> labelAddrFixer;
303 PassVisitor<HoistTypeDecls> hoistDecls;
304 PassVisitor<FixQualifiedTypes> fixQual;
305
306 Stats::Heap::newPass("validate-A");
307 acceptAll( translationUnit, hoistDecls );
308 ReplaceTypedef::replaceTypedef( translationUnit );
309 ReturnTypeFixer::fix( translationUnit ); // must happen before autogen
310 acceptAll( translationUnit, epc ); // must happen before VerifyCtorDtorAssign, because void return objects should not exist; before LinkReferenceToTypes because it is an indexer and needs correct types for mangling
311 Stats::Heap::newPass("validate-B");
312 acceptAll( translationUnit, lrt ); // must happen before autogen, because sized flag needs to propagate to generated functions
313 mutateAll( translationUnit, fixQual ); // must happen after LinkReferenceToTypes, because aggregate members are accessed
314 HoistStruct::hoistStruct( translationUnit ); // must happen after EliminateTypedef, so that aggregate typedefs occur in the correct order
315 EliminateTypedef::eliminateTypedef( translationUnit ); //
316 Stats::Heap::newPass("validate-C");
317 acceptAll( translationUnit, genericParams ); // check as early as possible - can't happen before LinkReferenceToTypes
318 VerifyCtorDtorAssign::verify( translationUnit ); // must happen before autogen, because autogen examines existing ctor/dtors
319 ReturnChecker::checkFunctionReturns( translationUnit );
320 InitTweak::fixReturnStatements( translationUnit ); // must happen before autogen
321 Stats::Heap::newPass("validate-D");
322 Concurrency::applyKeywords( translationUnit );
323 acceptAll( translationUnit, fpd ); // must happen before autogenerateRoutines, after Concurrency::applyKeywords because uniqueIds must be set on declaration before resolution
324 ControlStruct::hoistControlDecls( translationUnit ); // hoist initialization out of for statements; must happen before autogenerateRoutines
325 autogenerateRoutines( translationUnit ); // moved up, used to be below compoundLiteral - currently needs EnumAndPointerDecay
326 Stats::Heap::newPass("validate-E");
327 Concurrency::implementMutexFuncs( translationUnit );
328 Concurrency::implementThreadStarter( translationUnit );
329 mutateAll( translationUnit, compoundliteral );
330 ResolvExpr::resolveWithExprs( translationUnit ); // must happen before FixObjectType because user-code is resolved and may contain with variables
331 Stats::Heap::newPass("validate-F");
332 FixObjectType::fix( translationUnit );
333 ArrayLength::computeLength( translationUnit );
334 acceptAll( translationUnit, finder ); // xxx - remove this pass soon
335 mutateAll( translationUnit, labelAddrFixer );
336 Validate::handleAttributes( translationUnit );
337 }
338
339 void validateType( Type *type, const Indexer *indexer ) {
340 PassVisitor<EnumAndPointerDecay> epc;
341 PassVisitor<LinkReferenceToTypes> lrt( indexer );
342 PassVisitor<ForallPointerDecay> fpd;
343 type->accept( epc );
344 type->accept( lrt );
345 type->accept( fpd );
346 }
347
348
349 void HoistTypeDecls::handleType( Type * type ) {
350 // some type declarations are buried in expressions and not easy to hoist during parsing; hoist them here
351 AggregateDecl * aggr = nullptr;
352 if ( StructInstType * inst = dynamic_cast< StructInstType * >( type ) ) {
353 aggr = inst->baseStruct;
354 } else if ( UnionInstType * inst = dynamic_cast< UnionInstType * >( type ) ) {
355 aggr = inst->baseUnion;
356 } else if ( EnumInstType * inst = dynamic_cast< EnumInstType * >( type ) ) {
357 aggr = inst->baseEnum;
358 }
359 if ( aggr && aggr->body ) {
360 declsToAddBefore.push_front( aggr );
361 }
362 }
363
364 void HoistTypeDecls::previsit( SizeofExpr * expr ) {
365 handleType( expr->type );
366 }
367
368 void HoistTypeDecls::previsit( AlignofExpr * expr ) {
369 handleType( expr->type );
370 }
371
372 void HoistTypeDecls::previsit( UntypedOffsetofExpr * expr ) {
373 handleType( expr->type );
374 }
375
376 void HoistTypeDecls::previsit( CompoundLiteralExpr * expr ) {
377 handleType( expr->result );
378 }
379
380
381 Type * FixQualifiedTypes::postmutate( QualifiedType * qualType ) {
382 Type * parent = qualType->parent;
383 Type * child = qualType->child;
384 if ( dynamic_cast< GlobalScopeType * >( qualType->parent ) ) {
385 // .T => lookup T at global scope
386 if ( TypeInstType * inst = dynamic_cast< TypeInstType * >( child ) ) {
387 auto td = indexer.globalLookupType( inst->name );
388 if ( ! td ) {
389 SemanticError( qualType->location, toString("Use of undefined global type ", inst->name) );
390 }
391 auto base = td->base;
392 assert( base );
393 Type * ret = base->clone();
394 ret->get_qualifiers() = qualType->get_qualifiers();
395 return ret;
396 } else {
397 // .T => T is not a type name
398 assertf( false, "unhandled global qualified child type: %s", toCString(child) );
399 }
400 } else {
401 // S.T => S must be an aggregate type, find the declaration for T in S.
402 AggregateDecl * aggr = nullptr;
403 if ( StructInstType * inst = dynamic_cast< StructInstType * >( parent ) ) {
404 aggr = inst->baseStruct;
405 } else if ( UnionInstType * inst = dynamic_cast< UnionInstType * > ( parent ) ) {
406 aggr = inst->baseUnion;
407 } else {
408 SemanticError( qualType->location, toString("Qualified type requires an aggregate on the left, but has: ", parent) );
409 }
410 assert( aggr ); // TODO: need to handle forward declarations
411 for ( Declaration * member : aggr->members ) {
412 if ( TypeInstType * inst = dynamic_cast< TypeInstType * >( child ) ) {
413 // name on the right is a typedef
414 if ( NamedTypeDecl * aggr = dynamic_cast< NamedTypeDecl * > ( member ) ) {
415 if ( aggr->name == inst->name ) {
416 assert( aggr->base );
417 Type * ret = aggr->base->clone();
418 ret->get_qualifiers() = qualType->get_qualifiers();
419 TypeSubstitution sub = parent->genericSubstitution();
420 sub.apply(ret);
421 return ret;
422 }
423 }
424 } else {
425 // S.T - S is not an aggregate => error
426 assertf( false, "unhandled qualified child type: %s", toCString(qualType) );
427 }
428 }
429 // failed to find a satisfying definition of type
430 SemanticError( qualType->location, toString("Undefined type in qualified type: ", qualType) );
431 }
432
433 // ... may want to link canonical SUE definition to each forward decl so that it becomes easier to lookup?
434 }
435
436
437 void HoistStruct::hoistStruct( std::list< Declaration * > &translationUnit ) {
438 PassVisitor<HoistStruct> hoister;
439 acceptAll( translationUnit, hoister );
440 }
441
442 bool shouldHoist( Declaration *decl ) {
443 return dynamic_cast< StructDecl * >( decl ) || dynamic_cast< UnionDecl * >( decl ) || dynamic_cast< StaticAssertDecl * >( decl );
444 }
445
446 namespace {
447 void qualifiedName( AggregateDecl * aggr, std::ostringstream & ss ) {
448 if ( aggr->parent ) qualifiedName( aggr->parent, ss );
449 ss << "__" << aggr->name;
450 }
451
452 // mangle nested type names using entire parent chain
453 std::string qualifiedName( AggregateDecl * aggr ) {
454 std::ostringstream ss;
455 qualifiedName( aggr, ss );
456 return ss.str();
457 }
458 }
459
460 template< typename AggDecl >
461 void HoistStruct::handleAggregate( AggDecl *aggregateDecl ) {
462 if ( parentAggr ) {
463 aggregateDecl->parent = parentAggr;
464 aggregateDecl->name = qualifiedName( aggregateDecl );
465 // Add elements in stack order corresponding to nesting structure.
466 declsToAddBefore.push_front( aggregateDecl );
467 } else {
468 GuardValue( parentAggr );
469 parentAggr = aggregateDecl;
470 } // if
471 // Always remove the hoisted aggregate from the inner structure.
472 GuardAction( [aggregateDecl]() { filter( aggregateDecl->members, shouldHoist, false ); } );
473 }
474
475 void HoistStruct::previsit( StaticAssertDecl * assertDecl ) {
476 if ( parentAggr ) {
477 declsToAddBefore.push_back( assertDecl );
478 }
479 }
480
481 void HoistStruct::previsit( StructDecl * aggregateDecl ) {
482 handleAggregate( aggregateDecl );
483 }
484
485 void HoistStruct::previsit( UnionDecl * aggregateDecl ) {
486 handleAggregate( aggregateDecl );
487 }
488
489 void HoistStruct::previsit( StructInstType * type ) {
490 // need to reset type name after expanding to qualified name
491 assert( type->baseStruct );
492 type->name = type->baseStruct->name;
493 }
494
495 void HoistStruct::previsit( UnionInstType * type ) {
496 assert( type->baseUnion );
497 type->name = type->baseUnion->name;
498 }
499
500 void HoistStruct::previsit( EnumInstType * type ) {
501 assert( type->baseEnum );
502 type->name = type->baseEnum->name;
503 }
504
505
506 bool isTypedef( Declaration *decl ) {
507 return dynamic_cast< TypedefDecl * >( decl );
508 }
509
510 void EliminateTypedef::eliminateTypedef( std::list< Declaration * > &translationUnit ) {
511 PassVisitor<EliminateTypedef> eliminator;
512 acceptAll( translationUnit, eliminator );
513 filter( translationUnit, isTypedef, true );
514 }
515
516 template< typename AggDecl >
517 void EliminateTypedef::handleAggregate( AggDecl *aggregateDecl ) {
518 filter( aggregateDecl->members, isTypedef, true );
519 }
520
521 void EliminateTypedef::previsit( StructDecl * aggregateDecl ) {
522 handleAggregate( aggregateDecl );
523 }
524
525 void EliminateTypedef::previsit( UnionDecl * aggregateDecl ) {
526 handleAggregate( aggregateDecl );
527 }
528
529 void EliminateTypedef::previsit( CompoundStmt * compoundStmt ) {
530 // remove and delete decl stmts
531 filter( compoundStmt->kids, [](Statement * stmt) {
532 if ( DeclStmt *declStmt = dynamic_cast< DeclStmt * >( stmt ) ) {
533 if ( dynamic_cast< TypedefDecl * >( declStmt->decl ) ) {
534 return true;
535 } // if
536 } // if
537 return false;
538 }, true);
539 }
540
541 void EnumAndPointerDecay::previsit( EnumDecl *enumDecl ) {
542 // Set the type of each member of the enumeration to be EnumConstant
543 for ( std::list< Declaration * >::iterator i = enumDecl->members.begin(); i != enumDecl->members.end(); ++i ) {
544 ObjectDecl * obj = dynamic_cast< ObjectDecl * >( *i );
545 assert( obj );
546 obj->set_type( new EnumInstType( Type::Qualifiers( Type::Const ), enumDecl->name ) );
547 } // for
548 }
549
550 namespace {
551 template< typename DWTList >
552 void fixFunctionList( DWTList & dwts, bool isVarArgs, FunctionType * func ) {
553 auto nvals = dwts.size();
554 bool containsVoid = false;
555 for ( auto & dwt : dwts ) {
556 // fix each DWT and record whether a void was found
557 containsVoid |= fixFunction( dwt );
558 }
559
560 // the only case in which "void" is valid is where it is the only one in the list
561 if ( containsVoid && ( nvals > 1 || isVarArgs ) ) {
562 SemanticError( func, "invalid type void in function type " );
563 }
564
565 // one void is the only thing in the list; remove it.
566 if ( containsVoid ) {
567 delete dwts.front();
568 dwts.clear();
569 }
570 }
571 }
572
573 void EnumAndPointerDecay::previsit( FunctionType *func ) {
574 // Fix up parameters and return types
575 fixFunctionList( func->parameters, func->isVarArgs, func );
576 fixFunctionList( func->returnVals, false, func );
577 }
578
579 LinkReferenceToTypes::LinkReferenceToTypes( const Indexer *other_indexer ) {
580 if ( other_indexer ) {
581 local_indexer = other_indexer;
582 } else {
583 local_indexer = &indexer;
584 } // if
585 }
586
587 void LinkReferenceToTypes::postvisit( EnumInstType *enumInst ) {
588 EnumDecl *st = local_indexer->lookupEnum( enumInst->name );
589 // it's not a semantic error if the enum is not found, just an implicit forward declaration
590 if ( st ) {
591 enumInst->baseEnum = st;
592 } // if
593 if ( ! st || ! st->body ) {
594 // use of forward declaration
595 forwardEnums[ enumInst->name ].push_back( enumInst );
596 } // if
597 }
598
599 void checkGenericParameters( ReferenceToType * inst ) {
600 for ( Expression * param : inst->parameters ) {
601 if ( ! dynamic_cast< TypeExpr * >( param ) ) {
602 SemanticError( inst, "Expression parameters for generic types are currently unsupported: " );
603 }
604 }
605 }
606
607 void LinkReferenceToTypes::postvisit( StructInstType *structInst ) {
608 StructDecl *st = local_indexer->lookupStruct( structInst->name );
609 // it's not a semantic error if the struct is not found, just an implicit forward declaration
610 if ( st ) {
611 structInst->baseStruct = st;
612 } // if
613 if ( ! st || ! st->body ) {
614 // use of forward declaration
615 forwardStructs[ structInst->name ].push_back( structInst );
616 } // if
617 checkGenericParameters( structInst );
618 }
619
620 void LinkReferenceToTypes::postvisit( UnionInstType *unionInst ) {
621 UnionDecl *un = local_indexer->lookupUnion( unionInst->name );
622 // it's not a semantic error if the union is not found, just an implicit forward declaration
623 if ( un ) {
624 unionInst->baseUnion = un;
625 } // if
626 if ( ! un || ! un->body ) {
627 // use of forward declaration
628 forwardUnions[ unionInst->name ].push_back( unionInst );
629 } // if
630 checkGenericParameters( unionInst );
631 }
632
633 void LinkReferenceToTypes::previsit( QualifiedType * ) {
634 visit_children = false;
635 }
636
637 void LinkReferenceToTypes::postvisit( QualifiedType * qualType ) {
638 // linking only makes sense for the 'oldest ancestor' of the qualified type
639 qualType->parent->accept( *visitor );
640 }
641
642 template< typename Decl >
643 void normalizeAssertions( std::list< Decl * > & assertions ) {
644 // ensure no duplicate trait members after the clone
645 auto pred = [](Decl * d1, Decl * d2) {
646 // only care if they're equal
647 DeclarationWithType * dwt1 = dynamic_cast<DeclarationWithType *>( d1 );
648 DeclarationWithType * dwt2 = dynamic_cast<DeclarationWithType *>( d2 );
649 if ( dwt1 && dwt2 ) {
650 if ( dwt1->name == dwt2->name && ResolvExpr::typesCompatible( dwt1->get_type(), dwt2->get_type(), SymTab::Indexer() ) ) {
651 // std::cerr << "=========== equal:" << std::endl;
652 // std::cerr << "d1: " << d1 << std::endl;
653 // std::cerr << "d2: " << d2 << std::endl;
654 return false;
655 }
656 }
657 return d1 < d2;
658 };
659 std::set<Decl *, decltype(pred)> unique_members( assertions.begin(), assertions.end(), pred );
660 // if ( unique_members.size() != assertions.size() ) {
661 // std::cerr << "============different" << std::endl;
662 // std::cerr << unique_members.size() << " " << assertions.size() << std::endl;
663 // }
664
665 std::list< Decl * > order;
666 order.splice( order.end(), assertions );
667 std::copy_if( order.begin(), order.end(), back_inserter( assertions ), [&]( Decl * decl ) {
668 return unique_members.count( decl );
669 });
670 }
671
672 // expand assertions from trait instance, performing the appropriate type variable substitutions
673 template< typename Iterator >
674 void expandAssertions( TraitInstType * inst, Iterator out ) {
675 assertf( inst->baseTrait, "Trait instance not linked to base trait: %s", toCString( inst ) );
676 std::list< DeclarationWithType * > asserts;
677 for ( Declaration * decl : inst->baseTrait->members ) {
678 asserts.push_back( strict_dynamic_cast<DeclarationWithType *>( decl->clone() ) );
679 }
680 // substitute trait decl parameters for instance parameters
681 applySubstitution( inst->baseTrait->parameters.begin(), inst->baseTrait->parameters.end(), inst->parameters.begin(), asserts.begin(), asserts.end(), out );
682 }
683
684 void LinkReferenceToTypes::postvisit( TraitDecl * traitDecl ) {
685 if ( traitDecl->name == "sized" ) {
686 // "sized" is a special trait - flick the sized status on for the type variable
687 assertf( traitDecl->parameters.size() == 1, "Built-in trait 'sized' has incorrect number of parameters: %zd", traitDecl->parameters.size() );
688 TypeDecl * td = traitDecl->parameters.front();
689 td->set_sized( true );
690 }
691
692 // move assertions from type parameters into the body of the trait
693 for ( TypeDecl * td : traitDecl->parameters ) {
694 for ( DeclarationWithType * assert : td->assertions ) {
695 if ( TraitInstType * inst = dynamic_cast< TraitInstType * >( assert->get_type() ) ) {
696 expandAssertions( inst, back_inserter( traitDecl->members ) );
697 } else {
698 traitDecl->members.push_back( assert->clone() );
699 }
700 }
701 deleteAll( td->assertions );
702 td->assertions.clear();
703 } // for
704 }
705
706 void LinkReferenceToTypes::postvisit( TraitInstType * traitInst ) {
707 // handle other traits
708 TraitDecl *traitDecl = local_indexer->lookupTrait( traitInst->name );
709 if ( ! traitDecl ) {
710 SemanticError( traitInst->location, "use of undeclared trait " + traitInst->name );
711 } // if
712 if ( traitDecl->parameters.size() != traitInst->parameters.size() ) {
713 SemanticError( traitInst, "incorrect number of trait parameters: " );
714 } // if
715 traitInst->baseTrait = traitDecl;
716
717 // need to carry over the 'sized' status of each decl in the instance
718 for ( auto p : group_iterate( traitDecl->parameters, traitInst->parameters ) ) {
719 TypeExpr * expr = dynamic_cast< TypeExpr * >( std::get<1>(p) );
720 if ( ! expr ) {
721 SemanticError( std::get<1>(p), "Expression parameters for trait instances are currently unsupported: " );
722 }
723 if ( TypeInstType * inst = dynamic_cast< TypeInstType * >( expr->get_type() ) ) {
724 TypeDecl * formalDecl = std::get<0>(p);
725 TypeDecl * instDecl = inst->baseType;
726 if ( formalDecl->get_sized() ) instDecl->set_sized( true );
727 }
728 }
729 // normalizeAssertions( traitInst->members );
730 }
731
732 void LinkReferenceToTypes::postvisit( EnumDecl *enumDecl ) {
733 // visit enum members first so that the types of self-referencing members are updated properly
734 if ( enumDecl->body ) {
735 ForwardEnumsType::iterator fwds = forwardEnums.find( enumDecl->name );
736 if ( fwds != forwardEnums.end() ) {
737 for ( std::list< EnumInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) {
738 (*inst)->baseEnum = enumDecl;
739 } // for
740 forwardEnums.erase( fwds );
741 } // if
742
743 for ( Declaration * member : enumDecl->members ) {
744 ObjectDecl * field = strict_dynamic_cast<ObjectDecl *>( member );
745 if ( field->init ) {
746 // need to resolve enumerator initializers early so that other passes that determine if an expression is constexpr have the appropriate information.
747 SingleInit * init = strict_dynamic_cast<SingleInit *>( field->init );
748 ResolvExpr::findSingleExpression( init->value, new BasicType( Type::Qualifiers(), BasicType::SignedInt ), indexer );
749 }
750 }
751 } // if
752 }
753
754 void LinkReferenceToTypes::renameGenericParams( std::list< TypeDecl * > & params ) {
755 // rename generic type parameters uniquely so that they do not conflict with user-defined function forall parameters, e.g.
756 // forall(otype T)
757 // struct Box {
758 // T x;
759 // };
760 // forall(otype T)
761 // void f(Box(T) b) {
762 // ...
763 // }
764 // The T in Box and the T in f are different, so internally the naming must reflect that.
765 GuardValue( inGeneric );
766 inGeneric = ! params.empty();
767 for ( TypeDecl * td : params ) {
768 td->name = "__" + td->name + "_generic_";
769 }
770 }
771
772 void LinkReferenceToTypes::previsit( StructDecl * structDecl ) {
773 renameGenericParams( structDecl->parameters );
774 }
775
776 void LinkReferenceToTypes::previsit( UnionDecl * unionDecl ) {
777 renameGenericParams( unionDecl->parameters );
778 }
779
780 void LinkReferenceToTypes::postvisit( StructDecl *structDecl ) {
781 // visit struct members first so that the types of self-referencing members are updated properly
782 // xxx - need to ensure that type parameters match up between forward declarations and definition (most importantly, number of type parameters and their defaults)
783 if ( structDecl->body ) {
784 ForwardStructsType::iterator fwds = forwardStructs.find( structDecl->name );
785 if ( fwds != forwardStructs.end() ) {
786 for ( std::list< StructInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) {
787 (*inst)->baseStruct = structDecl;
788 } // for
789 forwardStructs.erase( fwds );
790 } // if
791 } // if
792 }
793
794 void LinkReferenceToTypes::postvisit( UnionDecl *unionDecl ) {
795 if ( unionDecl->body ) {
796 ForwardUnionsType::iterator fwds = forwardUnions.find( unionDecl->name );
797 if ( fwds != forwardUnions.end() ) {
798 for ( std::list< UnionInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) {
799 (*inst)->baseUnion = unionDecl;
800 } // for
801 forwardUnions.erase( fwds );
802 } // if
803 } // if
804 }
805
806 void LinkReferenceToTypes::postvisit( TypeInstType *typeInst ) {
807 // ensure generic parameter instances are renamed like the base type
808 if ( inGeneric && typeInst->baseType ) typeInst->name = typeInst->baseType->name;
809 if ( NamedTypeDecl *namedTypeDecl = local_indexer->lookupType( typeInst->name ) ) {
810 if ( TypeDecl *typeDecl = dynamic_cast< TypeDecl * >( namedTypeDecl ) ) {
811 typeInst->set_isFtype( typeDecl->get_kind() == TypeDecl::Ftype );
812 } // if
813 } // if
814 }
815
816 /// Fix up assertions - flattens assertion lists, removing all trait instances
817 void forallFixer( std::list< TypeDecl * > & forall, BaseSyntaxNode * node ) {
818 for ( TypeDecl * type : forall ) {
819 std::list< DeclarationWithType * > asserts;
820 asserts.splice( asserts.end(), type->assertions );
821 // expand trait instances into their members
822 for ( DeclarationWithType * assertion : asserts ) {
823 if ( TraitInstType *traitInst = dynamic_cast< TraitInstType * >( assertion->get_type() ) ) {
824 // expand trait instance into all of its members
825 expandAssertions( traitInst, back_inserter( type->assertions ) );
826 delete traitInst;
827 } else {
828 // pass other assertions through
829 type->assertions.push_back( assertion );
830 } // if
831 } // for
832 // apply FixFunction to every assertion to check for invalid void type
833 for ( DeclarationWithType *& assertion : type->assertions ) {
834 bool isVoid = fixFunction( assertion );
835 if ( isVoid ) {
836 SemanticError( node, "invalid type void in assertion of function " );
837 } // if
838 } // for
839 // normalizeAssertions( type->assertions );
840 } // for
841 }
842
843 void ForallPointerDecay::previsit( ObjectDecl *object ) {
844 // ensure that operator names only apply to functions or function pointers
845 if ( CodeGen::isOperator( object->name ) && ! dynamic_cast< FunctionType * >( object->type->stripDeclarator() ) ) {
846 SemanticError( object->location, toCString( "operator ", object->name.c_str(), " is not a function or function pointer." ) );
847 }
848 object->fixUniqueId();
849 }
850
851 void ForallPointerDecay::previsit( FunctionDecl *func ) {
852 func->fixUniqueId();
853 }
854
855 void ForallPointerDecay::previsit( FunctionType * ftype ) {
856 forallFixer( ftype->forall, ftype );
857 }
858
859 void ForallPointerDecay::previsit( StructDecl * aggrDecl ) {
860 forallFixer( aggrDecl->parameters, aggrDecl );
861 }
862
863 void ForallPointerDecay::previsit( UnionDecl * aggrDecl ) {
864 forallFixer( aggrDecl->parameters, aggrDecl );
865 }
866
867 void ReturnChecker::checkFunctionReturns( std::list< Declaration * > & translationUnit ) {
868 PassVisitor<ReturnChecker> checker;
869 acceptAll( translationUnit, checker );
870 }
871
872 void ReturnChecker::previsit( FunctionDecl * functionDecl ) {
873 GuardValue( returnVals );
874 returnVals = functionDecl->get_functionType()->get_returnVals();
875 }
876
877 void ReturnChecker::previsit( ReturnStmt * returnStmt ) {
878 // Previously this also checked for the existence of an expr paired with no return values on
879 // the function return type. This is incorrect, since you can have an expression attached to
880 // a return statement in a void-returning function in C. The expression is treated as if it
881 // were cast to void.
882 if ( ! returnStmt->get_expr() && returnVals.size() != 0 ) {
883 SemanticError( returnStmt, "Non-void function returns no values: " );
884 }
885 }
886
887
888 void ReplaceTypedef::replaceTypedef( std::list< Declaration * > &translationUnit ) {
889 PassVisitor<ReplaceTypedef> eliminator;
890 mutateAll( translationUnit, eliminator );
891 if ( eliminator.pass.typedefNames.count( "size_t" ) ) {
892 // grab and remember declaration of size_t
893 SizeType = eliminator.pass.typedefNames["size_t"].first->base->clone();
894 } else {
895 // xxx - missing global typedef for size_t - default to long unsigned int, even though that may be wrong
896 // eventually should have a warning for this case.
897 SizeType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
898 }
899 }
900
901 void ReplaceTypedef::premutate( QualifiedType * ) {
902 visit_children = false;
903 }
904
905 Type * ReplaceTypedef::postmutate( QualifiedType * qualType ) {
906 // replacing typedefs only makes sense for the 'oldest ancestor' of the qualified type
907 qualType->parent = qualType->parent->acceptMutator( *visitor );
908 return qualType;
909 }
910
911 Type * ReplaceTypedef::postmutate( TypeInstType * typeInst ) {
912 // instances of typedef types will come here. If it is an instance
913 // of a typdef type, link the instance to its actual type.
914 TypedefMap::const_iterator def = typedefNames.find( typeInst->name );
915 if ( def != typedefNames.end() ) {
916 Type *ret = def->second.first->base->clone();
917 ret->location = typeInst->location;
918 ret->get_qualifiers() |= typeInst->get_qualifiers();
919 // attributes are not carried over from typedef to function parameters/return values
920 if ( ! inFunctionType ) {
921 ret->attributes.splice( ret->attributes.end(), typeInst->attributes );
922 } else {
923 deleteAll( ret->attributes );
924 ret->attributes.clear();
925 }
926 // place instance parameters on the typedef'd type
927 if ( ! typeInst->parameters.empty() ) {
928 ReferenceToType *rtt = dynamic_cast<ReferenceToType*>(ret);
929 if ( ! rtt ) {
930 SemanticError( typeInst->location, "Cannot apply type parameters to base type of " + typeInst->name );
931 }
932 rtt->parameters.clear();
933 cloneAll( typeInst->parameters, rtt->parameters );
934 mutateAll( rtt->parameters, *visitor ); // recursively fix typedefs on parameters
935 } // if
936 delete typeInst;
937 return ret;
938 } else {
939 TypeDeclMap::const_iterator base = typedeclNames.find( typeInst->name );
940 if ( base == typedeclNames.end() ) {
941 SemanticError( typeInst->location, toString("Use of undefined type ", typeInst->name) );
942 }
943 typeInst->set_baseType( base->second );
944 return typeInst;
945 } // if
946 assert( false );
947 }
948
949 struct VarLenChecker : WithShortCircuiting {
950 void previsit( FunctionType * ) { visit_children = false; }
951 void previsit( ArrayType * at ) {
952 isVarLen |= at->isVarLen;
953 }
954 bool isVarLen = false;
955 };
956
957 bool isVariableLength( Type * t ) {
958 PassVisitor<VarLenChecker> varLenChecker;
959 maybeAccept( t, varLenChecker );
960 return varLenChecker.pass.isVarLen;
961 }
962
963 Declaration * ReplaceTypedef::postmutate( TypedefDecl * tyDecl ) {
964 if ( typedefNames.count( tyDecl->name ) == 1 && typedefNames[ tyDecl->name ].second == scopeLevel ) {
965 // typedef to the same name from the same scope
966 // must be from the same type
967
968 Type * t1 = tyDecl->base;
969 Type * t2 = typedefNames[ tyDecl->name ].first->base;
970 if ( ! ResolvExpr::typesCompatible( t1, t2, Indexer() ) ) {
971 SemanticError( tyDecl->location, "Cannot redefine typedef: " + tyDecl->name );
972 }
973 // Cannot redefine VLA typedefs. Note: this is slightly incorrect, because our notion of VLAs
974 // at this point in the translator is imprecise. In particular, this will disallow redefining typedefs
975 // with arrays whose dimension is an enumerator or a cast of a constant/enumerator. The effort required
976 // to fix this corner case likely outweighs the utility of allowing it.
977 if ( isVariableLength( t1 ) || isVariableLength( t2 ) ) {
978 SemanticError( tyDecl->location, "Cannot redefine typedef: " + tyDecl->name );
979 }
980 } else {
981 typedefNames[ tyDecl->name ] = std::make_pair( TypedefDeclPtr( tyDecl ), scopeLevel );
982 } // if
983
984 // When a typedef is a forward declaration:
985 // typedef struct screen SCREEN;
986 // the declaration portion must be retained:
987 // struct screen;
988 // because the expansion of the typedef is:
989 // void rtn( SCREEN *p ) => void rtn( struct screen *p )
990 // hence the type-name "screen" must be defined.
991 // Note, qualifiers on the typedef are superfluous for the forward declaration.
992
993 Type *designatorType = tyDecl->base->stripDeclarator();
994 if ( StructInstType *aggDecl = dynamic_cast< StructInstType * >( designatorType ) ) {
995 declsToAddBefore.push_back( new StructDecl( aggDecl->name, DeclarationNode::Struct, noAttributes, tyDecl->linkage ) );
996 } else if ( UnionInstType *aggDecl = dynamic_cast< UnionInstType * >( designatorType ) ) {
997 declsToAddBefore.push_back( new UnionDecl( aggDecl->name, noAttributes, tyDecl->linkage ) );
998 } else if ( EnumInstType *enumDecl = dynamic_cast< EnumInstType * >( designatorType ) ) {
999 declsToAddBefore.push_back( new EnumDecl( enumDecl->name, noAttributes, tyDecl->linkage ) );
1000 } // if
1001 return tyDecl->clone();
1002 }
1003
1004 void ReplaceTypedef::premutate( TypeDecl * typeDecl ) {
1005 TypedefMap::iterator i = typedefNames.find( typeDecl->name );
1006 if ( i != typedefNames.end() ) {
1007 typedefNames.erase( i ) ;
1008 } // if
1009
1010 typedeclNames.insert( typeDecl->name, typeDecl );
1011 }
1012
1013 void ReplaceTypedef::premutate( FunctionDecl * ) {
1014 GuardScope( typedefNames );
1015 GuardScope( typedeclNames );
1016 }
1017
1018 void ReplaceTypedef::premutate( ObjectDecl * ) {
1019 GuardScope( typedefNames );
1020 GuardScope( typedeclNames );
1021 }
1022
1023 DeclarationWithType * ReplaceTypedef::postmutate( ObjectDecl * objDecl ) {
1024 if ( FunctionType *funtype = dynamic_cast<FunctionType *>( objDecl->type ) ) { // function type?
1025 // replace the current object declaration with a function declaration
1026 FunctionDecl * newDecl = new FunctionDecl( objDecl->name, objDecl->get_storageClasses(), objDecl->linkage, funtype, 0, objDecl->attributes, objDecl->get_funcSpec() );
1027 objDecl->attributes.clear();
1028 objDecl->set_type( nullptr );
1029 delete objDecl;
1030 return newDecl;
1031 } // if
1032 return objDecl;
1033 }
1034
1035 void ReplaceTypedef::premutate( CastExpr * ) {
1036 GuardScope( typedefNames );
1037 GuardScope( typedeclNames );
1038 }
1039
1040 void ReplaceTypedef::premutate( CompoundStmt * ) {
1041 GuardScope( typedefNames );
1042 GuardScope( typedeclNames );
1043 scopeLevel += 1;
1044 GuardAction( [this](){ scopeLevel -= 1; } );
1045 }
1046
1047 template<typename AggDecl>
1048 void ReplaceTypedef::addImplicitTypedef( AggDecl * aggDecl ) {
1049 if ( typedefNames.count( aggDecl->get_name() ) == 0 ) {
1050 Type *type = nullptr;
1051 if ( StructDecl * newDeclStructDecl = dynamic_cast< StructDecl * >( aggDecl ) ) {
1052 type = new StructInstType( Type::Qualifiers(), newDeclStructDecl->get_name() );
1053 } else if ( UnionDecl * newDeclUnionDecl = dynamic_cast< UnionDecl * >( aggDecl ) ) {
1054 type = new UnionInstType( Type::Qualifiers(), newDeclUnionDecl->get_name() );
1055 } else if ( EnumDecl * newDeclEnumDecl = dynamic_cast< EnumDecl * >( aggDecl ) ) {
1056 type = new EnumInstType( Type::Qualifiers(), newDeclEnumDecl->get_name() );
1057 } // if
1058 TypedefDeclPtr tyDecl( new TypedefDecl( aggDecl->get_name(), aggDecl->location, Type::StorageClasses(), type, aggDecl->get_linkage() ) );
1059 typedefNames[ aggDecl->get_name() ] = std::make_pair( std::move( tyDecl ), scopeLevel );
1060 // add the implicit typedef to the AST
1061 declsToAddBefore.push_back( new TypedefDecl( aggDecl->get_name(), aggDecl->location, Type::StorageClasses(), type->clone(), aggDecl->get_linkage() ) );
1062 } // if
1063 }
1064
1065 template< typename AggDecl >
1066 void ReplaceTypedef::handleAggregate( AggDecl * aggr ) {
1067 SemanticErrorException errors;
1068
1069 ValueGuard< std::list<Declaration * > > oldBeforeDecls( declsToAddBefore );
1070 ValueGuard< std::list<Declaration * > > oldAfterDecls ( declsToAddAfter );
1071 declsToAddBefore.clear();
1072 declsToAddAfter.clear();
1073
1074 GuardScope( typedefNames );
1075 GuardScope( typedeclNames );
1076 mutateAll( aggr->parameters, *visitor );
1077
1078 // unroll mutateAll for aggr->members so that implicit typedefs for nested types are added to the aggregate body.
1079 for ( std::list< Declaration * >::iterator i = aggr->members.begin(); i != aggr->members.end(); ++i ) {
1080 if ( !declsToAddAfter.empty() ) { aggr->members.splice( i, declsToAddAfter ); }
1081
1082 try {
1083 *i = maybeMutate( *i, *visitor );
1084 } catch ( SemanticErrorException &e ) {
1085 errors.append( e );
1086 }
1087
1088 if ( !declsToAddBefore.empty() ) { aggr->members.splice( i, declsToAddBefore ); }
1089 }
1090
1091 if ( !declsToAddAfter.empty() ) { aggr->members.splice( aggr->members.end(), declsToAddAfter ); }
1092 if ( !errors.isEmpty() ) { throw errors; }
1093 }
1094
1095 void ReplaceTypedef::premutate( StructDecl * structDecl ) {
1096 visit_children = false;
1097 addImplicitTypedef( structDecl );
1098 handleAggregate( structDecl );
1099 }
1100
1101 void ReplaceTypedef::premutate( UnionDecl * unionDecl ) {
1102 visit_children = false;
1103 addImplicitTypedef( unionDecl );
1104 handleAggregate( unionDecl );
1105 }
1106
1107 void ReplaceTypedef::premutate( EnumDecl * enumDecl ) {
1108 addImplicitTypedef( enumDecl );
1109 }
1110
1111 void ReplaceTypedef::premutate( FunctionType * ) {
1112 GuardValue( inFunctionType );
1113 inFunctionType = true;
1114 }
1115
1116 void ReplaceTypedef::premutate( TraitDecl * ) {
1117 GuardScope( typedefNames );
1118 GuardScope( typedeclNames);
1119 }
1120
1121 void VerifyCtorDtorAssign::verify( std::list< Declaration * > & translationUnit ) {
1122 PassVisitor<VerifyCtorDtorAssign> verifier;
1123 acceptAll( translationUnit, verifier );
1124 }
1125
1126 void VerifyCtorDtorAssign::previsit( FunctionDecl * funcDecl ) {
1127 FunctionType * funcType = funcDecl->get_functionType();
1128 std::list< DeclarationWithType * > &returnVals = funcType->get_returnVals();
1129 std::list< DeclarationWithType * > &params = funcType->get_parameters();
1130
1131 if ( CodeGen::isCtorDtorAssign( funcDecl->get_name() ) ) { // TODO: also check /=, etc.
1132 if ( params.size() == 0 ) {
1133 SemanticError( funcDecl, "Constructors, destructors, and assignment functions require at least one parameter " );
1134 }
1135 ReferenceType * refType = dynamic_cast< ReferenceType * >( params.front()->get_type() );
1136 if ( ! refType ) {
1137 SemanticError( funcDecl, "First parameter of a constructor, destructor, or assignment function must be a reference " );
1138 }
1139 if ( CodeGen::isCtorDtor( funcDecl->get_name() ) && returnVals.size() != 0 ) {
1140 SemanticError( funcDecl, "Constructors and destructors cannot have explicit return values " );
1141 }
1142 }
1143 }
1144
1145 template< typename Aggr >
1146 void validateGeneric( Aggr * inst ) {
1147 std::list< TypeDecl * > * params = inst->get_baseParameters();
1148 if ( params ) {
1149 std::list< Expression * > & args = inst->get_parameters();
1150
1151 // insert defaults arguments when a type argument is missing (currently only supports missing arguments at the end of the list).
1152 // A substitution is used to ensure that defaults are replaced correctly, e.g.,
1153 // forall(otype T, otype alloc = heap_allocator(T)) struct vector;
1154 // vector(int) v;
1155 // after insertion of default values becomes
1156 // vector(int, heap_allocator(T))
1157 // and the substitution is built with T=int so that after substitution, the result is
1158 // vector(int, heap_allocator(int))
1159 TypeSubstitution sub;
1160 auto paramIter = params->begin();
1161 for ( size_t i = 0; paramIter != params->end(); ++paramIter, ++i ) {
1162 if ( i < args.size() ) {
1163 TypeExpr * expr = strict_dynamic_cast< TypeExpr * >( *std::next( args.begin(), i ) );
1164 sub.add( (*paramIter)->get_name(), expr->get_type()->clone() );
1165 } else if ( i == args.size() ) {
1166 Type * defaultType = (*paramIter)->get_init();
1167 if ( defaultType ) {
1168 args.push_back( new TypeExpr( defaultType->clone() ) );
1169 sub.add( (*paramIter)->get_name(), defaultType->clone() );
1170 }
1171 }
1172 }
1173
1174 sub.apply( inst );
1175 if ( args.size() < params->size() ) SemanticError( inst, "Too few type arguments in generic type " );
1176 if ( args.size() > params->size() ) SemanticError( inst, "Too many type arguments in generic type " );
1177 }
1178 }
1179
1180 void ValidateGenericParameters::previsit( StructInstType * inst ) {
1181 validateGeneric( inst );
1182 }
1183
1184 void ValidateGenericParameters::previsit( UnionInstType * inst ) {
1185 validateGeneric( inst );
1186 }
1187
1188 void CompoundLiteral::premutate( ObjectDecl *objectDecl ) {
1189 storageClasses = objectDecl->get_storageClasses();
1190 }
1191
1192 Expression *CompoundLiteral::postmutate( CompoundLiteralExpr *compLitExpr ) {
1193 // transform [storage_class] ... (struct S){ 3, ... };
1194 // into [storage_class] struct S temp = { 3, ... };
1195 static UniqueName indexName( "_compLit" );
1196
1197 ObjectDecl *tempvar = new ObjectDecl( indexName.newName(), storageClasses, LinkageSpec::C, nullptr, compLitExpr->get_result(), compLitExpr->get_initializer() );
1198 compLitExpr->set_result( nullptr );
1199 compLitExpr->set_initializer( nullptr );
1200 delete compLitExpr;
1201 declsToAddBefore.push_back( tempvar ); // add modified temporary to current block
1202 return new VariableExpr( tempvar );
1203 }
1204
1205 void ReturnTypeFixer::fix( std::list< Declaration * > &translationUnit ) {
1206 PassVisitor<ReturnTypeFixer> fixer;
1207 acceptAll( translationUnit, fixer );
1208 }
1209
1210 void ReturnTypeFixer::postvisit( FunctionDecl * functionDecl ) {
1211 FunctionType * ftype = functionDecl->get_functionType();
1212 std::list< DeclarationWithType * > & retVals = ftype->get_returnVals();
1213 assertf( retVals.size() == 0 || retVals.size() == 1, "Function %s has too many return values: %zu", functionDecl->get_name().c_str(), retVals.size() );
1214 if ( retVals.size() == 1 ) {
1215 // ensure all function return values have a name - use the name of the function to disambiguate (this also provides a nice bit of help for debugging).
1216 // ensure other return values have a name.
1217 DeclarationWithType * ret = retVals.front();
1218 if ( ret->get_name() == "" ) {
1219 ret->set_name( toString( "_retval_", CodeGen::genName( functionDecl ) ) );
1220 }
1221 ret->get_attributes().push_back( new Attribute( "unused" ) );
1222 }
1223 }
1224
1225 void ReturnTypeFixer::postvisit( FunctionType * ftype ) {
1226 // xxx - need to handle named return values - this information needs to be saved somehow
1227 // so that resolution has access to the names.
1228 // Note that this pass needs to happen early so that other passes which look for tuple types
1229 // find them in all of the right places, including function return types.
1230 std::list< DeclarationWithType * > & retVals = ftype->get_returnVals();
1231 if ( retVals.size() > 1 ) {
1232 // generate a single return parameter which is the tuple of all of the return values
1233 TupleType * tupleType = strict_dynamic_cast< TupleType * >( ResolvExpr::extractResultType( ftype ) );
1234 // ensure return value is not destructed by explicitly creating an empty ListInit node wherein maybeConstruct is false.
1235 ObjectDecl * newRet = new ObjectDecl( "", Type::StorageClasses(), LinkageSpec::Cforall, 0, tupleType, new ListInit( std::list<Initializer*>(), noDesignators, false ) );
1236 deleteAll( retVals );
1237 retVals.clear();
1238 retVals.push_back( newRet );
1239 }
1240 }
1241
1242 void FixObjectType::fix( std::list< Declaration * > & translationUnit ) {
1243 PassVisitor<FixObjectType> fixer;
1244 acceptAll( translationUnit, fixer );
1245 }
1246
1247 void FixObjectType::previsit( ObjectDecl * objDecl ) {
1248 Type *new_type = ResolvExpr::resolveTypeof( objDecl->get_type(), indexer );
1249 new_type->get_qualifiers() -= Type::Lvalue; // even if typeof is lvalue, variable can never have lvalue-qualified type
1250 objDecl->set_type( new_type );
1251 }
1252
1253 void FixObjectType::previsit( FunctionDecl * funcDecl ) {
1254 Type *new_type = ResolvExpr::resolveTypeof( funcDecl->type, indexer );
1255 new_type->get_qualifiers() -= Type::Lvalue; // even if typeof is lvalue, variable can never have lvalue-qualified type
1256 funcDecl->set_type( new_type );
1257 }
1258
1259 void FixObjectType::previsit( TypeDecl *typeDecl ) {
1260 if ( typeDecl->get_base() ) {
1261 Type *new_type = ResolvExpr::resolveTypeof( typeDecl->get_base(), indexer );
1262 new_type->get_qualifiers() -= Type::Lvalue; // even if typeof is lvalue, variable can never have lvalue-qualified type
1263 typeDecl->set_base( new_type );
1264 } // if
1265 }
1266
1267 void ArrayLength::computeLength( std::list< Declaration * > & translationUnit ) {
1268 PassVisitor<ArrayLength> len;
1269 acceptAll( translationUnit, len );
1270 }
1271
1272 void ArrayLength::previsit( ObjectDecl * objDecl ) {
1273 if ( ArrayType * at = dynamic_cast< ArrayType * >( objDecl->type ) ) {
1274 if ( at->dimension ) return;
1275 if ( ListInit * init = dynamic_cast< ListInit * >( objDecl->init ) ) {
1276 at->dimension = new ConstantExpr( Constant::from_ulong( init->initializers.size() ) );
1277 }
1278 }
1279 }
1280
1281 void ArrayLength::previsit( ArrayType * type ) {
1282 if ( type->dimension ) {
1283 // need to resolve array dimensions early so that constructor code can correctly determine
1284 // if a type is a VLA (and hence whether its elements need to be constructed)
1285 ResolvExpr::findSingleExpression( type->dimension, SymTab::SizeType->clone(), indexer );
1286
1287 // must re-evaluate whether a type is a VLA, now that more information is available
1288 // (e.g. the dimension may have been an enumerator, which was unknown prior to this step)
1289 type->isVarLen = ! InitTweak::isConstExpr( type->dimension );
1290 }
1291 }
1292
1293 struct LabelFinder {
1294 std::set< Label > & labels;
1295 LabelFinder( std::set< Label > & labels ) : labels( labels ) {}
1296 void previsit( Statement * stmt ) {
1297 for ( Label & l : stmt->labels ) {
1298 labels.insert( l );
1299 }
1300 }
1301 };
1302
1303 void LabelAddressFixer::premutate( FunctionDecl * funcDecl ) {
1304 GuardValue( labels );
1305 PassVisitor<LabelFinder> finder( labels );
1306 funcDecl->accept( finder );
1307 }
1308
1309 Expression * LabelAddressFixer::postmutate( AddressExpr * addrExpr ) {
1310 // convert &&label into label address
1311 if ( AddressExpr * inner = dynamic_cast< AddressExpr * >( addrExpr->arg ) ) {
1312 if ( NameExpr * nameExpr = dynamic_cast< NameExpr * >( inner->arg ) ) {
1313 if ( labels.count( nameExpr->name ) ) {
1314 Label name = nameExpr->name;
1315 delete addrExpr;
1316 return new LabelAddressExpr( name );
1317 }
1318 }
1319 }
1320 return addrExpr;
1321 }
1322
1323 void FindSpecialDeclarations::previsit( FunctionDecl * funcDecl ) {
1324 if ( ! dereferenceOperator ) {
1325 if ( funcDecl->get_name() == "*?" && funcDecl->get_linkage() == LinkageSpec::Intrinsic ) {
1326 FunctionType * ftype = funcDecl->get_functionType();
1327 if ( ftype->get_parameters().size() == 1 && ftype->get_parameters().front()->get_type()->get_qualifiers() == Type::Qualifiers() ) {
1328 dereferenceOperator = funcDecl;
1329 }
1330 }
1331 }
1332 }
1333} // namespace SymTab
1334
1335// Local Variables: //
1336// tab-width: 4 //
1337// mode: c++ //
1338// compile-command: "make install" //
1339// End: //
Note: See TracBrowser for help on using the repository browser.