source: src/SymTab/Validate.cc@ ef9988b

ADT arm-eh ast-experimental enum forall-pointer-decay jacob/cs343-translation new-ast new-ast-unique-expr pthread-emulation qualifiedEnum
Last change on this file since ef9988b was 98538288, checked in by Thierry Delisle <tdelisle@…>, 6 years ago

Moved VerifyCtorDtorAssign up and changed return type check to support the change.
fixes #158

  • Property mode set to 100644
File size: 69.7 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Validate.cc --
8//
9// Author : Richard C. Bilson
10// Created On : Sun May 17 21:50:04 2015
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Fri Dec 13 23:43:34 2019
13// Update Count : 363
14//
15
16// The "validate" phase of translation is used to take a syntax tree and convert it into a standard form that aims to be
17// as regular in structure as possible. Some assumptions can be made regarding the state of the tree after this pass is
18// complete, including:
19//
20// - No nested structure or union definitions; any in the input are "hoisted" to the level of the containing struct or
21// union.
22//
23// - All enumeration constants have type EnumInstType.
24//
25// - The type "void" never occurs in lists of function parameter or return types. A function
26// taking no arguments has no argument types.
27//
28// - No context instances exist; they are all replaced by the set of declarations signified by the context, instantiated
29// by the particular set of type arguments.
30//
31// - Every declaration is assigned a unique id.
32//
33// - No typedef declarations or instances exist; the actual type is substituted for each instance.
34//
35// - Each type, struct, and union definition is followed by an appropriate assignment operator.
36//
37// - Each use of a struct or union is connected to a complete definition of that struct or union, even if that
38// definition occurs later in the input.
39
40#include "Validate.h"
41
42#include <cassert> // for assertf, assert
43#include <cstddef> // for size_t
44#include <list> // for list
45#include <string> // for string
46#include <unordered_map> // for unordered_map
47#include <utility> // for pair
48
49#include "AST/Chain.hpp"
50#include "AST/Decl.hpp"
51#include "AST/Node.hpp"
52#include "AST/Pass.hpp"
53#include "AST/SymbolTable.hpp"
54#include "AST/Type.hpp"
55#include "AST/TypeSubstitution.hpp"
56#include "CodeGen/CodeGenerator.h" // for genName
57#include "CodeGen/OperatorTable.h" // for isCtorDtor, isCtorDtorAssign
58#include "ControlStruct/Mutate.h" // for ForExprMutator
59#include "Common/CodeLocation.h" // for CodeLocation
60#include "Common/Stats.h" // for Stats::Heap
61#include "Common/PassVisitor.h" // for PassVisitor, WithDeclsToAdd
62#include "Common/ScopedMap.h" // for ScopedMap
63#include "Common/SemanticError.h" // for SemanticError
64#include "Common/UniqueName.h" // for UniqueName
65#include "Common/utility.h" // for operator+, cloneAll, deleteAll
66#include "Concurrency/Keywords.h" // for applyKeywords
67#include "FixFunction.h" // for FixFunction
68#include "Indexer.h" // for Indexer
69#include "InitTweak/GenInit.h" // for fixReturnStatements
70#include "InitTweak/InitTweak.h" // for isCtorDtorAssign
71#include "ResolvExpr/typeops.h" // for typesCompatible
72#include "ResolvExpr/Resolver.h" // for findSingleExpression
73#include "ResolvExpr/ResolveTypeof.h" // for resolveTypeof
74#include "SymTab/Autogen.h" // for SizeType
75#include "SynTree/LinkageSpec.h" // for C
76#include "SynTree/Attribute.h" // for noAttributes, Attribute
77#include "SynTree/Constant.h" // for Constant
78#include "SynTree/Declaration.h" // for ObjectDecl, DeclarationWithType
79#include "SynTree/Expression.h" // for CompoundLiteralExpr, Expressio...
80#include "SynTree/Initializer.h" // for ListInit, Initializer
81#include "SynTree/Label.h" // for operator==, Label
82#include "SynTree/Mutator.h" // for Mutator
83#include "SynTree/Type.h" // for Type, TypeInstType, EnumInstType
84#include "SynTree/TypeSubstitution.h" // for TypeSubstitution
85#include "SynTree/Visitor.h" // for Visitor
86#include "Validate/HandleAttributes.h" // for handleAttributes
87#include "Validate/FindSpecialDecls.h" // for FindSpecialDecls
88
89class CompoundStmt;
90class ReturnStmt;
91class SwitchStmt;
92
93#define debugPrint( x ) if ( doDebug ) x
94
95namespace SymTab {
96 /// hoists declarations that are difficult to hoist while parsing
97 struct HoistTypeDecls final : public WithDeclsToAdd {
98 void previsit( SizeofExpr * );
99 void previsit( AlignofExpr * );
100 void previsit( UntypedOffsetofExpr * );
101 void previsit( CompoundLiteralExpr * );
102 void handleType( Type * );
103 };
104
105 struct FixQualifiedTypes final : public WithIndexer {
106 Type * postmutate( QualifiedType * );
107 };
108
109 struct HoistStruct final : public WithDeclsToAdd, public WithGuards {
110 /// Flattens nested struct types
111 static void hoistStruct( std::list< Declaration * > &translationUnit );
112
113 void previsit( StructDecl * aggregateDecl );
114 void previsit( UnionDecl * aggregateDecl );
115 void previsit( StaticAssertDecl * assertDecl );
116 void previsit( StructInstType * type );
117 void previsit( UnionInstType * type );
118 void previsit( EnumInstType * type );
119
120 private:
121 template< typename AggDecl > void handleAggregate( AggDecl * aggregateDecl );
122
123 AggregateDecl * parentAggr = nullptr;
124 };
125
126 /// Fix return types so that every function returns exactly one value
127 struct ReturnTypeFixer {
128 static void fix( std::list< Declaration * > &translationUnit );
129
130 void postvisit( FunctionDecl * functionDecl );
131 void postvisit( FunctionType * ftype );
132 };
133
134 /// Replaces enum types by int, and function or array types in function parameter and return lists by appropriate pointers.
135 struct EnumAndPointerDecay_old {
136 void previsit( EnumDecl * aggregateDecl );
137 void previsit( FunctionType * func );
138 };
139
140 /// Associates forward declarations of aggregates with their definitions
141 struct LinkReferenceToTypes_old final : public WithIndexer, public WithGuards, public WithVisitorRef<LinkReferenceToTypes_old>, public WithShortCircuiting {
142 LinkReferenceToTypes_old( const Indexer * indexer );
143 void postvisit( TypeInstType * typeInst );
144
145 void postvisit( EnumInstType * enumInst );
146 void postvisit( StructInstType * structInst );
147 void postvisit( UnionInstType * unionInst );
148 void postvisit( TraitInstType * traitInst );
149 void previsit( QualifiedType * qualType );
150 void postvisit( QualifiedType * qualType );
151
152 void postvisit( EnumDecl * enumDecl );
153 void postvisit( StructDecl * structDecl );
154 void postvisit( UnionDecl * unionDecl );
155 void postvisit( TraitDecl * traitDecl );
156
157 void previsit( StructDecl * structDecl );
158 void previsit( UnionDecl * unionDecl );
159
160 void renameGenericParams( std::list< TypeDecl * > & params );
161
162 private:
163 const Indexer * local_indexer;
164
165 typedef std::map< std::string, std::list< EnumInstType * > > ForwardEnumsType;
166 typedef std::map< std::string, std::list< StructInstType * > > ForwardStructsType;
167 typedef std::map< std::string, std::list< UnionInstType * > > ForwardUnionsType;
168 ForwardEnumsType forwardEnums;
169 ForwardStructsType forwardStructs;
170 ForwardUnionsType forwardUnions;
171 /// true if currently in a generic type body, so that type parameter instances can be renamed appropriately
172 bool inGeneric = false;
173 };
174
175 /// Replaces array and function types in forall lists by appropriate pointer type and assigns each Object and Function declaration a unique ID.
176 struct ForallPointerDecay_old final {
177 void previsit( ObjectDecl * object );
178 void previsit( FunctionDecl * func );
179 void previsit( FunctionType * ftype );
180 void previsit( StructDecl * aggrDecl );
181 void previsit( UnionDecl * aggrDecl );
182 };
183
184 struct ReturnChecker : public WithGuards {
185 /// Checks that return statements return nothing if their return type is void
186 /// and return something if the return type is non-void.
187 static void checkFunctionReturns( std::list< Declaration * > & translationUnit );
188
189 void previsit( FunctionDecl * functionDecl );
190 void previsit( ReturnStmt * returnStmt );
191
192 typedef std::list< DeclarationWithType * > ReturnVals;
193 ReturnVals returnVals;
194 };
195
196 struct ReplaceTypedef final : public WithVisitorRef<ReplaceTypedef>, public WithGuards, public WithShortCircuiting, public WithDeclsToAdd {
197 ReplaceTypedef() : scopeLevel( 0 ) {}
198 /// Replaces typedefs by forward declarations
199 static void replaceTypedef( std::list< Declaration * > &translationUnit );
200
201 void premutate( QualifiedType * );
202 Type * postmutate( QualifiedType * qualType );
203 Type * postmutate( TypeInstType * aggregateUseType );
204 Declaration * postmutate( TypedefDecl * typeDecl );
205 void premutate( TypeDecl * typeDecl );
206 void premutate( FunctionDecl * funcDecl );
207 void premutate( ObjectDecl * objDecl );
208 DeclarationWithType * postmutate( ObjectDecl * objDecl );
209
210 void premutate( CastExpr * castExpr );
211
212 void premutate( CompoundStmt * compoundStmt );
213
214 void premutate( StructDecl * structDecl );
215 void premutate( UnionDecl * unionDecl );
216 void premutate( EnumDecl * enumDecl );
217 void premutate( TraitDecl * );
218
219 void premutate( FunctionType * ftype );
220
221 private:
222 template<typename AggDecl>
223 void addImplicitTypedef( AggDecl * aggDecl );
224 template< typename AggDecl >
225 void handleAggregate( AggDecl * aggr );
226
227 typedef std::unique_ptr<TypedefDecl> TypedefDeclPtr;
228 typedef ScopedMap< std::string, std::pair< TypedefDeclPtr, int > > TypedefMap;
229 typedef ScopedMap< std::string, TypeDecl * > TypeDeclMap;
230 TypedefMap typedefNames;
231 TypeDeclMap typedeclNames;
232 int scopeLevel;
233 bool inFunctionType = false;
234 };
235
236 struct EliminateTypedef {
237 /// removes TypedefDecls from the AST
238 static void eliminateTypedef( std::list< Declaration * > &translationUnit );
239
240 template<typename AggDecl>
241 void handleAggregate( AggDecl * aggregateDecl );
242
243 void previsit( StructDecl * aggregateDecl );
244 void previsit( UnionDecl * aggregateDecl );
245 void previsit( CompoundStmt * compoundStmt );
246 };
247
248 struct VerifyCtorDtorAssign {
249 /// ensure that constructors, destructors, and assignment have at least one
250 /// parameter, the first of which must be a pointer, and that ctor/dtors have no
251 /// return values.
252 static void verify( std::list< Declaration * > &translationUnit );
253
254 void previsit( FunctionDecl * funcDecl );
255 };
256
257 /// ensure that generic types have the correct number of type arguments
258 struct ValidateGenericParameters {
259 void previsit( StructInstType * inst );
260 void previsit( UnionInstType * inst );
261 };
262
263 struct FixObjectType : public WithIndexer {
264 /// resolves typeof type in object, function, and type declarations
265 static void fix( std::list< Declaration * > & translationUnit );
266
267 void previsit( ObjectDecl * );
268 void previsit( FunctionDecl * );
269 void previsit( TypeDecl * );
270 };
271
272 struct ArrayLength : public WithIndexer {
273 /// for array types without an explicit length, compute the length and store it so that it
274 /// is known to the rest of the phases. For example,
275 /// int x[] = { 1, 2, 3 };
276 /// int y[][2] = { { 1, 2, 3 }, { 1, 2, 3 } };
277 /// here x and y are known at compile-time to have length 3, so change this into
278 /// int x[3] = { 1, 2, 3 };
279 /// int y[3][2] = { { 1, 2, 3 }, { 1, 2, 3 } };
280 static void computeLength( std::list< Declaration * > & translationUnit );
281
282 void previsit( ObjectDecl * objDecl );
283 void previsit( ArrayType * arrayType );
284 };
285
286 struct CompoundLiteral final : public WithDeclsToAdd, public WithVisitorRef<CompoundLiteral> {
287 Type::StorageClasses storageClasses;
288
289 void premutate( ObjectDecl * objectDecl );
290 Expression * postmutate( CompoundLiteralExpr * compLitExpr );
291 };
292
293 struct LabelAddressFixer final : public WithGuards {
294 std::set< Label > labels;
295
296 void premutate( FunctionDecl * funcDecl );
297 Expression * postmutate( AddressExpr * addrExpr );
298 };
299
300 void validate( std::list< Declaration * > &translationUnit, __attribute__((unused)) bool doDebug ) {
301 PassVisitor<EnumAndPointerDecay_old> epc;
302 PassVisitor<LinkReferenceToTypes_old> lrt( nullptr );
303 PassVisitor<ForallPointerDecay_old> fpd;
304 PassVisitor<CompoundLiteral> compoundliteral;
305 PassVisitor<ValidateGenericParameters> genericParams;
306 PassVisitor<LabelAddressFixer> labelAddrFixer;
307 PassVisitor<HoistTypeDecls> hoistDecls;
308 PassVisitor<FixQualifiedTypes> fixQual;
309
310 {
311 Stats::Heap::newPass("validate-A");
312 Stats::Time::BlockGuard guard("validate-A");
313 VerifyCtorDtorAssign::verify( translationUnit ); // must happen before autogen, because autogen examines existing ctor/dtors
314 acceptAll( translationUnit, hoistDecls );
315 ReplaceTypedef::replaceTypedef( translationUnit );
316 ReturnTypeFixer::fix( translationUnit ); // must happen before autogen
317 acceptAll( translationUnit, epc ); // must happen before VerifyCtorDtorAssign, because void return objects should not exist; before LinkReferenceToTypes_old because it is an indexer and needs correct types for mangling
318 }
319 {
320 Stats::Heap::newPass("validate-B");
321 Stats::Time::BlockGuard guard("validate-B");
322 Stats::Time::TimeBlock("Link Reference To Types", [&]() {
323 acceptAll( translationUnit, lrt ); // must happen before autogen, because sized flag needs to propagate to generated functions
324 });
325 Stats::Time::TimeBlock("Fix Qualified Types", [&]() {
326 mutateAll( translationUnit, fixQual ); // must happen after LinkReferenceToTypes_old, because aggregate members are accessed
327 });
328 Stats::Time::TimeBlock("Hoist Structs", [&]() {
329 HoistStruct::hoistStruct( translationUnit ); // must happen after EliminateTypedef, so that aggregate typedefs occur in the correct order
330 });
331 Stats::Time::TimeBlock("Eliminate Typedefs", [&]() {
332 EliminateTypedef::eliminateTypedef( translationUnit ); //
333 });
334 }
335 {
336 Stats::Heap::newPass("validate-C");
337 Stats::Time::BlockGuard guard("validate-C");
338 acceptAll( translationUnit, genericParams ); // check as early as possible - can't happen before LinkReferenceToTypes_old
339 ReturnChecker::checkFunctionReturns( translationUnit );
340 InitTweak::fixReturnStatements( translationUnit ); // must happen before autogen
341 }
342 {
343 Stats::Heap::newPass("validate-D");
344 Stats::Time::BlockGuard guard("validate-D");
345 Stats::Time::TimeBlock("Apply Concurrent Keywords", [&]() {
346 Concurrency::applyKeywords( translationUnit );
347 });
348 Stats::Time::TimeBlock("Forall Pointer Decay", [&]() {
349 acceptAll( translationUnit, fpd ); // must happen before autogenerateRoutines, after Concurrency::applyKeywords because uniqueIds must be set on declaration before resolution
350 });
351 Stats::Time::TimeBlock("Hoist Control Declarations", [&]() {
352 ControlStruct::hoistControlDecls( translationUnit ); // hoist initialization out of for statements; must happen before autogenerateRoutines
353 });
354 Stats::Time::TimeBlock("Generate Autogen routines", [&]() {
355 autogenerateRoutines( translationUnit ); // moved up, used to be below compoundLiteral - currently needs EnumAndPointerDecay_old
356 });
357 }
358 {
359 Stats::Heap::newPass("validate-E");
360 Stats::Time::BlockGuard guard("validate-E");
361 Stats::Time::TimeBlock("Implement Mutex Func", [&]() {
362 Concurrency::implementMutexFuncs( translationUnit );
363 });
364 Stats::Time::TimeBlock("Implement Thread Start", [&]() {
365 Concurrency::implementThreadStarter( translationUnit );
366 });
367 Stats::Time::TimeBlock("Compound Literal", [&]() {
368 mutateAll( translationUnit, compoundliteral );
369 });
370 Stats::Time::TimeBlock("Resolve With Expressions", [&]() {
371 ResolvExpr::resolveWithExprs( translationUnit ); // must happen before FixObjectType because user-code is resolved and may contain with variables
372 });
373 }
374 {
375 Stats::Heap::newPass("validate-F");
376 Stats::Time::BlockGuard guard("validate-F");
377 Stats::Time::TimeCall("Fix Object Type",
378 FixObjectType::fix, translationUnit);
379 Stats::Time::TimeCall("Array Length",
380 ArrayLength::computeLength, translationUnit);
381 Stats::Time::TimeCall("Find Special Declarations",
382 Validate::findSpecialDecls, translationUnit);
383 Stats::Time::TimeCall("Fix Label Address",
384 mutateAll<LabelAddressFixer>, translationUnit, labelAddrFixer);
385 Stats::Time::TimeCall("Handle Attributes",
386 Validate::handleAttributes, translationUnit);
387 }
388 }
389
390 void validateType( Type * type, const Indexer * indexer ) {
391 PassVisitor<EnumAndPointerDecay_old> epc;
392 PassVisitor<LinkReferenceToTypes_old> lrt( indexer );
393 PassVisitor<ForallPointerDecay_old> fpd;
394 type->accept( epc );
395 type->accept( lrt );
396 type->accept( fpd );
397 }
398
399
400 void HoistTypeDecls::handleType( Type * type ) {
401 // some type declarations are buried in expressions and not easy to hoist during parsing; hoist them here
402 AggregateDecl * aggr = nullptr;
403 if ( StructInstType * inst = dynamic_cast< StructInstType * >( type ) ) {
404 aggr = inst->baseStruct;
405 } else if ( UnionInstType * inst = dynamic_cast< UnionInstType * >( type ) ) {
406 aggr = inst->baseUnion;
407 } else if ( EnumInstType * inst = dynamic_cast< EnumInstType * >( type ) ) {
408 aggr = inst->baseEnum;
409 }
410 if ( aggr && aggr->body ) {
411 declsToAddBefore.push_front( aggr );
412 }
413 }
414
415 void HoistTypeDecls::previsit( SizeofExpr * expr ) {
416 handleType( expr->type );
417 }
418
419 void HoistTypeDecls::previsit( AlignofExpr * expr ) {
420 handleType( expr->type );
421 }
422
423 void HoistTypeDecls::previsit( UntypedOffsetofExpr * expr ) {
424 handleType( expr->type );
425 }
426
427 void HoistTypeDecls::previsit( CompoundLiteralExpr * expr ) {
428 handleType( expr->result );
429 }
430
431
432 Type * FixQualifiedTypes::postmutate( QualifiedType * qualType ) {
433 Type * parent = qualType->parent;
434 Type * child = qualType->child;
435 if ( dynamic_cast< GlobalScopeType * >( qualType->parent ) ) {
436 // .T => lookup T at global scope
437 if ( TypeInstType * inst = dynamic_cast< TypeInstType * >( child ) ) {
438 auto td = indexer.globalLookupType( inst->name );
439 if ( ! td ) {
440 SemanticError( qualType->location, toString("Use of undefined global type ", inst->name) );
441 }
442 auto base = td->base;
443 assert( base );
444 Type * ret = base->clone();
445 ret->get_qualifiers() = qualType->get_qualifiers();
446 return ret;
447 } else {
448 // .T => T is not a type name
449 assertf( false, "unhandled global qualified child type: %s", toCString(child) );
450 }
451 } else {
452 // S.T => S must be an aggregate type, find the declaration for T in S.
453 AggregateDecl * aggr = nullptr;
454 if ( StructInstType * inst = dynamic_cast< StructInstType * >( parent ) ) {
455 aggr = inst->baseStruct;
456 } else if ( UnionInstType * inst = dynamic_cast< UnionInstType * > ( parent ) ) {
457 aggr = inst->baseUnion;
458 } else {
459 SemanticError( qualType->location, toString("Qualified type requires an aggregate on the left, but has: ", parent) );
460 }
461 assert( aggr ); // TODO: need to handle forward declarations
462 for ( Declaration * member : aggr->members ) {
463 if ( TypeInstType * inst = dynamic_cast< TypeInstType * >( child ) ) {
464 // name on the right is a typedef
465 if ( NamedTypeDecl * aggr = dynamic_cast< NamedTypeDecl * > ( member ) ) {
466 if ( aggr->name == inst->name ) {
467 assert( aggr->base );
468 Type * ret = aggr->base->clone();
469 ret->get_qualifiers() = qualType->get_qualifiers();
470 TypeSubstitution sub = parent->genericSubstitution();
471 sub.apply(ret);
472 return ret;
473 }
474 }
475 } else {
476 // S.T - S is not an aggregate => error
477 assertf( false, "unhandled qualified child type: %s", toCString(qualType) );
478 }
479 }
480 // failed to find a satisfying definition of type
481 SemanticError( qualType->location, toString("Undefined type in qualified type: ", qualType) );
482 }
483
484 // ... may want to link canonical SUE definition to each forward decl so that it becomes easier to lookup?
485 }
486
487
488 void HoistStruct::hoistStruct( std::list< Declaration * > &translationUnit ) {
489 PassVisitor<HoistStruct> hoister;
490 acceptAll( translationUnit, hoister );
491 }
492
493 bool shouldHoist( Declaration * decl ) {
494 return dynamic_cast< StructDecl * >( decl ) || dynamic_cast< UnionDecl * >( decl ) || dynamic_cast< StaticAssertDecl * >( decl );
495 }
496
497 namespace {
498 void qualifiedName( AggregateDecl * aggr, std::ostringstream & ss ) {
499 if ( aggr->parent ) qualifiedName( aggr->parent, ss );
500 ss << "__" << aggr->name;
501 }
502
503 // mangle nested type names using entire parent chain
504 std::string qualifiedName( AggregateDecl * aggr ) {
505 std::ostringstream ss;
506 qualifiedName( aggr, ss );
507 return ss.str();
508 }
509 }
510
511 template< typename AggDecl >
512 void HoistStruct::handleAggregate( AggDecl * aggregateDecl ) {
513 if ( parentAggr ) {
514 aggregateDecl->parent = parentAggr;
515 aggregateDecl->name = qualifiedName( aggregateDecl );
516 // Add elements in stack order corresponding to nesting structure.
517 declsToAddBefore.push_front( aggregateDecl );
518 } else {
519 GuardValue( parentAggr );
520 parentAggr = aggregateDecl;
521 } // if
522 // Always remove the hoisted aggregate from the inner structure.
523 GuardAction( [aggregateDecl]() { filter( aggregateDecl->members, shouldHoist, false ); } );
524 }
525
526 void HoistStruct::previsit( StaticAssertDecl * assertDecl ) {
527 if ( parentAggr ) {
528 declsToAddBefore.push_back( assertDecl );
529 }
530 }
531
532 void HoistStruct::previsit( StructDecl * aggregateDecl ) {
533 handleAggregate( aggregateDecl );
534 }
535
536 void HoistStruct::previsit( UnionDecl * aggregateDecl ) {
537 handleAggregate( aggregateDecl );
538 }
539
540 void HoistStruct::previsit( StructInstType * type ) {
541 // need to reset type name after expanding to qualified name
542 assert( type->baseStruct );
543 type->name = type->baseStruct->name;
544 }
545
546 void HoistStruct::previsit( UnionInstType * type ) {
547 assert( type->baseUnion );
548 type->name = type->baseUnion->name;
549 }
550
551 void HoistStruct::previsit( EnumInstType * type ) {
552 assert( type->baseEnum );
553 type->name = type->baseEnum->name;
554 }
555
556
557 bool isTypedef( Declaration * decl ) {
558 return dynamic_cast< TypedefDecl * >( decl );
559 }
560
561 void EliminateTypedef::eliminateTypedef( std::list< Declaration * > &translationUnit ) {
562 PassVisitor<EliminateTypedef> eliminator;
563 acceptAll( translationUnit, eliminator );
564 filter( translationUnit, isTypedef, true );
565 }
566
567 template< typename AggDecl >
568 void EliminateTypedef::handleAggregate( AggDecl * aggregateDecl ) {
569 filter( aggregateDecl->members, isTypedef, true );
570 }
571
572 void EliminateTypedef::previsit( StructDecl * aggregateDecl ) {
573 handleAggregate( aggregateDecl );
574 }
575
576 void EliminateTypedef::previsit( UnionDecl * aggregateDecl ) {
577 handleAggregate( aggregateDecl );
578 }
579
580 void EliminateTypedef::previsit( CompoundStmt * compoundStmt ) {
581 // remove and delete decl stmts
582 filter( compoundStmt->kids, [](Statement * stmt) {
583 if ( DeclStmt * declStmt = dynamic_cast< DeclStmt * >( stmt ) ) {
584 if ( dynamic_cast< TypedefDecl * >( declStmt->decl ) ) {
585 return true;
586 } // if
587 } // if
588 return false;
589 }, true);
590 }
591
592 void EnumAndPointerDecay_old::previsit( EnumDecl * enumDecl ) {
593 // Set the type of each member of the enumeration to be EnumConstant
594 for ( std::list< Declaration * >::iterator i = enumDecl->members.begin(); i != enumDecl->members.end(); ++i ) {
595 ObjectDecl * obj = dynamic_cast< ObjectDecl * >( * i );
596 assert( obj );
597 obj->set_type( new EnumInstType( Type::Qualifiers( Type::Const ), enumDecl->name ) );
598 } // for
599 }
600
601 namespace {
602 template< typename DWTList >
603 void fixFunctionList( DWTList & dwts, bool isVarArgs, FunctionType * func ) {
604 auto nvals = dwts.size();
605 bool containsVoid = false;
606 for ( auto & dwt : dwts ) {
607 // fix each DWT and record whether a void was found
608 containsVoid |= fixFunction( dwt );
609 }
610
611 // the only case in which "void" is valid is where it is the only one in the list
612 if ( containsVoid && ( nvals > 1 || isVarArgs ) ) {
613 SemanticError( func, "invalid type void in function type " );
614 }
615
616 // one void is the only thing in the list; remove it.
617 if ( containsVoid ) {
618 delete dwts.front();
619 dwts.clear();
620 }
621 }
622 }
623
624 void EnumAndPointerDecay_old::previsit( FunctionType * func ) {
625 // Fix up parameters and return types
626 fixFunctionList( func->parameters, func->isVarArgs, func );
627 fixFunctionList( func->returnVals, false, func );
628 }
629
630 LinkReferenceToTypes_old::LinkReferenceToTypes_old( const Indexer * other_indexer ) {
631 if ( other_indexer ) {
632 local_indexer = other_indexer;
633 } else {
634 local_indexer = &indexer;
635 } // if
636 }
637
638 void LinkReferenceToTypes_old::postvisit( EnumInstType * enumInst ) {
639 const EnumDecl * st = local_indexer->lookupEnum( enumInst->name );
640 // it's not a semantic error if the enum is not found, just an implicit forward declaration
641 if ( st ) {
642 enumInst->baseEnum = const_cast<EnumDecl *>(st); // Just linking in the node
643 } // if
644 if ( ! st || ! st->body ) {
645 // use of forward declaration
646 forwardEnums[ enumInst->name ].push_back( enumInst );
647 } // if
648 }
649
650 void checkGenericParameters( ReferenceToType * inst ) {
651 for ( Expression * param : inst->parameters ) {
652 if ( ! dynamic_cast< TypeExpr * >( param ) ) {
653 SemanticError( inst, "Expression parameters for generic types are currently unsupported: " );
654 }
655 }
656 }
657
658 void LinkReferenceToTypes_old::postvisit( StructInstType * structInst ) {
659 const StructDecl * st = local_indexer->lookupStruct( structInst->name );
660 // it's not a semantic error if the struct is not found, just an implicit forward declaration
661 if ( st ) {
662 structInst->baseStruct = const_cast<StructDecl *>(st); // Just linking in the node
663 } // if
664 if ( ! st || ! st->body ) {
665 // use of forward declaration
666 forwardStructs[ structInst->name ].push_back( structInst );
667 } // if
668 checkGenericParameters( structInst );
669 }
670
671 void LinkReferenceToTypes_old::postvisit( UnionInstType * unionInst ) {
672 const UnionDecl * un = local_indexer->lookupUnion( unionInst->name );
673 // it's not a semantic error if the union is not found, just an implicit forward declaration
674 if ( un ) {
675 unionInst->baseUnion = const_cast<UnionDecl *>(un); // Just linking in the node
676 } // if
677 if ( ! un || ! un->body ) {
678 // use of forward declaration
679 forwardUnions[ unionInst->name ].push_back( unionInst );
680 } // if
681 checkGenericParameters( unionInst );
682 }
683
684 void LinkReferenceToTypes_old::previsit( QualifiedType * ) {
685 visit_children = false;
686 }
687
688 void LinkReferenceToTypes_old::postvisit( QualifiedType * qualType ) {
689 // linking only makes sense for the 'oldest ancestor' of the qualified type
690 qualType->parent->accept( * visitor );
691 }
692
693 template< typename Decl >
694 void normalizeAssertions( std::list< Decl * > & assertions ) {
695 // ensure no duplicate trait members after the clone
696 auto pred = [](Decl * d1, Decl * d2) {
697 // only care if they're equal
698 DeclarationWithType * dwt1 = dynamic_cast<DeclarationWithType *>( d1 );
699 DeclarationWithType * dwt2 = dynamic_cast<DeclarationWithType *>( d2 );
700 if ( dwt1 && dwt2 ) {
701 if ( dwt1->name == dwt2->name && ResolvExpr::typesCompatible( dwt1->get_type(), dwt2->get_type(), SymTab::Indexer() ) ) {
702 // std::cerr << "=========== equal:" << std::endl;
703 // std::cerr << "d1: " << d1 << std::endl;
704 // std::cerr << "d2: " << d2 << std::endl;
705 return false;
706 }
707 }
708 return d1 < d2;
709 };
710 std::set<Decl *, decltype(pred)> unique_members( assertions.begin(), assertions.end(), pred );
711 // if ( unique_members.size() != assertions.size() ) {
712 // std::cerr << "============different" << std::endl;
713 // std::cerr << unique_members.size() << " " << assertions.size() << std::endl;
714 // }
715
716 std::list< Decl * > order;
717 order.splice( order.end(), assertions );
718 std::copy_if( order.begin(), order.end(), back_inserter( assertions ), [&]( Decl * decl ) {
719 return unique_members.count( decl );
720 });
721 }
722
723 // expand assertions from trait instance, performing the appropriate type variable substitutions
724 template< typename Iterator >
725 void expandAssertions( TraitInstType * inst, Iterator out ) {
726 assertf( inst->baseTrait, "Trait instance not linked to base trait: %s", toCString( inst ) );
727 std::list< DeclarationWithType * > asserts;
728 for ( Declaration * decl : inst->baseTrait->members ) {
729 asserts.push_back( strict_dynamic_cast<DeclarationWithType *>( decl->clone() ) );
730 }
731 // substitute trait decl parameters for instance parameters
732 applySubstitution( inst->baseTrait->parameters.begin(), inst->baseTrait->parameters.end(), inst->parameters.begin(), asserts.begin(), asserts.end(), out );
733 }
734
735 void LinkReferenceToTypes_old::postvisit( TraitDecl * traitDecl ) {
736 if ( traitDecl->name == "sized" ) {
737 // "sized" is a special trait - flick the sized status on for the type variable
738 assertf( traitDecl->parameters.size() == 1, "Built-in trait 'sized' has incorrect number of parameters: %zd", traitDecl->parameters.size() );
739 TypeDecl * td = traitDecl->parameters.front();
740 td->set_sized( true );
741 }
742
743 // move assertions from type parameters into the body of the trait
744 for ( TypeDecl * td : traitDecl->parameters ) {
745 for ( DeclarationWithType * assert : td->assertions ) {
746 if ( TraitInstType * inst = dynamic_cast< TraitInstType * >( assert->get_type() ) ) {
747 expandAssertions( inst, back_inserter( traitDecl->members ) );
748 } else {
749 traitDecl->members.push_back( assert->clone() );
750 }
751 }
752 deleteAll( td->assertions );
753 td->assertions.clear();
754 } // for
755 }
756
757 void LinkReferenceToTypes_old::postvisit( TraitInstType * traitInst ) {
758 // handle other traits
759 const TraitDecl * traitDecl = local_indexer->lookupTrait( traitInst->name );
760 if ( ! traitDecl ) {
761 SemanticError( traitInst->location, "use of undeclared trait " + traitInst->name );
762 } // if
763 if ( traitDecl->parameters.size() != traitInst->parameters.size() ) {
764 SemanticError( traitInst, "incorrect number of trait parameters: " );
765 } // if
766 traitInst->baseTrait = const_cast<TraitDecl *>(traitDecl); // Just linking in the node
767
768 // need to carry over the 'sized' status of each decl in the instance
769 for ( auto p : group_iterate( traitDecl->parameters, traitInst->parameters ) ) {
770 TypeExpr * expr = dynamic_cast< TypeExpr * >( std::get<1>(p) );
771 if ( ! expr ) {
772 SemanticError( std::get<1>(p), "Expression parameters for trait instances are currently unsupported: " );
773 }
774 if ( TypeInstType * inst = dynamic_cast< TypeInstType * >( expr->get_type() ) ) {
775 TypeDecl * formalDecl = std::get<0>(p);
776 TypeDecl * instDecl = inst->baseType;
777 if ( formalDecl->get_sized() ) instDecl->set_sized( true );
778 }
779 }
780 // normalizeAssertions( traitInst->members );
781 }
782
783 void LinkReferenceToTypes_old::postvisit( EnumDecl * enumDecl ) {
784 // visit enum members first so that the types of self-referencing members are updated properly
785 if ( enumDecl->body ) {
786 ForwardEnumsType::iterator fwds = forwardEnums.find( enumDecl->name );
787 if ( fwds != forwardEnums.end() ) {
788 for ( std::list< EnumInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) {
789 (* inst)->baseEnum = enumDecl;
790 } // for
791 forwardEnums.erase( fwds );
792 } // if
793
794 for ( Declaration * member : enumDecl->members ) {
795 ObjectDecl * field = strict_dynamic_cast<ObjectDecl *>( member );
796 if ( field->init ) {
797 // need to resolve enumerator initializers early so that other passes that determine if an expression is constexpr have the appropriate information.
798 SingleInit * init = strict_dynamic_cast<SingleInit *>( field->init );
799 ResolvExpr::findSingleExpression( init->value, new BasicType( Type::Qualifiers(), BasicType::SignedInt ), indexer );
800 }
801 }
802 } // if
803 }
804
805 void LinkReferenceToTypes_old::renameGenericParams( std::list< TypeDecl * > & params ) {
806 // rename generic type parameters uniquely so that they do not conflict with user-defined function forall parameters, e.g.
807 // forall(otype T)
808 // struct Box {
809 // T x;
810 // };
811 // forall(otype T)
812 // void f(Box(T) b) {
813 // ...
814 // }
815 // The T in Box and the T in f are different, so internally the naming must reflect that.
816 GuardValue( inGeneric );
817 inGeneric = ! params.empty();
818 for ( TypeDecl * td : params ) {
819 td->name = "__" + td->name + "_generic_";
820 }
821 }
822
823 void LinkReferenceToTypes_old::previsit( StructDecl * structDecl ) {
824 renameGenericParams( structDecl->parameters );
825 }
826
827 void LinkReferenceToTypes_old::previsit( UnionDecl * unionDecl ) {
828 renameGenericParams( unionDecl->parameters );
829 }
830
831 void LinkReferenceToTypes_old::postvisit( StructDecl * structDecl ) {
832 // visit struct members first so that the types of self-referencing members are updated properly
833 // xxx - need to ensure that type parameters match up between forward declarations and definition (most importantly, number of type parameters and their defaults)
834 if ( structDecl->body ) {
835 ForwardStructsType::iterator fwds = forwardStructs.find( structDecl->name );
836 if ( fwds != forwardStructs.end() ) {
837 for ( std::list< StructInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) {
838 (* inst)->baseStruct = structDecl;
839 } // for
840 forwardStructs.erase( fwds );
841 } // if
842 } // if
843 }
844
845 void LinkReferenceToTypes_old::postvisit( UnionDecl * unionDecl ) {
846 if ( unionDecl->body ) {
847 ForwardUnionsType::iterator fwds = forwardUnions.find( unionDecl->name );
848 if ( fwds != forwardUnions.end() ) {
849 for ( std::list< UnionInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) {
850 (* inst)->baseUnion = unionDecl;
851 } // for
852 forwardUnions.erase( fwds );
853 } // if
854 } // if
855 }
856
857 void LinkReferenceToTypes_old::postvisit( TypeInstType * typeInst ) {
858 // ensure generic parameter instances are renamed like the base type
859 if ( inGeneric && typeInst->baseType ) typeInst->name = typeInst->baseType->name;
860 if ( const NamedTypeDecl * namedTypeDecl = local_indexer->lookupType( typeInst->name ) ) {
861 if ( const TypeDecl * typeDecl = dynamic_cast< const TypeDecl * >( namedTypeDecl ) ) {
862 typeInst->set_isFtype( typeDecl->kind == TypeDecl::Ftype );
863 } // if
864 } // if
865 }
866
867 /// Fix up assertions - flattens assertion lists, removing all trait instances
868 void forallFixer( std::list< TypeDecl * > & forall, BaseSyntaxNode * node ) {
869 for ( TypeDecl * type : forall ) {
870 std::list< DeclarationWithType * > asserts;
871 asserts.splice( asserts.end(), type->assertions );
872 // expand trait instances into their members
873 for ( DeclarationWithType * assertion : asserts ) {
874 if ( TraitInstType * traitInst = dynamic_cast< TraitInstType * >( assertion->get_type() ) ) {
875 // expand trait instance into all of its members
876 expandAssertions( traitInst, back_inserter( type->assertions ) );
877 delete traitInst;
878 } else {
879 // pass other assertions through
880 type->assertions.push_back( assertion );
881 } // if
882 } // for
883 // apply FixFunction to every assertion to check for invalid void type
884 for ( DeclarationWithType *& assertion : type->assertions ) {
885 bool isVoid = fixFunction( assertion );
886 if ( isVoid ) {
887 SemanticError( node, "invalid type void in assertion of function " );
888 } // if
889 } // for
890 // normalizeAssertions( type->assertions );
891 } // for
892 }
893
894 void ForallPointerDecay_old::previsit( ObjectDecl * object ) {
895 // ensure that operator names only apply to functions or function pointers
896 if ( CodeGen::isOperator( object->name ) && ! dynamic_cast< FunctionType * >( object->type->stripDeclarator() ) ) {
897 SemanticError( object->location, toCString( "operator ", object->name.c_str(), " is not a function or function pointer." ) );
898 }
899 object->fixUniqueId();
900 }
901
902 void ForallPointerDecay_old::previsit( FunctionDecl * func ) {
903 func->fixUniqueId();
904 }
905
906 void ForallPointerDecay_old::previsit( FunctionType * ftype ) {
907 forallFixer( ftype->forall, ftype );
908 }
909
910 void ForallPointerDecay_old::previsit( StructDecl * aggrDecl ) {
911 forallFixer( aggrDecl->parameters, aggrDecl );
912 }
913
914 void ForallPointerDecay_old::previsit( UnionDecl * aggrDecl ) {
915 forallFixer( aggrDecl->parameters, aggrDecl );
916 }
917
918 void ReturnChecker::checkFunctionReturns( std::list< Declaration * > & translationUnit ) {
919 PassVisitor<ReturnChecker> checker;
920 acceptAll( translationUnit, checker );
921 }
922
923 void ReturnChecker::previsit( FunctionDecl * functionDecl ) {
924 GuardValue( returnVals );
925 returnVals = functionDecl->get_functionType()->get_returnVals();
926 }
927
928 void ReturnChecker::previsit( ReturnStmt * returnStmt ) {
929 // Previously this also checked for the existence of an expr paired with no return values on
930 // the function return type. This is incorrect, since you can have an expression attached to
931 // a return statement in a void-returning function in C. The expression is treated as if it
932 // were cast to void.
933 if ( ! returnStmt->get_expr() && returnVals.size() != 0 ) {
934 SemanticError( returnStmt, "Non-void function returns no values: " );
935 }
936 }
937
938
939 void ReplaceTypedef::replaceTypedef( std::list< Declaration * > &translationUnit ) {
940 PassVisitor<ReplaceTypedef> eliminator;
941 mutateAll( translationUnit, eliminator );
942 if ( eliminator.pass.typedefNames.count( "size_t" ) ) {
943 // grab and remember declaration of size_t
944 Validate::SizeType = eliminator.pass.typedefNames["size_t"].first->base->clone();
945 } else {
946 // xxx - missing global typedef for size_t - default to long unsigned int, even though that may be wrong
947 // eventually should have a warning for this case.
948 Validate::SizeType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
949 }
950 }
951
952 void ReplaceTypedef::premutate( QualifiedType * ) {
953 visit_children = false;
954 }
955
956 Type * ReplaceTypedef::postmutate( QualifiedType * qualType ) {
957 // replacing typedefs only makes sense for the 'oldest ancestor' of the qualified type
958 qualType->parent = qualType->parent->acceptMutator( * visitor );
959 return qualType;
960 }
961
962 Type * ReplaceTypedef::postmutate( TypeInstType * typeInst ) {
963 // instances of typedef types will come here. If it is an instance
964 // of a typdef type, link the instance to its actual type.
965 TypedefMap::const_iterator def = typedefNames.find( typeInst->name );
966 if ( def != typedefNames.end() ) {
967 Type * ret = def->second.first->base->clone();
968 ret->location = typeInst->location;
969 ret->get_qualifiers() |= typeInst->get_qualifiers();
970 // attributes are not carried over from typedef to function parameters/return values
971 if ( ! inFunctionType ) {
972 ret->attributes.splice( ret->attributes.end(), typeInst->attributes );
973 } else {
974 deleteAll( ret->attributes );
975 ret->attributes.clear();
976 }
977 // place instance parameters on the typedef'd type
978 if ( ! typeInst->parameters.empty() ) {
979 ReferenceToType * rtt = dynamic_cast<ReferenceToType *>(ret);
980 if ( ! rtt ) {
981 SemanticError( typeInst->location, "Cannot apply type parameters to base type of " + typeInst->name );
982 }
983 rtt->parameters.clear();
984 cloneAll( typeInst->parameters, rtt->parameters );
985 mutateAll( rtt->parameters, * visitor ); // recursively fix typedefs on parameters
986 } // if
987 delete typeInst;
988 return ret;
989 } else {
990 TypeDeclMap::const_iterator base = typedeclNames.find( typeInst->name );
991 if ( base == typedeclNames.end() ) {
992 SemanticError( typeInst->location, toString("Use of undefined type ", typeInst->name) );
993 }
994 typeInst->set_baseType( base->second );
995 return typeInst;
996 } // if
997 assert( false );
998 }
999
1000 struct VarLenChecker : WithShortCircuiting {
1001 void previsit( FunctionType * ) { visit_children = false; }
1002 void previsit( ArrayType * at ) {
1003 isVarLen |= at->isVarLen;
1004 }
1005 bool isVarLen = false;
1006 };
1007
1008 bool isVariableLength( Type * t ) {
1009 PassVisitor<VarLenChecker> varLenChecker;
1010 maybeAccept( t, varLenChecker );
1011 return varLenChecker.pass.isVarLen;
1012 }
1013
1014 Declaration * ReplaceTypedef::postmutate( TypedefDecl * tyDecl ) {
1015 if ( typedefNames.count( tyDecl->name ) == 1 && typedefNames[ tyDecl->name ].second == scopeLevel ) {
1016 // typedef to the same name from the same scope
1017 // must be from the same type
1018
1019 Type * t1 = tyDecl->base;
1020 Type * t2 = typedefNames[ tyDecl->name ].first->base;
1021 if ( ! ResolvExpr::typesCompatible( t1, t2, Indexer() ) ) {
1022 SemanticError( tyDecl->location, "Cannot redefine typedef: " + tyDecl->name );
1023 }
1024 // Cannot redefine VLA typedefs. Note: this is slightly incorrect, because our notion of VLAs
1025 // at this point in the translator is imprecise. In particular, this will disallow redefining typedefs
1026 // with arrays whose dimension is an enumerator or a cast of a constant/enumerator. The effort required
1027 // to fix this corner case likely outweighs the utility of allowing it.
1028 if ( isVariableLength( t1 ) || isVariableLength( t2 ) ) {
1029 SemanticError( tyDecl->location, "Cannot redefine typedef: " + tyDecl->name );
1030 }
1031 } else {
1032 typedefNames[ tyDecl->name ] = std::make_pair( TypedefDeclPtr( tyDecl ), scopeLevel );
1033 } // if
1034
1035 // When a typedef is a forward declaration:
1036 // typedef struct screen SCREEN;
1037 // the declaration portion must be retained:
1038 // struct screen;
1039 // because the expansion of the typedef is:
1040 // void rtn( SCREEN * p ) => void rtn( struct screen * p )
1041 // hence the type-name "screen" must be defined.
1042 // Note, qualifiers on the typedef are superfluous for the forward declaration.
1043
1044 Type * designatorType = tyDecl->base->stripDeclarator();
1045 if ( StructInstType * aggDecl = dynamic_cast< StructInstType * >( designatorType ) ) {
1046 declsToAddBefore.push_back( new StructDecl( aggDecl->name, AggregateDecl::Struct, noAttributes, tyDecl->linkage ) );
1047 } else if ( UnionInstType * aggDecl = dynamic_cast< UnionInstType * >( designatorType ) ) {
1048 declsToAddBefore.push_back( new UnionDecl( aggDecl->name, noAttributes, tyDecl->linkage ) );
1049 } else if ( EnumInstType * enumDecl = dynamic_cast< EnumInstType * >( designatorType ) ) {
1050 declsToAddBefore.push_back( new EnumDecl( enumDecl->name, noAttributes, tyDecl->linkage ) );
1051 } // if
1052 return tyDecl->clone();
1053 }
1054
1055 void ReplaceTypedef::premutate( TypeDecl * typeDecl ) {
1056 TypedefMap::iterator i = typedefNames.find( typeDecl->name );
1057 if ( i != typedefNames.end() ) {
1058 typedefNames.erase( i ) ;
1059 } // if
1060
1061 typedeclNames.insert( typeDecl->name, typeDecl );
1062 }
1063
1064 void ReplaceTypedef::premutate( FunctionDecl * ) {
1065 GuardScope( typedefNames );
1066 GuardScope( typedeclNames );
1067 }
1068
1069 void ReplaceTypedef::premutate( ObjectDecl * ) {
1070 GuardScope( typedefNames );
1071 GuardScope( typedeclNames );
1072 }
1073
1074 DeclarationWithType * ReplaceTypedef::postmutate( ObjectDecl * objDecl ) {
1075 if ( FunctionType * funtype = dynamic_cast<FunctionType *>( objDecl->type ) ) { // function type?
1076 // replace the current object declaration with a function declaration
1077 FunctionDecl * newDecl = new FunctionDecl( objDecl->name, objDecl->get_storageClasses(), objDecl->linkage, funtype, 0, objDecl->attributes, objDecl->get_funcSpec() );
1078 objDecl->attributes.clear();
1079 objDecl->set_type( nullptr );
1080 delete objDecl;
1081 return newDecl;
1082 } // if
1083 return objDecl;
1084 }
1085
1086 void ReplaceTypedef::premutate( CastExpr * ) {
1087 GuardScope( typedefNames );
1088 GuardScope( typedeclNames );
1089 }
1090
1091 void ReplaceTypedef::premutate( CompoundStmt * ) {
1092 GuardScope( typedefNames );
1093 GuardScope( typedeclNames );
1094 scopeLevel += 1;
1095 GuardAction( [this](){ scopeLevel -= 1; } );
1096 }
1097
1098 template<typename AggDecl>
1099 void ReplaceTypedef::addImplicitTypedef( AggDecl * aggDecl ) {
1100 if ( typedefNames.count( aggDecl->get_name() ) == 0 ) {
1101 Type * type = nullptr;
1102 if ( StructDecl * newDeclStructDecl = dynamic_cast< StructDecl * >( aggDecl ) ) {
1103 type = new StructInstType( Type::Qualifiers(), newDeclStructDecl->get_name() );
1104 } else if ( UnionDecl * newDeclUnionDecl = dynamic_cast< UnionDecl * >( aggDecl ) ) {
1105 type = new UnionInstType( Type::Qualifiers(), newDeclUnionDecl->get_name() );
1106 } else if ( EnumDecl * newDeclEnumDecl = dynamic_cast< EnumDecl * >( aggDecl ) ) {
1107 type = new EnumInstType( Type::Qualifiers(), newDeclEnumDecl->get_name() );
1108 } // if
1109 TypedefDeclPtr tyDecl( new TypedefDecl( aggDecl->get_name(), aggDecl->location, Type::StorageClasses(), type, aggDecl->get_linkage() ) );
1110 typedefNames[ aggDecl->get_name() ] = std::make_pair( std::move( tyDecl ), scopeLevel );
1111 // add the implicit typedef to the AST
1112 declsToAddBefore.push_back( new TypedefDecl( aggDecl->get_name(), aggDecl->location, Type::StorageClasses(), type->clone(), aggDecl->get_linkage() ) );
1113 } // if
1114 }
1115
1116 template< typename AggDecl >
1117 void ReplaceTypedef::handleAggregate( AggDecl * aggr ) {
1118 SemanticErrorException errors;
1119
1120 ValueGuard< std::list<Declaration * > > oldBeforeDecls( declsToAddBefore );
1121 ValueGuard< std::list<Declaration * > > oldAfterDecls ( declsToAddAfter );
1122 declsToAddBefore.clear();
1123 declsToAddAfter.clear();
1124
1125 GuardScope( typedefNames );
1126 GuardScope( typedeclNames );
1127 mutateAll( aggr->parameters, * visitor );
1128
1129 // unroll mutateAll for aggr->members so that implicit typedefs for nested types are added to the aggregate body.
1130 for ( std::list< Declaration * >::iterator i = aggr->members.begin(); i != aggr->members.end(); ++i ) {
1131 if ( !declsToAddAfter.empty() ) { aggr->members.splice( i, declsToAddAfter ); }
1132
1133 try {
1134 * i = maybeMutate( * i, * visitor );
1135 } catch ( SemanticErrorException &e ) {
1136 errors.append( e );
1137 }
1138
1139 if ( !declsToAddBefore.empty() ) { aggr->members.splice( i, declsToAddBefore ); }
1140 }
1141
1142 if ( !declsToAddAfter.empty() ) { aggr->members.splice( aggr->members.end(), declsToAddAfter ); }
1143 if ( !errors.isEmpty() ) { throw errors; }
1144 }
1145
1146 void ReplaceTypedef::premutate( StructDecl * structDecl ) {
1147 visit_children = false;
1148 addImplicitTypedef( structDecl );
1149 handleAggregate( structDecl );
1150 }
1151
1152 void ReplaceTypedef::premutate( UnionDecl * unionDecl ) {
1153 visit_children = false;
1154 addImplicitTypedef( unionDecl );
1155 handleAggregate( unionDecl );
1156 }
1157
1158 void ReplaceTypedef::premutate( EnumDecl * enumDecl ) {
1159 addImplicitTypedef( enumDecl );
1160 }
1161
1162 void ReplaceTypedef::premutate( FunctionType * ) {
1163 GuardValue( inFunctionType );
1164 inFunctionType = true;
1165 }
1166
1167 void ReplaceTypedef::premutate( TraitDecl * ) {
1168 GuardScope( typedefNames );
1169 GuardScope( typedeclNames);
1170 }
1171
1172 void VerifyCtorDtorAssign::verify( std::list< Declaration * > & translationUnit ) {
1173 PassVisitor<VerifyCtorDtorAssign> verifier;
1174 acceptAll( translationUnit, verifier );
1175 }
1176
1177 void VerifyCtorDtorAssign::previsit( FunctionDecl * funcDecl ) {
1178 FunctionType * funcType = funcDecl->get_functionType();
1179 std::list< DeclarationWithType * > &returnVals = funcType->get_returnVals();
1180 std::list< DeclarationWithType * > &params = funcType->get_parameters();
1181
1182 if ( CodeGen::isCtorDtorAssign( funcDecl->get_name() ) ) { // TODO: also check /=, etc.
1183 if ( params.size() == 0 ) {
1184 SemanticError( funcDecl->location, "Constructors, destructors, and assignment functions require at least one parameter." );
1185 }
1186 ReferenceType * refType = dynamic_cast< ReferenceType * >( params.front()->get_type() );
1187 if ( ! refType ) {
1188 SemanticError( funcDecl->location, "First parameter of a constructor, destructor, or assignment function must be a reference." );
1189 }
1190 if ( CodeGen::isCtorDtor( funcDecl->get_name() ) && returnVals.size() != 0 ) {
1191 if(!returnVals.front()->get_type()->isVoid()) {
1192 SemanticError( funcDecl->location, "Constructors and destructors cannot have explicit return values." );
1193 }
1194 }
1195 }
1196 }
1197
1198 template< typename Aggr >
1199 void validateGeneric( Aggr * inst ) {
1200 std::list< TypeDecl * > * params = inst->get_baseParameters();
1201 if ( params ) {
1202 std::list< Expression * > & args = inst->get_parameters();
1203
1204 // insert defaults arguments when a type argument is missing (currently only supports missing arguments at the end of the list).
1205 // A substitution is used to ensure that defaults are replaced correctly, e.g.,
1206 // forall(otype T, otype alloc = heap_allocator(T)) struct vector;
1207 // vector(int) v;
1208 // after insertion of default values becomes
1209 // vector(int, heap_allocator(T))
1210 // and the substitution is built with T=int so that after substitution, the result is
1211 // vector(int, heap_allocator(int))
1212 TypeSubstitution sub;
1213 auto paramIter = params->begin();
1214 for ( size_t i = 0; paramIter != params->end(); ++paramIter, ++i ) {
1215 if ( i < args.size() ) {
1216 TypeExpr * expr = strict_dynamic_cast< TypeExpr * >( * std::next( args.begin(), i ) );
1217 sub.add( (* paramIter)->get_name(), expr->get_type()->clone() );
1218 } else if ( i == args.size() ) {
1219 Type * defaultType = (* paramIter)->get_init();
1220 if ( defaultType ) {
1221 args.push_back( new TypeExpr( defaultType->clone() ) );
1222 sub.add( (* paramIter)->get_name(), defaultType->clone() );
1223 }
1224 }
1225 }
1226
1227 sub.apply( inst );
1228 if ( args.size() < params->size() ) SemanticError( inst, "Too few type arguments in generic type " );
1229 if ( args.size() > params->size() ) SemanticError( inst, "Too many type arguments in generic type " );
1230 }
1231 }
1232
1233 void ValidateGenericParameters::previsit( StructInstType * inst ) {
1234 validateGeneric( inst );
1235 }
1236
1237 void ValidateGenericParameters::previsit( UnionInstType * inst ) {
1238 validateGeneric( inst );
1239 }
1240
1241 void CompoundLiteral::premutate( ObjectDecl * objectDecl ) {
1242 storageClasses = objectDecl->get_storageClasses();
1243 }
1244
1245 Expression * CompoundLiteral::postmutate( CompoundLiteralExpr * compLitExpr ) {
1246 // transform [storage_class] ... (struct S){ 3, ... };
1247 // into [storage_class] struct S temp = { 3, ... };
1248 static UniqueName indexName( "_compLit" );
1249
1250 ObjectDecl * tempvar = new ObjectDecl( indexName.newName(), storageClasses, LinkageSpec::C, nullptr, compLitExpr->get_result(), compLitExpr->get_initializer() );
1251 compLitExpr->set_result( nullptr );
1252 compLitExpr->set_initializer( nullptr );
1253 delete compLitExpr;
1254 declsToAddBefore.push_back( tempvar ); // add modified temporary to current block
1255 return new VariableExpr( tempvar );
1256 }
1257
1258 void ReturnTypeFixer::fix( std::list< Declaration * > &translationUnit ) {
1259 PassVisitor<ReturnTypeFixer> fixer;
1260 acceptAll( translationUnit, fixer );
1261 }
1262
1263 void ReturnTypeFixer::postvisit( FunctionDecl * functionDecl ) {
1264 FunctionType * ftype = functionDecl->get_functionType();
1265 std::list< DeclarationWithType * > & retVals = ftype->get_returnVals();
1266 assertf( retVals.size() == 0 || retVals.size() == 1, "Function %s has too many return values: %zu", functionDecl->get_name().c_str(), retVals.size() );
1267 if ( retVals.size() == 1 ) {
1268 // ensure all function return values have a name - use the name of the function to disambiguate (this also provides a nice bit of help for debugging).
1269 // ensure other return values have a name.
1270 DeclarationWithType * ret = retVals.front();
1271 if ( ret->get_name() == "" ) {
1272 ret->set_name( toString( "_retval_", CodeGen::genName( functionDecl ) ) );
1273 }
1274 ret->get_attributes().push_back( new Attribute( "unused" ) );
1275 }
1276 }
1277
1278 void ReturnTypeFixer::postvisit( FunctionType * ftype ) {
1279 // xxx - need to handle named return values - this information needs to be saved somehow
1280 // so that resolution has access to the names.
1281 // Note that this pass needs to happen early so that other passes which look for tuple types
1282 // find them in all of the right places, including function return types.
1283 std::list< DeclarationWithType * > & retVals = ftype->get_returnVals();
1284 if ( retVals.size() > 1 ) {
1285 // generate a single return parameter which is the tuple of all of the return values
1286 TupleType * tupleType = strict_dynamic_cast< TupleType * >( ResolvExpr::extractResultType( ftype ) );
1287 // ensure return value is not destructed by explicitly creating an empty ListInit node wherein maybeConstruct is false.
1288 ObjectDecl * newRet = new ObjectDecl( "", Type::StorageClasses(), LinkageSpec::Cforall, 0, tupleType, new ListInit( std::list<Initializer *>(), noDesignators, false ) );
1289 deleteAll( retVals );
1290 retVals.clear();
1291 retVals.push_back( newRet );
1292 }
1293 }
1294
1295 void FixObjectType::fix( std::list< Declaration * > & translationUnit ) {
1296 PassVisitor<FixObjectType> fixer;
1297 acceptAll( translationUnit, fixer );
1298 }
1299
1300 void FixObjectType::previsit( ObjectDecl * objDecl ) {
1301 Type * new_type = ResolvExpr::resolveTypeof( objDecl->get_type(), indexer );
1302 objDecl->set_type( new_type );
1303 }
1304
1305 void FixObjectType::previsit( FunctionDecl * funcDecl ) {
1306 Type * new_type = ResolvExpr::resolveTypeof( funcDecl->type, indexer );
1307 funcDecl->set_type( new_type );
1308 }
1309
1310 void FixObjectType::previsit( TypeDecl * typeDecl ) {
1311 if ( typeDecl->get_base() ) {
1312 Type * new_type = ResolvExpr::resolveTypeof( typeDecl->get_base(), indexer );
1313 typeDecl->set_base( new_type );
1314 } // if
1315 }
1316
1317 void ArrayLength::computeLength( std::list< Declaration * > & translationUnit ) {
1318 PassVisitor<ArrayLength> len;
1319 acceptAll( translationUnit, len );
1320 }
1321
1322 void ArrayLength::previsit( ObjectDecl * objDecl ) {
1323 if ( ArrayType * at = dynamic_cast< ArrayType * >( objDecl->type ) ) {
1324 if ( at->dimension ) return;
1325 if ( ListInit * init = dynamic_cast< ListInit * >( objDecl->init ) ) {
1326 at->dimension = new ConstantExpr( Constant::from_ulong( init->initializers.size() ) );
1327 }
1328 }
1329 }
1330
1331 void ArrayLength::previsit( ArrayType * type ) {
1332 if ( type->dimension ) {
1333 // need to resolve array dimensions early so that constructor code can correctly determine
1334 // if a type is a VLA (and hence whether its elements need to be constructed)
1335 ResolvExpr::findSingleExpression( type->dimension, Validate::SizeType->clone(), indexer );
1336
1337 // must re-evaluate whether a type is a VLA, now that more information is available
1338 // (e.g. the dimension may have been an enumerator, which was unknown prior to this step)
1339 type->isVarLen = ! InitTweak::isConstExpr( type->dimension );
1340 }
1341 }
1342
1343 struct LabelFinder {
1344 std::set< Label > & labels;
1345 LabelFinder( std::set< Label > & labels ) : labels( labels ) {}
1346 void previsit( Statement * stmt ) {
1347 for ( Label & l : stmt->labels ) {
1348 labels.insert( l );
1349 }
1350 }
1351 };
1352
1353 void LabelAddressFixer::premutate( FunctionDecl * funcDecl ) {
1354 GuardValue( labels );
1355 PassVisitor<LabelFinder> finder( labels );
1356 funcDecl->accept( finder );
1357 }
1358
1359 Expression * LabelAddressFixer::postmutate( AddressExpr * addrExpr ) {
1360 // convert &&label into label address
1361 if ( AddressExpr * inner = dynamic_cast< AddressExpr * >( addrExpr->arg ) ) {
1362 if ( NameExpr * nameExpr = dynamic_cast< NameExpr * >( inner->arg ) ) {
1363 if ( labels.count( nameExpr->name ) ) {
1364 Label name = nameExpr->name;
1365 delete addrExpr;
1366 return new LabelAddressExpr( name );
1367 }
1368 }
1369 }
1370 return addrExpr;
1371 }
1372
1373namespace {
1374 /// Replaces enum types by int, and function/array types in function parameter and return
1375 /// lists by appropriate pointers
1376 struct EnumAndPointerDecay_new {
1377 const ast::EnumDecl * previsit( const ast::EnumDecl * enumDecl ) {
1378 // set the type of each member of the enumeration to be EnumConstant
1379 for ( unsigned i = 0; i < enumDecl->members.size(); ++i ) {
1380 // build new version of object with EnumConstant
1381 ast::ptr< ast::ObjectDecl > obj =
1382 enumDecl->members[i].strict_as< ast::ObjectDecl >();
1383 obj.get_and_mutate()->type =
1384 new ast::EnumInstType{ enumDecl->name, ast::CV::Const };
1385
1386 // set into decl
1387 ast::EnumDecl * mut = mutate( enumDecl );
1388 mut->members[i] = obj.get();
1389 enumDecl = mut;
1390 }
1391 return enumDecl;
1392 }
1393
1394 static const ast::FunctionType * fixFunctionList(
1395 const ast::FunctionType * func,
1396 std::vector< ast::ptr< ast::DeclWithType > > ast::FunctionType::* field,
1397 ast::ArgumentFlag isVarArgs = ast::FixedArgs
1398 ) {
1399 const auto & dwts = func->* field;
1400 unsigned nvals = dwts.size();
1401 bool hasVoid = false;
1402 for ( unsigned i = 0; i < nvals; ++i ) {
1403 func = ast::mutate_field_index( func, field, i, fixFunction( dwts[i], hasVoid ) );
1404 }
1405
1406 // the only case in which "void" is valid is where it is the only one in the list
1407 if ( hasVoid && ( nvals > 1 || isVarArgs ) ) {
1408 SemanticError(
1409 dwts.front()->location, func, "invalid type void in function type" );
1410 }
1411
1412 // one void is the only thing in the list, remove it
1413 if ( hasVoid ) {
1414 func = ast::mutate_field(
1415 func, field, std::vector< ast::ptr< ast::DeclWithType > >{} );
1416 }
1417
1418 return func;
1419 }
1420
1421 const ast::FunctionType * previsit( const ast::FunctionType * func ) {
1422 func = fixFunctionList( func, &ast::FunctionType::params, func->isVarArgs );
1423 return fixFunctionList( func, &ast::FunctionType::returns );
1424 }
1425 };
1426
1427 /// expand assertions from a trait instance, performing appropriate type variable substitutions
1428 void expandAssertions(
1429 const ast::TraitInstType * inst, std::vector< ast::ptr< ast::DeclWithType > > & out
1430 ) {
1431 assertf( inst->base, "Trait instance not linked to base trait: %s", toCString( inst ) );
1432
1433 // build list of trait members, substituting trait decl parameters for instance parameters
1434 ast::TypeSubstitution sub{
1435 inst->base->params.begin(), inst->base->params.end(), inst->params.begin() };
1436 // deliberately take ast::ptr by-value to ensure this does not mutate inst->base
1437 for ( ast::ptr< ast::Decl > decl : inst->base->members ) {
1438 auto member = decl.strict_as< ast::DeclWithType >();
1439 sub.apply( member );
1440 out.emplace_back( member );
1441 }
1442 }
1443
1444 /// Associates forward declarations of aggregates with their definitions
1445 class LinkReferenceToTypes_new final
1446 : public ast::WithSymbolTable, public ast::WithGuards, public
1447 ast::WithVisitorRef<LinkReferenceToTypes_new>, public ast::WithShortCircuiting {
1448
1449 // these maps of uses of forward declarations of types need to have the actual type
1450 // declaration switched in * after * they have been traversed. To enable this in the
1451 // ast::Pass framework, any node that needs to be so mutated has mutate() called on it
1452 // before it is placed in the map, properly updating its parents in the usual traversal,
1453 // then can have the actual mutation applied later
1454 using ForwardEnumsType = std::unordered_multimap< std::string, ast::EnumInstType * >;
1455 using ForwardStructsType = std::unordered_multimap< std::string, ast::StructInstType * >;
1456 using ForwardUnionsType = std::unordered_multimap< std::string, ast::UnionInstType * >;
1457
1458 const CodeLocation & location;
1459 const ast::SymbolTable * localSymtab;
1460
1461 ForwardEnumsType forwardEnums;
1462 ForwardStructsType forwardStructs;
1463 ForwardUnionsType forwardUnions;
1464
1465 /// true if currently in a generic type body, so that type parameter instances can be
1466 /// renamed appropriately
1467 bool inGeneric = false;
1468
1469 public:
1470 /// contstruct using running symbol table
1471 LinkReferenceToTypes_new( const CodeLocation & loc )
1472 : location( loc ), localSymtab( &symtab ) {}
1473
1474 /// construct using provided symbol table
1475 LinkReferenceToTypes_new( const CodeLocation & loc, const ast::SymbolTable & syms )
1476 : location( loc ), localSymtab( &syms ) {}
1477
1478 const ast::Type * postvisit( const ast::TypeInstType * typeInst ) {
1479 // ensure generic parameter instances are renamed like the base type
1480 if ( inGeneric && typeInst->base ) {
1481 typeInst = ast::mutate_field(
1482 typeInst, &ast::TypeInstType::name, typeInst->base->name );
1483 }
1484
1485 if (
1486 auto typeDecl = dynamic_cast< const ast::TypeDecl * >(
1487 localSymtab->lookupType( typeInst->name ) )
1488 ) {
1489 typeInst = ast::mutate_field( typeInst, &ast::TypeInstType::kind, typeDecl->kind );
1490 }
1491
1492 return typeInst;
1493 }
1494
1495 const ast::Type * postvisit( const ast::EnumInstType * inst ) {
1496 const ast::EnumDecl * decl = localSymtab->lookupEnum( inst->name );
1497 // not a semantic error if the enum is not found, just an implicit forward declaration
1498 if ( decl ) {
1499 inst = ast::mutate_field( inst, &ast::EnumInstType::base, decl );
1500 }
1501 if ( ! decl || ! decl->body ) {
1502 // forward declaration
1503 auto mut = mutate( inst );
1504 forwardEnums.emplace( inst->name, mut );
1505 inst = mut;
1506 }
1507 return inst;
1508 }
1509
1510 void checkGenericParameters( const ast::ReferenceToType * inst ) {
1511 for ( const ast::Expr * param : inst->params ) {
1512 if ( ! dynamic_cast< const ast::TypeExpr * >( param ) ) {
1513 SemanticError(
1514 location, inst, "Expression parameters for generic types are currently "
1515 "unsupported: " );
1516 }
1517 }
1518 }
1519
1520 const ast::StructInstType * postvisit( const ast::StructInstType * inst ) {
1521 const ast::StructDecl * decl = localSymtab->lookupStruct( inst->name );
1522 // not a semantic error if the struct is not found, just an implicit forward declaration
1523 if ( decl ) {
1524 inst = ast::mutate_field( inst, &ast::StructInstType::base, decl );
1525 }
1526 if ( ! decl || ! decl->body ) {
1527 // forward declaration
1528 auto mut = mutate( inst );
1529 forwardStructs.emplace( inst->name, mut );
1530 inst = mut;
1531 }
1532 checkGenericParameters( inst );
1533 return inst;
1534 }
1535
1536 const ast::UnionInstType * postvisit( const ast::UnionInstType * inst ) {
1537 const ast::UnionDecl * decl = localSymtab->lookupUnion( inst->name );
1538 // not a semantic error if the struct is not found, just an implicit forward declaration
1539 if ( decl ) {
1540 inst = ast::mutate_field( inst, &ast::UnionInstType::base, decl );
1541 }
1542 if ( ! decl || ! decl->body ) {
1543 // forward declaration
1544 auto mut = mutate( inst );
1545 forwardUnions.emplace( inst->name, mut );
1546 inst = mut;
1547 }
1548 checkGenericParameters( inst );
1549 return inst;
1550 }
1551
1552 const ast::Type * postvisit( const ast::TraitInstType * traitInst ) {
1553 // handle other traits
1554 const ast::TraitDecl * traitDecl = localSymtab->lookupTrait( traitInst->name );
1555 if ( ! traitDecl ) {
1556 SemanticError( location, "use of undeclared trait " + traitInst->name );
1557 }
1558 if ( traitDecl->params.size() != traitInst->params.size() ) {
1559 SemanticError( location, traitInst, "incorrect number of trait parameters: " );
1560 }
1561 traitInst = ast::mutate_field( traitInst, &ast::TraitInstType::base, traitDecl );
1562
1563 // need to carry over the "sized" status of each decl in the instance
1564 for ( unsigned i = 0; i < traitDecl->params.size(); ++i ) {
1565 auto expr = traitInst->params[i].as< ast::TypeExpr >();
1566 if ( ! expr ) {
1567 SemanticError(
1568 traitInst->params[i].get(), "Expression parameters for trait instances "
1569 "are currently unsupported: " );
1570 }
1571
1572 if ( auto inst = expr->type.as< ast::TypeInstType >() ) {
1573 if ( traitDecl->params[i]->sized && ! inst->base->sized ) {
1574 // traitInst = ast::mutate_field_index(
1575 // traitInst, &ast::TraitInstType::params, i,
1576 // ...
1577 // );
1578 ast::TraitInstType * mut = ast::mutate( traitInst );
1579 ast::chain_mutate( mut->params[i] )
1580 ( &ast::TypeExpr::type )
1581 ( &ast::TypeInstType::base )->sized = true;
1582 traitInst = mut;
1583 }
1584 }
1585 }
1586
1587 return traitInst;
1588 }
1589
1590 void previsit( const ast::QualifiedType * ) { visit_children = false; }
1591
1592 const ast::Type * postvisit( const ast::QualifiedType * qualType ) {
1593 // linking only makes sense for the "oldest ancestor" of the qualified type
1594 return ast::mutate_field(
1595 qualType, &ast::QualifiedType::parent, qualType->parent->accept( * visitor ) );
1596 }
1597
1598 const ast::Decl * postvisit( const ast::EnumDecl * enumDecl ) {
1599 // visit enum members first so that the types of self-referencing members are updated
1600 // properly
1601 if ( ! enumDecl->body ) return enumDecl;
1602
1603 // update forward declarations to point here
1604 auto fwds = forwardEnums.equal_range( enumDecl->name );
1605 if ( fwds.first != fwds.second ) {
1606 auto inst = fwds.first;
1607 do {
1608 // forward decl is stored * mutably * in map, can thus be updated
1609 inst->second->base = enumDecl;
1610 } while ( ++inst != fwds.second );
1611 forwardEnums.erase( fwds.first, fwds.second );
1612 }
1613
1614 // ensure that enumerator initializers are properly set
1615 for ( unsigned i = 0; i < enumDecl->members.size(); ++i ) {
1616 auto field = enumDecl->members[i].strict_as< ast::ObjectDecl >();
1617 if ( field->init ) {
1618 // need to resolve enumerator initializers early so that other passes that
1619 // determine if an expression is constexpr have appropriate information
1620 auto init = field->init.strict_as< ast::SingleInit >();
1621
1622 enumDecl = ast::mutate_field_index(
1623 enumDecl, &ast::EnumDecl::members, i,
1624 ast::mutate_field( field, &ast::ObjectDecl::init,
1625 ast::mutate_field( init, &ast::SingleInit::value,
1626 ResolvExpr::findSingleExpression(
1627 init->value, new ast::BasicType{ ast::BasicType::SignedInt },
1628 symtab ) ) ) );
1629 }
1630 }
1631
1632 return enumDecl;
1633 }
1634
1635 /// rename generic type parameters uniquely so that they do not conflict with user defined
1636 /// function forall parameters, e.g. the T in Box and the T in f, below
1637 /// forall(otype T)
1638 /// struct Box {
1639 /// T x;
1640 /// };
1641 /// forall(otype T)
1642 /// void f(Box(T) b) {
1643 /// ...
1644 /// }
1645 template< typename AggrDecl >
1646 const AggrDecl * renameGenericParams( const AggrDecl * aggr ) {
1647 GuardValue( inGeneric );
1648 inGeneric = ! aggr->params.empty();
1649
1650 for ( unsigned i = 0; i < aggr->params.size(); ++i ) {
1651 const ast::TypeDecl * td = aggr->params[i];
1652
1653 aggr = ast::mutate_field_index(
1654 aggr, &AggrDecl::params, i,
1655 ast::mutate_field( td, &ast::TypeDecl::name, "__" + td->name + "_generic_" ) );
1656 }
1657 return aggr;
1658 }
1659
1660 const ast::StructDecl * previsit( const ast::StructDecl * structDecl ) {
1661 return renameGenericParams( structDecl );
1662 }
1663
1664 void postvisit( const ast::StructDecl * structDecl ) {
1665 // visit struct members first so that the types of self-referencing members are
1666 // updated properly
1667 if ( ! structDecl->body ) return;
1668
1669 // update forward declarations to point here
1670 auto fwds = forwardStructs.equal_range( structDecl->name );
1671 if ( fwds.first != fwds.second ) {
1672 auto inst = fwds.first;
1673 do {
1674 // forward decl is stored * mutably * in map, can thus be updated
1675 inst->second->base = structDecl;
1676 } while ( ++inst != fwds.second );
1677 forwardStructs.erase( fwds.first, fwds.second );
1678 }
1679 }
1680
1681 const ast::UnionDecl * previsit( const ast::UnionDecl * unionDecl ) {
1682 return renameGenericParams( unionDecl );
1683 }
1684
1685 void postvisit( const ast::UnionDecl * unionDecl ) {
1686 // visit union members first so that the types of self-referencing members are updated
1687 // properly
1688 if ( ! unionDecl->body ) return;
1689
1690 // update forward declarations to point here
1691 auto fwds = forwardUnions.equal_range( unionDecl->name );
1692 if ( fwds.first != fwds.second ) {
1693 auto inst = fwds.first;
1694 do {
1695 // forward decl is stored * mutably * in map, can thus be updated
1696 inst->second->base = unionDecl;
1697 } while ( ++inst != fwds.second );
1698 forwardUnions.erase( fwds.first, fwds.second );
1699 }
1700 }
1701
1702 const ast::Decl * postvisit( const ast::TraitDecl * traitDecl ) {
1703 // set the "sized" status for the special "sized" trait
1704 if ( traitDecl->name == "sized" ) {
1705 assertf( traitDecl->params.size() == 1, "Built-in trait 'sized' has incorrect "
1706 "number of parameters: %zd", traitDecl->params.size() );
1707
1708 traitDecl = ast::mutate_field_index(
1709 traitDecl, &ast::TraitDecl::params, 0,
1710 ast::mutate_field(
1711 traitDecl->params.front().get(), &ast::TypeDecl::sized, true ) );
1712 }
1713
1714 // move assertions from type parameters into the body of the trait
1715 std::vector< ast::ptr< ast::DeclWithType > > added;
1716 for ( const ast::TypeDecl * td : traitDecl->params ) {
1717 for ( const ast::DeclWithType * assn : td->assertions ) {
1718 auto inst = dynamic_cast< const ast::TraitInstType * >( assn->get_type() );
1719 if ( inst ) {
1720 expandAssertions( inst, added );
1721 } else {
1722 added.emplace_back( assn );
1723 }
1724 }
1725 }
1726 if ( ! added.empty() ) {
1727 auto mut = mutate( traitDecl );
1728 for ( const ast::DeclWithType * decl : added ) {
1729 mut->members.emplace_back( decl );
1730 }
1731 traitDecl = mut;
1732 }
1733
1734 return traitDecl;
1735 }
1736 };
1737
1738 /// Replaces array and function types in forall lists by appropriate pointer type and assigns
1739 /// each object and function declaration a unique ID
1740 class ForallPointerDecay_new {
1741 const CodeLocation & location;
1742 public:
1743 ForallPointerDecay_new( const CodeLocation & loc ) : location( loc ) {}
1744
1745 const ast::ObjectDecl * previsit( const ast::ObjectDecl * obj ) {
1746 // ensure that operator names only apply to functions or function pointers
1747 if (
1748 CodeGen::isOperator( obj->name )
1749 && ! dynamic_cast< const ast::FunctionType * >( obj->type->stripDeclarator() )
1750 ) {
1751 SemanticError( obj->location, toCString( "operator ", obj->name.c_str(), " is not "
1752 "a function or function pointer." ) );
1753 }
1754
1755 // ensure object has unique ID
1756 if ( obj->uniqueId ) return obj;
1757 auto mut = mutate( obj );
1758 mut->fixUniqueId();
1759 return mut;
1760 }
1761
1762 const ast::FunctionDecl * previsit( const ast::FunctionDecl * func ) {
1763 // ensure function has unique ID
1764 if ( func->uniqueId ) return func;
1765 auto mut = mutate( func );
1766 mut->fixUniqueId();
1767 return mut;
1768 }
1769
1770 /// Fix up assertions -- flattens assertion lists, removing all trait instances
1771 template< typename node_t, typename parent_t >
1772 static const node_t * forallFixer(
1773 const CodeLocation & loc, const node_t * node,
1774 ast::ParameterizedType::ForallList parent_t::* forallField
1775 ) {
1776 for ( unsigned i = 0; i < (node->* forallField).size(); ++i ) {
1777 const ast::TypeDecl * type = (node->* forallField)[i];
1778 if ( type->assertions.empty() ) continue;
1779
1780 std::vector< ast::ptr< ast::DeclWithType > > asserts;
1781 asserts.reserve( type->assertions.size() );
1782
1783 // expand trait instances into their members
1784 for ( const ast::DeclWithType * assn : type->assertions ) {
1785 auto traitInst =
1786 dynamic_cast< const ast::TraitInstType * >( assn->get_type() );
1787 if ( traitInst ) {
1788 // expand trait instance to all its members
1789 expandAssertions( traitInst, asserts );
1790 } else {
1791 // pass other assertions through
1792 asserts.emplace_back( assn );
1793 }
1794 }
1795
1796 // apply FixFunction to every assertion to check for invalid void type
1797 for ( ast::ptr< ast::DeclWithType > & assn : asserts ) {
1798 bool isVoid = false;
1799 assn = fixFunction( assn, isVoid );
1800 if ( isVoid ) {
1801 SemanticError( loc, node, "invalid type void in assertion of function " );
1802 }
1803 }
1804
1805 // place mutated assertion list in node
1806 auto mut = mutate( type );
1807 mut->assertions = move( asserts );
1808 node = ast::mutate_field_index( node, forallField, i, mut );
1809 }
1810 return node;
1811 }
1812
1813 const ast::FunctionType * previsit( const ast::FunctionType * ftype ) {
1814 return forallFixer( location, ftype, &ast::FunctionType::forall );
1815 }
1816
1817 const ast::StructDecl * previsit( const ast::StructDecl * aggrDecl ) {
1818 return forallFixer( aggrDecl->location, aggrDecl, &ast::StructDecl::params );
1819 }
1820
1821 const ast::UnionDecl * previsit( const ast::UnionDecl * aggrDecl ) {
1822 return forallFixer( aggrDecl->location, aggrDecl, &ast::UnionDecl::params );
1823 }
1824 };
1825} // anonymous namespace
1826
1827const ast::Type * validateType(
1828 const CodeLocation & loc, const ast::Type * type, const ast::SymbolTable & symtab ) {
1829 ast::Pass< EnumAndPointerDecay_new > epc;
1830 ast::Pass< LinkReferenceToTypes_new > lrt{ loc, symtab };
1831 ast::Pass< ForallPointerDecay_new > fpd{ loc };
1832
1833 return type->accept( epc )->accept( lrt )->accept( fpd );
1834}
1835
1836} // namespace SymTab
1837
1838// Local Variables: //
1839// tab-width: 4 //
1840// mode: c++ //
1841// compile-command: "make install" //
1842// End: //
Note: See TracBrowser for help on using the repository browser.