source: src/SymTab/Validate.cc@ bd87b138

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors deferred_resn demangler enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum with_gc
Last change on this file since bd87b138 was 3d2b7bc, checked in by Rob Schluntz <rschlunt@…>, 8 years ago

Check for operator-as-object errors

  • Property mode set to 100644
File size: 42.5 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Validate.cc --
8//
9// Author : Richard C. Bilson
10// Created On : Sun May 17 21:50:04 2015
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Mon Aug 28 13:47:23 2017
13// Update Count : 359
14//
15
16// The "validate" phase of translation is used to take a syntax tree and convert it into a standard form that aims to be
17// as regular in structure as possible. Some assumptions can be made regarding the state of the tree after this pass is
18// complete, including:
19//
20// - No nested structure or union definitions; any in the input are "hoisted" to the level of the containing struct or
21// union.
22//
23// - All enumeration constants have type EnumInstType.
24//
25// - The type "void" never occurs in lists of function parameter or return types. A function
26// taking no arguments has no argument types.
27//
28// - No context instances exist; they are all replaced by the set of declarations signified by the context, instantiated
29// by the particular set of type arguments.
30//
31// - Every declaration is assigned a unique id.
32//
33// - No typedef declarations or instances exist; the actual type is substituted for each instance.
34//
35// - Each type, struct, and union definition is followed by an appropriate assignment operator.
36//
37// - Each use of a struct or union is connected to a complete definition of that struct or union, even if that
38// definition occurs later in the input.
39
40#include "Validate.h"
41
42#include <cassert> // for assertf, assert
43#include <cstddef> // for size_t
44#include <list> // for list
45#include <string> // for string
46#include <utility> // for pair
47
48#include "CodeGen/CodeGenerator.h" // for genName
49#include "CodeGen/OperatorTable.h" // for isCtorDtor, isCtorDtorAssign
50#include "Common/PassVisitor.h" // for PassVisitor, WithDeclsToAdd
51#include "Common/ScopedMap.h" // for ScopedMap
52#include "Common/SemanticError.h" // for SemanticError
53#include "Common/UniqueName.h" // for UniqueName
54#include "Common/utility.h" // for operator+, cloneAll, deleteAll
55#include "Concurrency/Keywords.h" // for applyKeywords
56#include "FixFunction.h" // for FixFunction
57#include "Indexer.h" // for Indexer
58#include "InitTweak/GenInit.h" // for fixReturnStatements
59#include "InitTweak/InitTweak.h" // for isCtorDtorAssign
60#include "Parser/LinkageSpec.h" // for C
61#include "ResolvExpr/typeops.h" // for typesCompatible
62#include "SymTab/Autogen.h" // for SizeType
63#include "SynTree/Attribute.h" // for noAttributes, Attribute
64#include "SynTree/Constant.h" // for Constant
65#include "SynTree/Declaration.h" // for ObjectDecl, DeclarationWithType
66#include "SynTree/Expression.h" // for CompoundLiteralExpr, Expressio...
67#include "SynTree/Initializer.h" // for ListInit, Initializer
68#include "SynTree/Label.h" // for operator==, Label
69#include "SynTree/Mutator.h" // for Mutator
70#include "SynTree/Type.h" // for Type, TypeInstType, EnumInstType
71#include "SynTree/TypeSubstitution.h" // for TypeSubstitution
72#include "SynTree/Visitor.h" // for Visitor
73
74class CompoundStmt;
75class ReturnStmt;
76class SwitchStmt;
77
78
79#define debugPrint( x ) if ( doDebug ) { std::cout << x; }
80
81namespace SymTab {
82 struct HoistStruct final : public WithDeclsToAdd, public WithGuards {
83 /// Flattens nested struct types
84 static void hoistStruct( std::list< Declaration * > &translationUnit );
85
86 void previsit( EnumInstType * enumInstType );
87 void previsit( StructInstType * structInstType );
88 void previsit( UnionInstType * unionInstType );
89 void previsit( StructDecl * aggregateDecl );
90 void previsit( UnionDecl * aggregateDecl );
91
92 private:
93 template< typename AggDecl > void handleAggregate( AggDecl *aggregateDecl );
94
95 AggregateDecl * parentAggr = nullptr;
96 };
97
98 /// Fix return types so that every function returns exactly one value
99 struct ReturnTypeFixer {
100 static void fix( std::list< Declaration * > &translationUnit );
101
102 void postvisit( FunctionDecl * functionDecl );
103 void postvisit( FunctionType * ftype );
104 };
105
106 /// Replaces enum types by int, and function or array types in function parameter and return lists by appropriate pointers.
107 struct EnumAndPointerDecay {
108 void previsit( EnumDecl *aggregateDecl );
109 void previsit( FunctionType *func );
110 };
111
112 /// Associates forward declarations of aggregates with their definitions
113 struct LinkReferenceToTypes final : public WithIndexer, public WithGuards {
114 LinkReferenceToTypes( const Indexer *indexer );
115 void postvisit( TypeInstType *typeInst );
116
117 void postvisit( EnumInstType *enumInst );
118 void postvisit( StructInstType *structInst );
119 void postvisit( UnionInstType *unionInst );
120 void postvisit( TraitInstType *traitInst );
121
122 void postvisit( EnumDecl *enumDecl );
123 void postvisit( StructDecl *structDecl );
124 void postvisit( UnionDecl *unionDecl );
125 void postvisit( TraitDecl * traitDecl );
126
127 void previsit( StructDecl *structDecl );
128 void previsit( UnionDecl *unionDecl );
129
130 void renameGenericParams( std::list< TypeDecl * > & params );
131
132 private:
133 const Indexer *local_indexer;
134
135 typedef std::map< std::string, std::list< EnumInstType * > > ForwardEnumsType;
136 typedef std::map< std::string, std::list< StructInstType * > > ForwardStructsType;
137 typedef std::map< std::string, std::list< UnionInstType * > > ForwardUnionsType;
138 ForwardEnumsType forwardEnums;
139 ForwardStructsType forwardStructs;
140 ForwardUnionsType forwardUnions;
141 /// true if currently in a generic type body, so that type parameter instances can be renamed appropriately
142 bool inGeneric = false;
143 };
144
145 /// Replaces array and function types in forall lists by appropriate pointer type and assigns each Object and Function declaration a unique ID.
146 struct ForallPointerDecay final {
147 void previsit( ObjectDecl * object );
148 void previsit( FunctionDecl * func );
149 void previsit( StructDecl * aggrDecl );
150 void previsit( UnionDecl * aggrDecl );
151 };
152
153 struct ReturnChecker : public WithGuards {
154 /// Checks that return statements return nothing if their return type is void
155 /// and return something if the return type is non-void.
156 static void checkFunctionReturns( std::list< Declaration * > & translationUnit );
157
158 void previsit( FunctionDecl * functionDecl );
159 void previsit( ReturnStmt * returnStmt );
160
161 typedef std::list< DeclarationWithType * > ReturnVals;
162 ReturnVals returnVals;
163 };
164
165 struct EliminateTypedef final : public WithVisitorRef<EliminateTypedef>, public WithGuards {
166 EliminateTypedef() : scopeLevel( 0 ) {}
167 /// Replaces typedefs by forward declarations
168 static void eliminateTypedef( std::list< Declaration * > &translationUnit );
169
170 Type * postmutate( TypeInstType * aggregateUseType );
171 Declaration * postmutate( TypedefDecl * typeDecl );
172 void premutate( TypeDecl * typeDecl );
173 void premutate( FunctionDecl * funcDecl );
174 void premutate( ObjectDecl * objDecl );
175 DeclarationWithType * postmutate( ObjectDecl * objDecl );
176
177 void premutate( CastExpr * castExpr );
178
179 void premutate( CompoundStmt * compoundStmt );
180 CompoundStmt * postmutate( CompoundStmt * compoundStmt );
181
182 void premutate( StructDecl * structDecl );
183 Declaration * postmutate( StructDecl * structDecl );
184 void premutate( UnionDecl * unionDecl );
185 Declaration * postmutate( UnionDecl * unionDecl );
186 void premutate( EnumDecl * enumDecl );
187 Declaration * postmutate( EnumDecl * enumDecl );
188 Declaration * postmutate( TraitDecl * contextDecl );
189
190 void premutate( FunctionType * ftype );
191
192 private:
193 template<typename AggDecl>
194 AggDecl *handleAggregate( AggDecl * aggDecl );
195
196 template<typename AggDecl>
197 void addImplicitTypedef( AggDecl * aggDecl );
198
199 typedef std::unique_ptr<TypedefDecl> TypedefDeclPtr;
200 typedef ScopedMap< std::string, std::pair< TypedefDeclPtr, int > > TypedefMap;
201 typedef std::map< std::string, TypeDecl * > TypeDeclMap;
202 TypedefMap typedefNames;
203 TypeDeclMap typedeclNames;
204 int scopeLevel;
205 bool inFunctionType = false;
206 };
207
208 struct VerifyCtorDtorAssign {
209 /// ensure that constructors, destructors, and assignment have at least one
210 /// parameter, the first of which must be a pointer, and that ctor/dtors have no
211 /// return values.
212 static void verify( std::list< Declaration * > &translationUnit );
213
214 void previsit( FunctionDecl *funcDecl );
215 };
216
217 /// ensure that generic types have the correct number of type arguments
218 struct ValidateGenericParameters {
219 void previsit( StructInstType * inst );
220 void previsit( UnionInstType * inst );
221 };
222
223 struct ArrayLength {
224 /// for array types without an explicit length, compute the length and store it so that it
225 /// is known to the rest of the phases. For example,
226 /// int x[] = { 1, 2, 3 };
227 /// int y[][2] = { { 1, 2, 3 }, { 1, 2, 3 } };
228 /// here x and y are known at compile-time to have length 3, so change this into
229 /// int x[3] = { 1, 2, 3 };
230 /// int y[3][2] = { { 1, 2, 3 }, { 1, 2, 3 } };
231 static void computeLength( std::list< Declaration * > & translationUnit );
232
233 void previsit( ObjectDecl * objDecl );
234 };
235
236 struct CompoundLiteral final : public WithDeclsToAdd, public WithVisitorRef<CompoundLiteral> {
237 Type::StorageClasses storageClasses;
238
239 void premutate( ObjectDecl *objectDecl );
240 Expression * postmutate( CompoundLiteralExpr *compLitExpr );
241 };
242
243 struct LabelAddressFixer final : public WithGuards {
244 std::set< Label > labels;
245
246 void premutate( FunctionDecl * funcDecl );
247 Expression * postmutate( AddressExpr * addrExpr );
248 };
249
250 FunctionDecl * dereferenceOperator = nullptr;
251 struct FindSpecialDeclarations final {
252 void previsit( FunctionDecl * funcDecl );
253 };
254
255 void validate( std::list< Declaration * > &translationUnit, __attribute__((unused)) bool doDebug ) {
256 PassVisitor<EnumAndPointerDecay> epc;
257 PassVisitor<LinkReferenceToTypes> lrt( nullptr );
258 PassVisitor<ForallPointerDecay> fpd;
259 PassVisitor<CompoundLiteral> compoundliteral;
260 PassVisitor<ValidateGenericParameters> genericParams;
261 PassVisitor<FindSpecialDeclarations> finder;
262 PassVisitor<LabelAddressFixer> labelAddrFixer;
263
264 EliminateTypedef::eliminateTypedef( translationUnit );
265 HoistStruct::hoistStruct( translationUnit ); // must happen after EliminateTypedef, so that aggregate typedefs occur in the correct order
266 ReturnTypeFixer::fix( translationUnit ); // must happen before autogen
267 acceptAll( translationUnit, epc ); // must happen before VerifyCtorDtorAssign, because void return objects should not exist; before LinkReferenceToTypes because it is an indexer and needs correct types for mangling
268 acceptAll( translationUnit, lrt ); // must happen before autogen, because sized flag needs to propagate to generated functions
269 acceptAll( translationUnit, genericParams ); // check as early as possible - can't happen before LinkReferenceToTypes
270 VerifyCtorDtorAssign::verify( translationUnit ); // must happen before autogen, because autogen examines existing ctor/dtors
271 ReturnChecker::checkFunctionReturns( translationUnit );
272 InitTweak::fixReturnStatements( translationUnit ); // must happen before autogen
273 Concurrency::applyKeywords( translationUnit );
274 acceptAll( translationUnit, fpd ); // must happen before autogenerateRoutines, after Concurrency::applyKeywords because uniqueIds must be set on declaration before resolution
275 autogenerateRoutines( translationUnit ); // moved up, used to be below compoundLiteral - currently needs EnumAndPointerDecay
276 Concurrency::implementMutexFuncs( translationUnit );
277 Concurrency::implementThreadStarter( translationUnit );
278 mutateAll( translationUnit, compoundliteral );
279 ArrayLength::computeLength( translationUnit );
280 acceptAll( translationUnit, finder ); // xxx - remove this pass soon
281 mutateAll( translationUnit, labelAddrFixer );
282 }
283
284 void validateType( Type *type, const Indexer *indexer ) {
285 PassVisitor<EnumAndPointerDecay> epc;
286 PassVisitor<LinkReferenceToTypes> lrt( indexer );
287 PassVisitor<ForallPointerDecay> fpd;
288 type->accept( epc );
289 type->accept( lrt );
290 type->accept( fpd );
291 }
292
293 void HoistStruct::hoistStruct( std::list< Declaration * > &translationUnit ) {
294 PassVisitor<HoistStruct> hoister;
295 acceptAll( translationUnit, hoister );
296 }
297
298 bool isStructOrUnion( Declaration *decl ) {
299 return dynamic_cast< StructDecl * >( decl ) || dynamic_cast< UnionDecl * >( decl );
300 }
301
302 template< typename AggDecl >
303 void HoistStruct::handleAggregate( AggDecl *aggregateDecl ) {
304 if ( parentAggr ) {
305 // Add elements in stack order corresponding to nesting structure.
306 declsToAddBefore.push_front( aggregateDecl );
307 } else {
308 GuardValue( parentAggr );
309 parentAggr = aggregateDecl;
310 } // if
311 // Always remove the hoisted aggregate from the inner structure.
312 GuardAction( [aggregateDecl]() { filter( aggregateDecl->members, isStructOrUnion, false ); } );
313 }
314
315 void HoistStruct::previsit( EnumInstType * inst ) {
316 if ( inst->baseEnum ) {
317 declsToAddBefore.push_front( inst->baseEnum );
318 }
319 }
320
321 void HoistStruct::previsit( StructInstType * inst ) {
322 if ( inst->baseStruct ) {
323 declsToAddBefore.push_front( inst->baseStruct );
324 }
325 }
326
327 void HoistStruct::previsit( UnionInstType * inst ) {
328 if ( inst->baseUnion ) {
329 declsToAddBefore.push_front( inst->baseUnion );
330 }
331 }
332
333 void HoistStruct::previsit( StructDecl * aggregateDecl ) {
334 handleAggregate( aggregateDecl );
335 }
336
337 void HoistStruct::previsit( UnionDecl * aggregateDecl ) {
338 handleAggregate( aggregateDecl );
339 }
340
341 void EnumAndPointerDecay::previsit( EnumDecl *enumDecl ) {
342 // Set the type of each member of the enumeration to be EnumConstant
343 for ( std::list< Declaration * >::iterator i = enumDecl->get_members().begin(); i != enumDecl->get_members().end(); ++i ) {
344 ObjectDecl * obj = dynamic_cast< ObjectDecl * >( *i );
345 assert( obj );
346 obj->set_type( new EnumInstType( Type::Qualifiers( Type::Const ), enumDecl->get_name() ) );
347 } // for
348 }
349
350 namespace {
351 template< typename DWTList >
352 void fixFunctionList( DWTList & dwts, bool isVarArgs, FunctionType * func ) {
353 auto nvals = dwts.size();
354 bool containsVoid = false;
355 for ( auto & dwt : dwts ) {
356 // fix each DWT and record whether a void was found
357 containsVoid |= fixFunction( dwt );
358 }
359
360 // the only case in which "void" is valid is where it is the only one in the list
361 if ( containsVoid && ( nvals > 1 || isVarArgs ) ) {
362 SemanticError( func, "invalid type void in function type " );
363 }
364
365 // one void is the only thing in the list; remove it.
366 if ( containsVoid ) {
367 delete dwts.front();
368 dwts.clear();
369 }
370 }
371 }
372
373 void EnumAndPointerDecay::previsit( FunctionType *func ) {
374 // Fix up parameters and return types
375 fixFunctionList( func->parameters, func->isVarArgs, func );
376 fixFunctionList( func->returnVals, false, func );
377 }
378
379 LinkReferenceToTypes::LinkReferenceToTypes( const Indexer *other_indexer ) {
380 if ( other_indexer ) {
381 local_indexer = other_indexer;
382 } else {
383 local_indexer = &indexer;
384 } // if
385 }
386
387 void LinkReferenceToTypes::postvisit( EnumInstType *enumInst ) {
388 EnumDecl *st = local_indexer->lookupEnum( enumInst->get_name() );
389 // it's not a semantic error if the enum is not found, just an implicit forward declaration
390 if ( st ) {
391 //assert( ! enumInst->get_baseEnum() || enumInst->get_baseEnum()->get_members().empty() || ! st->get_members().empty() );
392 enumInst->set_baseEnum( st );
393 } // if
394 if ( ! st || st->get_members().empty() ) {
395 // use of forward declaration
396 forwardEnums[ enumInst->get_name() ].push_back( enumInst );
397 } // if
398 }
399
400 void checkGenericParameters( ReferenceToType * inst ) {
401 for ( Expression * param : inst->parameters ) {
402 if ( ! dynamic_cast< TypeExpr * >( param ) ) {
403 SemanticError( inst, "Expression parameters for generic types are currently unsupported: " );
404 }
405 }
406 }
407
408 void LinkReferenceToTypes::postvisit( StructInstType *structInst ) {
409 StructDecl *st = local_indexer->lookupStruct( structInst->get_name() );
410 // it's not a semantic error if the struct is not found, just an implicit forward declaration
411 if ( st ) {
412 //assert( ! structInst->get_baseStruct() || structInst->get_baseStruct()->get_members().empty() || ! st->get_members().empty() );
413 structInst->set_baseStruct( st );
414 } // if
415 if ( ! st || st->get_members().empty() ) {
416 // use of forward declaration
417 forwardStructs[ structInst->get_name() ].push_back( structInst );
418 } // if
419 checkGenericParameters( structInst );
420 }
421
422 void LinkReferenceToTypes::postvisit( UnionInstType *unionInst ) {
423 UnionDecl *un = local_indexer->lookupUnion( unionInst->get_name() );
424 // it's not a semantic error if the union is not found, just an implicit forward declaration
425 if ( un ) {
426 unionInst->set_baseUnion( un );
427 } // if
428 if ( ! un || un->get_members().empty() ) {
429 // use of forward declaration
430 forwardUnions[ unionInst->get_name() ].push_back( unionInst );
431 } // if
432 checkGenericParameters( unionInst );
433 }
434
435 template< typename Decl >
436 void normalizeAssertions( std::list< Decl * > & assertions ) {
437 // ensure no duplicate trait members after the clone
438 auto pred = [](Decl * d1, Decl * d2) {
439 // only care if they're equal
440 DeclarationWithType * dwt1 = dynamic_cast<DeclarationWithType *>( d1 );
441 DeclarationWithType * dwt2 = dynamic_cast<DeclarationWithType *>( d2 );
442 if ( dwt1 && dwt2 ) {
443 if ( dwt1->get_name() == dwt2->get_name() && ResolvExpr::typesCompatible( dwt1->get_type(), dwt2->get_type(), SymTab::Indexer() ) ) {
444 // std::cerr << "=========== equal:" << std::endl;
445 // std::cerr << "d1: " << d1 << std::endl;
446 // std::cerr << "d2: " << d2 << std::endl;
447 return false;
448 }
449 }
450 return d1 < d2;
451 };
452 std::set<Decl *, decltype(pred)> unique_members( assertions.begin(), assertions.end(), pred );
453 // if ( unique_members.size() != assertions.size() ) {
454 // std::cerr << "============different" << std::endl;
455 // std::cerr << unique_members.size() << " " << assertions.size() << std::endl;
456 // }
457
458 std::list< Decl * > order;
459 order.splice( order.end(), assertions );
460 std::copy_if( order.begin(), order.end(), back_inserter( assertions ), [&]( Decl * decl ) {
461 return unique_members.count( decl );
462 });
463 }
464
465 // expand assertions from trait instance, performing the appropriate type variable substitutions
466 template< typename Iterator >
467 void expandAssertions( TraitInstType * inst, Iterator out ) {
468 assertf( inst->baseTrait, "Trait instance not linked to base trait: %s", toString( inst ).c_str() );
469 std::list< DeclarationWithType * > asserts;
470 for ( Declaration * decl : inst->baseTrait->members ) {
471 asserts.push_back( strict_dynamic_cast<DeclarationWithType *>( decl->clone() ) );
472 }
473 // substitute trait decl parameters for instance parameters
474 applySubstitution( inst->baseTrait->parameters.begin(), inst->baseTrait->parameters.end(), inst->parameters.begin(), asserts.begin(), asserts.end(), out );
475 }
476
477 void LinkReferenceToTypes::postvisit( TraitDecl * traitDecl ) {
478 if ( traitDecl->name == "sized" ) {
479 // "sized" is a special trait - flick the sized status on for the type variable
480 assertf( traitDecl->parameters.size() == 1, "Built-in trait 'sized' has incorrect number of parameters: %zd", traitDecl->parameters.size() );
481 TypeDecl * td = traitDecl->parameters.front();
482 td->set_sized( true );
483 }
484
485 // move assertions from type parameters into the body of the trait
486 for ( TypeDecl * td : traitDecl->parameters ) {
487 for ( DeclarationWithType * assert : td->assertions ) {
488 if ( TraitInstType * inst = dynamic_cast< TraitInstType * >( assert->get_type() ) ) {
489 expandAssertions( inst, back_inserter( traitDecl->members ) );
490 } else {
491 traitDecl->members.push_back( assert->clone() );
492 }
493 }
494 deleteAll( td->assertions );
495 td->assertions.clear();
496 } // for
497 }
498
499 void LinkReferenceToTypes::postvisit( TraitInstType * traitInst ) {
500 // handle other traits
501 TraitDecl *traitDecl = local_indexer->lookupTrait( traitInst->name );
502 if ( ! traitDecl ) {
503 SemanticError( traitInst->location, "use of undeclared trait " + traitInst->name );
504 } // if
505 if ( traitDecl->get_parameters().size() != traitInst->get_parameters().size() ) {
506 SemanticError( traitInst, "incorrect number of trait parameters: " );
507 } // if
508 traitInst->baseTrait = traitDecl;
509
510 // need to carry over the 'sized' status of each decl in the instance
511 for ( auto p : group_iterate( traitDecl->get_parameters(), traitInst->get_parameters() ) ) {
512 TypeExpr * expr = dynamic_cast< TypeExpr * >( std::get<1>(p) );
513 if ( ! expr ) {
514 SemanticError( std::get<1>(p), "Expression parameters for trait instances are currently unsupported: " );
515 }
516 if ( TypeInstType * inst = dynamic_cast< TypeInstType * >( expr->get_type() ) ) {
517 TypeDecl * formalDecl = std::get<0>(p);
518 TypeDecl * instDecl = inst->get_baseType();
519 if ( formalDecl->get_sized() ) instDecl->set_sized( true );
520 }
521 }
522 // normalizeAssertions( traitInst->members );
523 }
524
525 void LinkReferenceToTypes::postvisit( EnumDecl *enumDecl ) {
526 // visit enum members first so that the types of self-referencing members are updated properly
527 if ( ! enumDecl->get_members().empty() ) {
528 ForwardEnumsType::iterator fwds = forwardEnums.find( enumDecl->get_name() );
529 if ( fwds != forwardEnums.end() ) {
530 for ( std::list< EnumInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) {
531 (*inst )->set_baseEnum( enumDecl );
532 } // for
533 forwardEnums.erase( fwds );
534 } // if
535 } // if
536 }
537
538 void LinkReferenceToTypes::renameGenericParams( std::list< TypeDecl * > & params ) {
539 // rename generic type parameters uniquely so that they do not conflict with user-defined function forall parameters, e.g.
540 // forall(otype T)
541 // struct Box {
542 // T x;
543 // };
544 // forall(otype T)
545 // void f(Box(T) b) {
546 // ...
547 // }
548 // The T in Box and the T in f are different, so internally the naming must reflect that.
549 GuardValue( inGeneric );
550 inGeneric = ! params.empty();
551 for ( TypeDecl * td : params ) {
552 td->name = "__" + td->name + "_generic_";
553 }
554 }
555
556 void LinkReferenceToTypes::previsit( StructDecl * structDecl ) {
557 renameGenericParams( structDecl->parameters );
558 }
559
560 void LinkReferenceToTypes::previsit( UnionDecl * unionDecl ) {
561 renameGenericParams( unionDecl->parameters );
562 }
563
564 void LinkReferenceToTypes::postvisit( StructDecl *structDecl ) {
565 // visit struct members first so that the types of self-referencing members are updated properly
566 // xxx - need to ensure that type parameters match up between forward declarations and definition (most importantly, number of type parameters and their defaults)
567 if ( ! structDecl->get_members().empty() ) {
568 ForwardStructsType::iterator fwds = forwardStructs.find( structDecl->get_name() );
569 if ( fwds != forwardStructs.end() ) {
570 for ( std::list< StructInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) {
571 (*inst )->set_baseStruct( structDecl );
572 } // for
573 forwardStructs.erase( fwds );
574 } // if
575 } // if
576 }
577
578 void LinkReferenceToTypes::postvisit( UnionDecl *unionDecl ) {
579 if ( ! unionDecl->get_members().empty() ) {
580 ForwardUnionsType::iterator fwds = forwardUnions.find( unionDecl->get_name() );
581 if ( fwds != forwardUnions.end() ) {
582 for ( std::list< UnionInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) {
583 (*inst )->set_baseUnion( unionDecl );
584 } // for
585 forwardUnions.erase( fwds );
586 } // if
587 } // if
588 }
589
590 void LinkReferenceToTypes::postvisit( TypeInstType *typeInst ) {
591 // ensure generic parameter instances are renamed like the base type
592 if ( inGeneric && typeInst->baseType ) typeInst->name = typeInst->baseType->name;
593 if ( NamedTypeDecl *namedTypeDecl = local_indexer->lookupType( typeInst->get_name() ) ) {
594 if ( TypeDecl *typeDecl = dynamic_cast< TypeDecl * >( namedTypeDecl ) ) {
595 typeInst->set_isFtype( typeDecl->get_kind() == TypeDecl::Ftype );
596 } // if
597 } // if
598 }
599
600 /// Fix up assertions - flattens assertion lists, removing all trait instances
601 void forallFixer( std::list< TypeDecl * > & forall, BaseSyntaxNode * node ) {
602 for ( TypeDecl * type : forall ) {
603 std::list< DeclarationWithType * > asserts;
604 asserts.splice( asserts.end(), type->assertions );
605 // expand trait instances into their members
606 for ( DeclarationWithType * assertion : asserts ) {
607 if ( TraitInstType *traitInst = dynamic_cast< TraitInstType * >( assertion->get_type() ) ) {
608 // expand trait instance into all of its members
609 expandAssertions( traitInst, back_inserter( type->assertions ) );
610 delete traitInst;
611 } else {
612 // pass other assertions through
613 type->assertions.push_back( assertion );
614 } // if
615 } // for
616 // apply FixFunction to every assertion to check for invalid void type
617 for ( DeclarationWithType *& assertion : type->assertions ) {
618 bool isVoid = fixFunction( assertion );
619 if ( isVoid ) {
620 SemanticError( node, "invalid type void in assertion of function " );
621 } // if
622 } // for
623 // normalizeAssertions( type->assertions );
624 } // for
625 }
626
627 void ForallPointerDecay::previsit( ObjectDecl *object ) {
628 forallFixer( object->type->forall, object );
629 if ( PointerType *pointer = dynamic_cast< PointerType * >( object->type ) ) {
630 forallFixer( pointer->base->forall, object );
631 } // if
632 // ensure that operator names only apply to functions or function pointers
633 if ( CodeGen::isOperator( object->name ) && ! dynamic_cast< FunctionType * >( object->type->stripDeclarator() ) ) {
634 SemanticError( object->location, toCString( "operator ", object->name.c_str(), " is not a function or function pointer." ) );
635 }
636 object->fixUniqueId();
637 }
638
639 void ForallPointerDecay::previsit( FunctionDecl *func ) {
640 forallFixer( func->type->forall, func );
641 func->fixUniqueId();
642 }
643
644 void ForallPointerDecay::previsit( StructDecl * aggrDecl ) {
645 forallFixer( aggrDecl->parameters, aggrDecl );
646 }
647
648 void ForallPointerDecay::previsit( UnionDecl * aggrDecl ) {
649 forallFixer( aggrDecl->parameters, aggrDecl );
650 }
651
652 void ReturnChecker::checkFunctionReturns( std::list< Declaration * > & translationUnit ) {
653 PassVisitor<ReturnChecker> checker;
654 acceptAll( translationUnit, checker );
655 }
656
657 void ReturnChecker::previsit( FunctionDecl * functionDecl ) {
658 GuardValue( returnVals );
659 returnVals = functionDecl->get_functionType()->get_returnVals();
660 }
661
662 void ReturnChecker::previsit( ReturnStmt * returnStmt ) {
663 // Previously this also checked for the existence of an expr paired with no return values on
664 // the function return type. This is incorrect, since you can have an expression attached to
665 // a return statement in a void-returning function in C. The expression is treated as if it
666 // were cast to void.
667 if ( ! returnStmt->get_expr() && returnVals.size() != 0 ) {
668 SemanticError( returnStmt, "Non-void function returns no values: " );
669 }
670 }
671
672
673 bool isTypedef( Declaration *decl ) {
674 return dynamic_cast< TypedefDecl * >( decl );
675 }
676
677 void EliminateTypedef::eliminateTypedef( std::list< Declaration * > &translationUnit ) {
678 PassVisitor<EliminateTypedef> eliminator;
679 mutateAll( translationUnit, eliminator );
680 if ( eliminator.pass.typedefNames.count( "size_t" ) ) {
681 // grab and remember declaration of size_t
682 SizeType = eliminator.pass.typedefNames["size_t"].first->get_base()->clone();
683 } else {
684 // xxx - missing global typedef for size_t - default to long unsigned int, even though that may be wrong
685 // eventually should have a warning for this case.
686 SizeType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
687 }
688 filter( translationUnit, isTypedef, true );
689 }
690
691 Type * EliminateTypedef::postmutate( TypeInstType * typeInst ) {
692 // instances of typedef types will come here. If it is an instance
693 // of a typdef type, link the instance to its actual type.
694 TypedefMap::const_iterator def = typedefNames.find( typeInst->get_name() );
695 if ( def != typedefNames.end() ) {
696 Type *ret = def->second.first->base->clone();
697 ret->get_qualifiers() |= typeInst->get_qualifiers();
698 // attributes are not carried over from typedef to function parameters/return values
699 if ( ! inFunctionType ) {
700 ret->attributes.splice( ret->attributes.end(), typeInst->attributes );
701 } else {
702 deleteAll( ret->attributes );
703 ret->attributes.clear();
704 }
705 // place instance parameters on the typedef'd type
706 if ( ! typeInst->parameters.empty() ) {
707 ReferenceToType *rtt = dynamic_cast<ReferenceToType*>(ret);
708 if ( ! rtt ) {
709 SemanticError( typeInst->location, "Cannot apply type parameters to base type of " + typeInst->name );
710 }
711 rtt->get_parameters().clear();
712 cloneAll( typeInst->parameters, rtt->parameters );
713 mutateAll( rtt->parameters, *visitor ); // recursively fix typedefs on parameters
714 } // if
715 delete typeInst;
716 return ret;
717 } else {
718 TypeDeclMap::const_iterator base = typedeclNames.find( typeInst->get_name() );
719 assertf( base != typedeclNames.end(), "Cannot find typedecl name %s", typeInst->name.c_str() );
720 typeInst->set_baseType( base->second );
721 } // if
722 return typeInst;
723 }
724
725 struct VarLenChecker : WithShortCircuiting {
726 void previsit( FunctionType * ) { visit_children = false; }
727 void previsit( ArrayType * at ) {
728 isVarLen |= at->isVarLen;
729 }
730 bool isVarLen = false;
731 };
732
733 bool isVariableLength( Type * t ) {
734 PassVisitor<VarLenChecker> varLenChecker;
735 maybeAccept( t, varLenChecker );
736 return varLenChecker.pass.isVarLen;
737 }
738
739 Declaration *EliminateTypedef::postmutate( TypedefDecl * tyDecl ) {
740 if ( typedefNames.count( tyDecl->get_name() ) == 1 && typedefNames[ tyDecl->get_name() ].second == scopeLevel ) {
741 // typedef to the same name from the same scope
742 // must be from the same type
743
744 Type * t1 = tyDecl->get_base();
745 Type * t2 = typedefNames[ tyDecl->get_name() ].first->get_base();
746 if ( ! ResolvExpr::typesCompatible( t1, t2, Indexer() ) ) {
747 SemanticError( tyDecl->location, "Cannot redefine typedef: " + tyDecl->name );
748 }
749 // Cannot redefine VLA typedefs. Note: this is slightly incorrect, because our notion of VLAs
750 // at this point in the translator is imprecise. In particular, this will disallow redefining typedefs
751 // with arrays whose dimension is an enumerator or a cast of a constant/enumerator. The effort required
752 // to fix this corner case likely outweighs the utility of allowing it.
753 if ( isVariableLength( t1 ) || isVariableLength( t2 ) ) {
754 SemanticError( tyDecl->location, "Cannot redefine typedef: " + tyDecl->name );
755 }
756 } else {
757 typedefNames[ tyDecl->get_name() ] = std::make_pair( TypedefDeclPtr( tyDecl ), scopeLevel );
758 } // if
759
760 // When a typedef is a forward declaration:
761 // typedef struct screen SCREEN;
762 // the declaration portion must be retained:
763 // struct screen;
764 // because the expansion of the typedef is:
765 // void rtn( SCREEN *p ) => void rtn( struct screen *p )
766 // hence the type-name "screen" must be defined.
767 // Note, qualifiers on the typedef are superfluous for the forward declaration.
768
769 Type *designatorType = tyDecl->get_base()->stripDeclarator();
770 if ( StructInstType *aggDecl = dynamic_cast< StructInstType * >( designatorType ) ) {
771 return new StructDecl( aggDecl->get_name(), DeclarationNode::Struct, noAttributes, tyDecl->get_linkage() );
772 } else if ( UnionInstType *aggDecl = dynamic_cast< UnionInstType * >( designatorType ) ) {
773 return new UnionDecl( aggDecl->get_name(), noAttributes, tyDecl->get_linkage() );
774 } else if ( EnumInstType *enumDecl = dynamic_cast< EnumInstType * >( designatorType ) ) {
775 return new EnumDecl( enumDecl->get_name(), noAttributes, tyDecl->get_linkage() );
776 } else {
777 return tyDecl->clone();
778 } // if
779 }
780
781 void EliminateTypedef::premutate( TypeDecl * typeDecl ) {
782 TypedefMap::iterator i = typedefNames.find( typeDecl->get_name() );
783 if ( i != typedefNames.end() ) {
784 typedefNames.erase( i ) ;
785 } // if
786
787 typedeclNames[ typeDecl->get_name() ] = typeDecl;
788 }
789
790 void EliminateTypedef::premutate( FunctionDecl * ) {
791 GuardScope( typedefNames );
792 }
793
794 void EliminateTypedef::premutate( ObjectDecl * ) {
795 GuardScope( typedefNames );
796 }
797
798 DeclarationWithType *EliminateTypedef::postmutate( ObjectDecl * objDecl ) {
799 if ( FunctionType *funtype = dynamic_cast<FunctionType *>( objDecl->get_type() ) ) { // function type?
800 // replace the current object declaration with a function declaration
801 FunctionDecl * newDecl = new FunctionDecl( objDecl->get_name(), objDecl->get_storageClasses(), objDecl->get_linkage(), funtype, 0, objDecl->get_attributes(), objDecl->get_funcSpec() );
802 objDecl->get_attributes().clear();
803 objDecl->set_type( nullptr );
804 delete objDecl;
805 return newDecl;
806 } // if
807 return objDecl;
808 }
809
810 void EliminateTypedef::premutate( CastExpr * ) {
811 GuardScope( typedefNames );
812 }
813
814 void EliminateTypedef::premutate( CompoundStmt * ) {
815 GuardScope( typedefNames );
816 scopeLevel += 1;
817 GuardAction( [this](){ scopeLevel -= 1; } );
818 }
819
820 CompoundStmt *EliminateTypedef::postmutate( CompoundStmt * compoundStmt ) {
821 // remove and delete decl stmts
822 filter( compoundStmt->kids, [](Statement * stmt) {
823 if ( DeclStmt *declStmt = dynamic_cast< DeclStmt * >( stmt ) ) {
824 if ( dynamic_cast< TypedefDecl * >( declStmt->get_decl() ) ) {
825 return true;
826 } // if
827 } // if
828 return false;
829 }, true);
830 return compoundStmt;
831 }
832
833 // there may be typedefs nested within aggregates. in order for everything to work properly, these should be removed
834 // as well
835 template<typename AggDecl>
836 AggDecl *EliminateTypedef::handleAggregate( AggDecl * aggDecl ) {
837 filter( aggDecl->members, isTypedef, true );
838 return aggDecl;
839 }
840
841 template<typename AggDecl>
842 void EliminateTypedef::addImplicitTypedef( AggDecl * aggDecl ) {
843 if ( typedefNames.count( aggDecl->get_name() ) == 0 ) {
844 Type *type = nullptr;
845 if ( StructDecl * newDeclStructDecl = dynamic_cast< StructDecl * >( aggDecl ) ) {
846 type = new StructInstType( Type::Qualifiers(), newDeclStructDecl->get_name() );
847 } else if ( UnionDecl * newDeclUnionDecl = dynamic_cast< UnionDecl * >( aggDecl ) ) {
848 type = new UnionInstType( Type::Qualifiers(), newDeclUnionDecl->get_name() );
849 } else if ( EnumDecl * newDeclEnumDecl = dynamic_cast< EnumDecl * >( aggDecl ) ) {
850 type = new EnumInstType( Type::Qualifiers(), newDeclEnumDecl->get_name() );
851 } // if
852 TypedefDeclPtr tyDecl( new TypedefDecl( aggDecl->get_name(), aggDecl->location, Type::StorageClasses(), type, aggDecl->get_linkage() ) );
853 typedefNames[ aggDecl->get_name() ] = std::make_pair( std::move( tyDecl ), scopeLevel );
854 } // if
855 }
856
857 void EliminateTypedef::premutate( StructDecl * structDecl ) {
858 addImplicitTypedef( structDecl );
859 }
860
861
862 Declaration *EliminateTypedef::postmutate( StructDecl * structDecl ) {
863 return handleAggregate( structDecl );
864 }
865
866 void EliminateTypedef::premutate( UnionDecl * unionDecl ) {
867 addImplicitTypedef( unionDecl );
868 }
869
870 Declaration *EliminateTypedef::postmutate( UnionDecl * unionDecl ) {
871 return handleAggregate( unionDecl );
872 }
873
874 void EliminateTypedef::premutate( EnumDecl * enumDecl ) {
875 addImplicitTypedef( enumDecl );
876 }
877
878 Declaration *EliminateTypedef::postmutate( EnumDecl * enumDecl ) {
879 return handleAggregate( enumDecl );
880 }
881
882 Declaration *EliminateTypedef::postmutate( TraitDecl * traitDecl ) {
883 return handleAggregate( traitDecl );
884 }
885
886 void EliminateTypedef::premutate( FunctionType * ) {
887 GuardValue( inFunctionType );
888 inFunctionType = true;
889 }
890
891 void VerifyCtorDtorAssign::verify( std::list< Declaration * > & translationUnit ) {
892 PassVisitor<VerifyCtorDtorAssign> verifier;
893 acceptAll( translationUnit, verifier );
894 }
895
896 void VerifyCtorDtorAssign::previsit( FunctionDecl * funcDecl ) {
897 FunctionType * funcType = funcDecl->get_functionType();
898 std::list< DeclarationWithType * > &returnVals = funcType->get_returnVals();
899 std::list< DeclarationWithType * > &params = funcType->get_parameters();
900
901 if ( CodeGen::isCtorDtorAssign( funcDecl->get_name() ) ) { // TODO: also check /=, etc.
902 if ( params.size() == 0 ) {
903 SemanticError( funcDecl, "Constructors, destructors, and assignment functions require at least one parameter " );
904 }
905 ReferenceType * refType = dynamic_cast< ReferenceType * >( params.front()->get_type() );
906 if ( ! refType ) {
907 SemanticError( funcDecl, "First parameter of a constructor, destructor, or assignment function must be a reference " );
908 }
909 if ( CodeGen::isCtorDtor( funcDecl->get_name() ) && returnVals.size() != 0 ) {
910 SemanticError( funcDecl, "Constructors and destructors cannot have explicit return values " );
911 }
912 }
913 }
914
915 template< typename Aggr >
916 void validateGeneric( Aggr * inst ) {
917 std::list< TypeDecl * > * params = inst->get_baseParameters();
918 if ( params ) {
919 std::list< Expression * > & args = inst->get_parameters();
920
921 // insert defaults arguments when a type argument is missing (currently only supports missing arguments at the end of the list).
922 // A substitution is used to ensure that defaults are replaced correctly, e.g.,
923 // forall(otype T, otype alloc = heap_allocator(T)) struct vector;
924 // vector(int) v;
925 // after insertion of default values becomes
926 // vector(int, heap_allocator(T))
927 // and the substitution is built with T=int so that after substitution, the result is
928 // vector(int, heap_allocator(int))
929 TypeSubstitution sub;
930 auto paramIter = params->begin();
931 for ( size_t i = 0; paramIter != params->end(); ++paramIter, ++i ) {
932 if ( i < args.size() ) {
933 TypeExpr * expr = strict_dynamic_cast< TypeExpr * >( *std::next( args.begin(), i ) );
934 sub.add( (*paramIter)->get_name(), expr->get_type()->clone() );
935 } else if ( i == args.size() ) {
936 Type * defaultType = (*paramIter)->get_init();
937 if ( defaultType ) {
938 args.push_back( new TypeExpr( defaultType->clone() ) );
939 sub.add( (*paramIter)->get_name(), defaultType->clone() );
940 }
941 }
942 }
943
944 sub.apply( inst );
945 if ( args.size() < params->size() ) SemanticError( inst, "Too few type arguments in generic type " );
946 if ( args.size() > params->size() ) SemanticError( inst, "Too many type arguments in generic type " );
947 }
948 }
949
950 void ValidateGenericParameters::previsit( StructInstType * inst ) {
951 validateGeneric( inst );
952 }
953
954 void ValidateGenericParameters::previsit( UnionInstType * inst ) {
955 validateGeneric( inst );
956 }
957
958 void CompoundLiteral::premutate( ObjectDecl *objectDecl ) {
959 storageClasses = objectDecl->get_storageClasses();
960 }
961
962 Expression *CompoundLiteral::postmutate( CompoundLiteralExpr *compLitExpr ) {
963 // transform [storage_class] ... (struct S){ 3, ... };
964 // into [storage_class] struct S temp = { 3, ... };
965 static UniqueName indexName( "_compLit" );
966
967 ObjectDecl *tempvar = new ObjectDecl( indexName.newName(), storageClasses, LinkageSpec::C, nullptr, compLitExpr->get_result(), compLitExpr->get_initializer() );
968 compLitExpr->set_result( nullptr );
969 compLitExpr->set_initializer( nullptr );
970 delete compLitExpr;
971 declsToAddBefore.push_back( tempvar ); // add modified temporary to current block
972 return new VariableExpr( tempvar );
973 }
974
975 void ReturnTypeFixer::fix( std::list< Declaration * > &translationUnit ) {
976 PassVisitor<ReturnTypeFixer> fixer;
977 acceptAll( translationUnit, fixer );
978 }
979
980 void ReturnTypeFixer::postvisit( FunctionDecl * functionDecl ) {
981 FunctionType * ftype = functionDecl->get_functionType();
982 std::list< DeclarationWithType * > & retVals = ftype->get_returnVals();
983 assertf( retVals.size() == 0 || retVals.size() == 1, "Function %s has too many return values: %zu", functionDecl->get_name().c_str(), retVals.size() );
984 if ( retVals.size() == 1 ) {
985 // ensure all function return values have a name - use the name of the function to disambiguate (this also provides a nice bit of help for debugging).
986 // ensure other return values have a name.
987 DeclarationWithType * ret = retVals.front();
988 if ( ret->get_name() == "" ) {
989 ret->set_name( toString( "_retval_", CodeGen::genName( functionDecl ) ) );
990 }
991 ret->get_attributes().push_back( new Attribute( "unused" ) );
992 }
993 }
994
995 void ReturnTypeFixer::postvisit( FunctionType * ftype ) {
996 // xxx - need to handle named return values - this information needs to be saved somehow
997 // so that resolution has access to the names.
998 // Note that this pass needs to happen early so that other passes which look for tuple types
999 // find them in all of the right places, including function return types.
1000 std::list< DeclarationWithType * > & retVals = ftype->get_returnVals();
1001 if ( retVals.size() > 1 ) {
1002 // generate a single return parameter which is the tuple of all of the return values
1003 TupleType * tupleType = strict_dynamic_cast< TupleType * >( ResolvExpr::extractResultType( ftype ) );
1004 // ensure return value is not destructed by explicitly creating an empty ListInit node wherein maybeConstruct is false.
1005 ObjectDecl * newRet = new ObjectDecl( "", Type::StorageClasses(), LinkageSpec::Cforall, 0, tupleType, new ListInit( std::list<Initializer*>(), noDesignators, false ) );
1006 deleteAll( retVals );
1007 retVals.clear();
1008 retVals.push_back( newRet );
1009 }
1010 }
1011
1012 void ArrayLength::computeLength( std::list< Declaration * > & translationUnit ) {
1013 PassVisitor<ArrayLength> len;
1014 acceptAll( translationUnit, len );
1015 }
1016
1017 void ArrayLength::previsit( ObjectDecl * objDecl ) {
1018 if ( ArrayType * at = dynamic_cast< ArrayType * >( objDecl->get_type() ) ) {
1019 if ( at->get_dimension() ) return;
1020 if ( ListInit * init = dynamic_cast< ListInit * >( objDecl->get_init() ) ) {
1021 at->set_dimension( new ConstantExpr( Constant::from_ulong( init->get_initializers().size() ) ) );
1022 }
1023 }
1024 }
1025
1026 struct LabelFinder {
1027 std::set< Label > & labels;
1028 LabelFinder( std::set< Label > & labels ) : labels( labels ) {}
1029 void previsit( Statement * stmt ) {
1030 for ( Label & l : stmt->labels ) {
1031 labels.insert( l );
1032 }
1033 }
1034 };
1035
1036 void LabelAddressFixer::premutate( FunctionDecl * funcDecl ) {
1037 GuardValue( labels );
1038 PassVisitor<LabelFinder> finder( labels );
1039 funcDecl->accept( finder );
1040 }
1041
1042 Expression * LabelAddressFixer::postmutate( AddressExpr * addrExpr ) {
1043 // convert &&label into label address
1044 if ( AddressExpr * inner = dynamic_cast< AddressExpr * >( addrExpr->arg ) ) {
1045 if ( NameExpr * nameExpr = dynamic_cast< NameExpr * >( inner->arg ) ) {
1046 if ( labels.count( nameExpr->name ) ) {
1047 Label name = nameExpr->name;
1048 delete addrExpr;
1049 return new LabelAddressExpr( name );
1050 }
1051 }
1052 }
1053 return addrExpr;
1054 }
1055
1056 void FindSpecialDeclarations::previsit( FunctionDecl * funcDecl ) {
1057 if ( ! dereferenceOperator ) {
1058 if ( funcDecl->get_name() == "*?" && funcDecl->get_linkage() == LinkageSpec::Intrinsic ) {
1059 FunctionType * ftype = funcDecl->get_functionType();
1060 if ( ftype->get_parameters().size() == 1 && ftype->get_parameters().front()->get_type()->get_qualifiers() == Type::Qualifiers() ) {
1061 dereferenceOperator = funcDecl;
1062 }
1063 }
1064 }
1065 }
1066} // namespace SymTab
1067
1068// Local Variables: //
1069// tab-width: 4 //
1070// mode: c++ //
1071// compile-command: "make install" //
1072// End: //
Note: See TracBrowser for help on using the repository browser.